Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (415)

Search Parameters:
Keywords = river flow regime

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 9088 KB  
Article
GMM-Enhanced Mixture-of-Experts Deep Learning for Impulsive Dam-Break Overtopping at Dikes
by Hanze Li, Yazhou Fan, Luqi Wang, Xinhai Zhang, Xian Liu and Liang Wang
Water 2026, 18(3), 311; https://doi.org/10.3390/w18030311 - 26 Jan 2026
Abstract
Impulsive overtopping generated by dam-break surges is a critical hazard for dikes and flood-protection embankments, especially in reservoirs and mountainous catchments. Unlike classical coastal wave overtopping, which is governed by long, irregular wave trains and usually characterized by mean overtopping discharge over many [...] Read more.
Impulsive overtopping generated by dam-break surges is a critical hazard for dikes and flood-protection embankments, especially in reservoirs and mountainous catchments. Unlike classical coastal wave overtopping, which is governed by long, irregular wave trains and usually characterized by mean overtopping discharge over many waves, these dam-break-type events are dominated by one or a few strongly nonlinear bores with highly transient overtopping heights. Accurately predicting the resulting overtopping levels under such impulsive flows is therefore important for flood-risk assessment and emergency planning. Conventional cluster-then-predict approaches, which have been proposed in recent years, often first partition data into subgroups and then train separate models for each cluster. However, these methods often suffer from rigid boundaries and ignore the uncertainty information contained in clustering results. To overcome these limitations, we propose a GMM+MoE framework that integrates Gaussian Mixture Model (GMM) soft clustering with a Mixture-of-Experts (MoE) predictor. GMM provides posterior probabilities of regime membership, which are used by the MoE gating mechanism to adaptively assign expert models. Using SPH-simulated overtopping data with physically interpretable dimensionless parameters, the framework is benchmarked against XGBoost, GMM+XGBoost, MoE, and Random Forest. Results show that GMM+MoE achieves the highest accuracy (R2=0.9638 on the testing dataset) and the most centralized residual distribution, confirming its robustness. Furthermore, SHAP-based feature attribution reveals that relative propagation distance and wave height are the dominant drivers of overtopping, providing physically consistent explanations. This demonstrates that combining soft clustering with adaptive expert allocation not only improves accuracy but also enhances interpretability, offering a practical tool for dike safety assessment and flood-risk management in reservoirs and mountain river valleys. Full article
Show Figures

Figure 1

21 pages, 3729 KB  
Article
Environmental Flow Regimes Shape Spawning Habitat Suitability for Four Carps in the Pearl River, China
by Chunxue Yu, Qiu’e Peng, Huabing Zhou and Yali Zhang
Sustainability 2026, 18(3), 1236; https://doi.org/10.3390/su18031236 - 26 Jan 2026
Abstract
The construction of reservoirs has undeniably provided numerous conveniences and benefits to human societies. However, it has also markedly altered downstream flow regimes, leading to essential fish habitat loss that directly undermines the ecosystem services provided by fish populations, thereby jeopardizing the long-term [...] Read more.
The construction of reservoirs has undeniably provided numerous conveniences and benefits to human societies. However, it has also markedly altered downstream flow regimes, leading to essential fish habitat loss that directly undermines the ecosystem services provided by fish populations, thereby jeopardizing the long-term sustainability of fishery resources. Existing assessments of spawning suitability largely concentrate on static characteristics of available spawning grounds, while the dynamics of habitat suitability migration and contraction in response to changing environmental flows remain poorly understood. To address this gap, we classified hydrological years into wet, flat, and dry categories to reflect the varying environmental flow requirements during the fish-spawning period. Using the Mike21 hydraulic model together with a spatial suitability analysis for spawning habitats, we quantified spawning ground suitability from both temporal and spatial perspectives. Taking the four major Chinese carps (FMCC) and the Dongta spawning ground in the Pearl River as a case study, our findings reveal that the proportion of highly suitable habitats closely tracks the environmental-flow trajectories. Throughout the FMCC spawning period, the spatial pattern of high suitability zones undergoes a marked migration in response to flow variations across wet, flat, and dry years, consistently shifting upstream. Specifically, as discharge rises from low-flow to high-flow events, the most suitable areas move from downstream deep-pool sections toward upstream shallow riffle zones, which is crucial for the sustainable development of fishery resources. Full article
(This article belongs to the Section Sustainability, Biodiversity and Conservation)
Show Figures

Figure 1

30 pages, 25744 KB  
Article
Long-Term Dynamics and Transitions of Surface Water Extent in the Dryland Wetlands of Central Asia Using a Hybrid Ensemble–Occurrence Approach
by Kanchan Mishra, Hervé Piégay, Kathryn E. Fitzsimmons and Philip Weber
Remote Sens. 2026, 18(3), 383; https://doi.org/10.3390/rs18030383 - 23 Jan 2026
Viewed by 82
Abstract
Wetlands in dryland regions are rapidly degrading under the combined effects of climate change and human regulation, yet long-term, seasonally resolved assessments of surface water extent (SWE) and its dynamics remain scarce. Here, we map and analyze seasonal surface water extent (SWE) over [...] Read more.
Wetlands in dryland regions are rapidly degrading under the combined effects of climate change and human regulation, yet long-term, seasonally resolved assessments of surface water extent (SWE) and its dynamics remain scarce. Here, we map and analyze seasonal surface water extent (SWE) over the period 2000–2024 in the Ile River Delta (IRD), south-eastern Kazakhstan, using Landsat TM/ETM+/OLI data within the Google Earth Engine (GEE) framework. We integrate multiple indices using the modified Normalized Difference Water Index (mNDWI), Automated Water Extraction Index (AWEI) variants, Water Index 2015 (WI2015), and Multi-Band Water Index (MBWI) with dynamic Otsu thresholding. The resulting index-wise binary water maps are merged via ensemble agreement (intersection, majority, union) to delineate three SWE regimes: stable (persists most of the time), periodic (appears regularly but not in every season), and ephemeral (appears only occasionally). Validation against Sentinel-2 imagery showed high accuracy F1-Score/Overall accuracy (F1/OA ≈ 0.85/85%), confirming our workflow to be robust. Hydroclimatic drivers were evaluated through modified Mann–Kendall (MMK) and Spearman’s (r) correlations between SWE, discharge (D), water level (WL), precipitation (P), and air temperature (AT), while a hybrid ensemble–occurrence framework was applied to identify degradation and transition patterns. Trend analysis revealed significant long–term declines, most pronounced during summer and fall. Discharge is predominantly controlled by stable spring SWE, while discharge and temperature jointly influence periodic SWE in summer–fall, with warming reducing the delta surface water. Ephemeral SWE responds episodically to flow pulses, whereas precipitation played a limited role in this semi–arid region. Spatially, area(s) of interest (AOI)-II/III (the main distributary system) support the most extensive yet dynamic wetlands. In contrast, AOI-I and AOI-IV host smaller, more constrained wetland mosaics. AOI-I shows persistence under steady low flows, while AOI-IV reflects a stressed system with sporadic high-water levels. Overall, the results highlight the dominant influence of flow regulation and distributary allocation on IRD hydrology and the need for ecologically timed releases, targeted restoration, and transboundary cooperation to sustain delta resilience. Full article
(This article belongs to the Section Remote Sensing in Geology, Geomorphology and Hydrology)
Show Figures

Figure 1

22 pages, 5142 KB  
Article
The Impact of Plant Debris on Hydraulic Conditions in a Semi-Natural Fish Pass
by Natalia Walczak, Zbigniew Walczak and Mateusz Hammerling
Water 2026, 18(2), 272; https://doi.org/10.3390/w18020272 - 21 Jan 2026
Viewed by 74
Abstract
Fish passes are essential hydraulic structures that maintain longitudinal connectivity in regulated rivers, but their hydraulic performance may be affected by debris accumulation at chamber openings. This study investigates the influence of partial and total inlet blockage by plant debris on flow conditions [...] Read more.
Fish passes are essential hydraulic structures that maintain longitudinal connectivity in regulated rivers, but their hydraulic performance may be affected by debris accumulation at chamber openings. This study investigates the influence of partial and total inlet blockage by plant debris on flow conditions within a semi-natural fish pass under field conditions. Hydraulic measurements were conducted at multiple locations along the fish pass, and the effects of debris covering were evaluated using statistical and mixed-effects modeling approaches. Field measurements demonstrated that the Froude number decreases systematically with increasing distance from the inlet, indicating progressive longitudinal dissipation of flow energy along the chamber sequence. Partial debris accumulation caused only marginal changes in the Froude number, remaining close to the threshold of statistical significance. In contrast, mean flow velocity decreased markedly with increasing inlet blockage, by approximately 17% at 50% covering and by about 36% under full blockage, indicating that debris primarily acts as a hydraulic damper rather than inducing a change in flow regime. The highest variability in hydraulic conditions was observed in chambers associated with changes in flow direction and local geometry. These results highlight the dominant role of longitudinal layout and chamber geometry in shaping hydraulic conditions in semi-natural fish passes, while moderate debris accumulation affects local velocities without fundamentally compromising hydraulic functionality. From an ecological perspective, transition zones with elevated hydraulic variability may represent critical locations influencing the swimming effort and passage efficiency of migrating fish. Full article
(This article belongs to the Section Hydraulics and Hydrodynamics)
Show Figures

Figure 1

26 pages, 8533 KB  
Article
An Experimental Study on the Influence of Rigid Submerged Vegetation on Flow Characteristics in a Strongly Curved Channel
by Yu Yang, Dongrui Han, Xiongwei Zheng, Fen Zhou, Feifei Zheng and Ying-Tien Lin
Water 2026, 18(2), 256; https://doi.org/10.3390/w18020256 - 18 Jan 2026
Viewed by 158
Abstract
Flow dynamics in strongly curved channels with submerged vegetation play a crucial role in riverine ecological processes and morphodynamics, yet the combined effects of sharp curvature and rigid submerged vegetation remain inadequately understood. This study presents a comprehensive experimental investigation into the influence [...] Read more.
Flow dynamics in strongly curved channels with submerged vegetation play a crucial role in riverine ecological processes and morphodynamics, yet the combined effects of sharp curvature and rigid submerged vegetation remain inadequately understood. This study presents a comprehensive experimental investigation into the influence of rigid submerged vegetation on the flow characteristics within a 180° strongly curved channel. Laboratory experiments were conducted in a U-shaped flume with varying vegetation configurations (fully vegetated, convex bank only, and concave bank only) and two vegetation heights (5 cm and 10 cm). The density of vegetation ϕ was 2.235%. All experimental configurations exhibited fully turbulent flow conditions (Re > 60,000) and subcritical flow regimes (Fr < 1), ensuring gravitational dominance and absence of jet flow phenomena. An acoustic Doppler velocimeter (ADV) was employed to capture high-frequency, three-dimensional velocity data across five characteristic cross-sections (0°, 45°, 90°, 135°, 180°). Detailed analyses were performed on the longitudinal and transverse velocity distributions, cross-stream circulation, turbulent kinetic energy (TKE), power spectral density, turbulent bursting, and Reynolds stresses. The results demonstrate that submerged vegetation fundamentally alters the flow structure by increasing flow resistance, modifying the velocity inflection points, and reshaping turbulence characteristics. Vegetation height was found to delay the manifestation of curvature-induced effects, with taller vegetation shifting the maximum longitudinal velocity to the vegetation canopy top further downstream compared to shorter vegetation. The presence and distribution of vegetation significantly impacted secondary flow patterns, altering the direction of cross-stream circulation in fully vegetated regions. TKE peaked near the vegetation canopy, and its vertical distribution was strongly influenced by the bend, causing the maximum TKE to descend to the mid-canopy level. Spectral analysis revealed an altered energy cascade in vegetated regions and interfaces, with a steeper dissipation rate. Turbulent bursting events showed a more balanced contribution among quadrants with higher vegetation density. Furthermore, Reynolds stress analysis highlighted intensified momentum transport at the vegetation–non-vegetation interface, which was further amplified by the channel curvature, particularly when vegetation was located on the concave bank. These findings provide valuable insights into the complex hydrodynamics of vegetated meandering channels, contributing to improved river management, ecological restoration strategies, and predictive modeling. Full article
(This article belongs to the Topic Advances in Environmental Hydraulics, 2nd Edition)
Show Figures

Figure 1

28 pages, 8447 KB  
Article
How Urban Distance Operates: A Nonlinear Perspective on Talent Mobility Intention in the Yangtze River Delta
by Xing Yan and Jizu Li
Sustainability 2026, 18(1), 476; https://doi.org/10.3390/su18010476 - 2 Jan 2026
Viewed by 453
Abstract
Based on micro-level job seeker data from 41 cities in China’s Yangtze River Delta, this study employs threshold regression to examine how inter-city distance influences talent mobility. The results reveal that distance exerts a negative impact on mobility intention and moderates the relationship [...] Read more.
Based on micro-level job seeker data from 41 cities in China’s Yangtze River Delta, this study employs threshold regression to examine how inter-city distance influences talent mobility. The results reveal that distance exerts a negative impact on mobility intention and moderates the relationship between a destination’s economic level and mobility. Notably, significant threshold effects are identified at 164.1 km and 271.5 km, delineating three spatial regimes. Short-distance flows (<164.1 km) show the highest intensity, driven by strong economic incentives and high mobility. In contrast, medium-distance flows (164.1–271.5 km) prove least attractive due to offsetting effects, while long-distance flows (>271.5 km) rebound slightly as talent selectively targets major economic hubs, with distance exhibiting only weak inhibition. Crucially, these nonlinear patterns remain robust after addressing endogeneity concerns via the 2SLS method, substituting spatial distance with temporal distance, and controlling for housing prices and cultural factors. Heterogeneity analysis further indicates that individuals with bachelor’s degrees, those above age 30, and talent in labor-intensive industries exhibit greater sensitivity to distance. Conversely, knowledge-intensive sectors and top-tier economic cities demonstrate broader spatial tolerance and stronger cross-regional attraction capabilities. These findings provide a quantitative basis for developing differentiated regional talent policies. Full article
Show Figures

Figure 1

21 pages, 2450 KB  
Article
Unraveling Nitrate Source Dynamics in Megacity Rivers Using an Integrated Machine Learning–Bayesian Isotope Framework
by Jie Ren, Guilin Han, Xiaolong Liu, Xi Gao and Shitong Zhang
Water 2026, 18(1), 106; https://doi.org/10.3390/w18010106 - 1 Jan 2026
Viewed by 470
Abstract
Rapid urbanization has intensified nitrate pollution in megacity rivers, posing severe challenges to urban water governance and sustainable nitrate management. This study presents nitrate dual-isotope signatures (δ15N-NO3 and δ18O-NO3) from surface water samples collected [...] Read more.
Rapid urbanization has intensified nitrate pollution in megacity rivers, posing severe challenges to urban water governance and sustainable nitrate management. This study presents nitrate dual-isotope signatures (δ15N-NO3 and δ18O-NO3) from surface water samples collected during the wet season from the Yongding River (YDR) and Chaobai River (CBR) in the Beijing–Tianjin–Hebei megacity region of North China. Average concentrations of nitrate (as NO3) were 8.5 mg/L in YDR and 12.7 mg/L in CBR. The δ15N-NO3 and δ18O-NO3 values varied from 6.1‰ to 19.1‰ and −1.1‰ to 10.6‰, respectively. The spatial distribution of NO3/Cl ratios and isotopic data indicated mixed sources, primarily sewage and manure in downstream sections and agricultural inputs in upstream areas. Isotopic evidence revealed widespread nitrification processes and could have potentially localized denitrification under low-oxygen conditions in the lower YDR. Bayesian mixing model (MixSIAR) results indicated that sewage and manure constituted the main nitrate sources (49.4%), followed by soil nitrogen (23.7%), chemical fertilizers (19.2%), and atmospheric deposition from rainfall (7.7%). The self-organizing map (SOM) further revealed three nitrate regimes, including natural and agricultural, mixed, and sewage dominated conditions, indicating a clear downstream gradient of increasing anthropogenic influence. The results suggest that efficient nitrogen management in megacity rivers requires improving biological nutrient removal in wastewater treatment, regulating fertilizer application in upstream areas, and maintaining ecological base flow for natural denitrification. This integrated framework provides a quantitative basis for nitrate control and supports sustainable water governance in highly urbanized watersheds. Full article
Show Figures

Figure 1

37 pages, 26723 KB  
Article
Investigation of the Hydrodynamic Characteristics of a Wandering Reach with Multiple Mid-Channel Shoals in the Upper Yellow River
by Hefang Jing, Haoqian Li, Weihong Wang, Yongxia Liu and Jianping Lv
Sustainability 2026, 18(1), 264; https://doi.org/10.3390/su18010264 - 26 Dec 2025
Viewed by 216
Abstract
Sustainable management of sediment-laden rivers is essential for balancing flood control, ecological protection, and socioeconomic development. The Upper Yellow River, supporting 160 million people, faces escalating challenges in maintaining channel stability under intensified water–sediment imbalances. This study investigates the Sipaikou reach in Ningxia—a [...] Read more.
Sustainable management of sediment-laden rivers is essential for balancing flood control, ecological protection, and socioeconomic development. The Upper Yellow River, supporting 160 million people, faces escalating challenges in maintaining channel stability under intensified water–sediment imbalances. This study investigates the Sipaikou reach in Ningxia—a representative wandering channel with multiple mid-channel shoals—through integrated UAV-USV-GNSS RTK field measurements and hydrodynamic and sediment transport modeling. Field measurements reveal that mid-channel shoal morphology coupled with bend circulation governs flow division patterns, with discharge ratios of 44.16% and 86.31% at the primary and secondary shoals, respectively. Gaussian kernel density estimation demonstrates velocity distributions evolving from right-skewed to left-skewed around shoals, while spur dike regions display strong left skewness with concentrated main flow. Numerical simulations under six discharge scenarios indicate: (1) Head loss exhibits diminishing marginal effects at the primary shoal, an inflection point at a critical discharge at the secondary shoal, and superlinear growth in the spur dike region. (2) The normal-flow period represents the critical threshold for erosion–deposition regime transition. (3) Spur dike series achieve bank protection through main flow constriction and inter-dike low-velocity zone creation. These findings provide scientific foundations for sustainable flood risk management and ecological restoration in wandering rivers. The integrated measurement–simulation framework offers a transferable methodology for adaptive river management under changing hydrological conditions. Full article
(This article belongs to the Section Sustainable Water Management)
Show Figures

Figure 1

19 pages, 2213 KB  
Review
Benefits and Challenges of Small Dams in Mediterranean Climate Region: A Review
by Alissar Yassin, Giovanni Francesco Ricci, Francesco Gentile and Anna Maria De Girolamo
Hydrology 2026, 13(1), 10; https://doi.org/10.3390/hydrology13010010 - 24 Dec 2025
Viewed by 372
Abstract
In Mediterranean climate regions, water scarcity, seasonal droughts and hydrological extremes are exacerbated by climate change. In these areas, small dams are increasingly used as decentralized water infrastructure for water supply, especially in agricultural areas. However, several challenges must overcome when planning and [...] Read more.
In Mediterranean climate regions, water scarcity, seasonal droughts and hydrological extremes are exacerbated by climate change. In these areas, small dams are increasingly used as decentralized water infrastructure for water supply, especially in agricultural areas. However, several challenges must overcome when planning and managing small reservoirs. This review combines evidence from case studies to analyze the benefits and challenges of small dams. The findings show that small reservoirs may offer a wide array of ecological, agricultural, hydrological, and socio-economic benefits when strategically planned and properly maintained, providing water and contributing to groundwater recharge, vegetative restoration, and biodiversity conservation, while simultaneously controlling flash floods in a cost-effective and participatory manner. On the other hand, evaporation losses and sedimentation may affect water quality and reduce storage capacity. In addition, small dams may negatively affect river ecosystems. Persistent disturbance of downstream flow and sediment regime contributes to altered river morphology and habitat, with effects on biota, and may reduce river system resilience. These impacts are context-dependent, influenced by dam density, geomorphic setting, and climate. Finally, this study highlighted the importance of governance and maintenance practices. Polycentric and participative systems may promote more adaptable responses to water stress, whereas fragmented institutions exacerbate trade-offs between water supply and ecological integrity. Full article
Show Figures

Figure 1

26 pages, 2991 KB  
Article
Hydro-Meteorological Drought Dynamics in the Lower Mekong River Basin and Their Downstream Impacts on the Vietnamese Mekong Delta (1992–2021)
by Dang Thi Hong Ngoc, Nguyen Van Toan, Nguyen Phuoc Cong, Bui Thi Bich Lien, Nguyen Thanh Tam, Nigel K. Downes, Pankaj Kumar and Huynh Vuong Thu Minh
Resources 2026, 15(1), 3; https://doi.org/10.3390/resources15010003 - 23 Dec 2025
Viewed by 927
Abstract
Climate change and river flow alterations in the Mekong River have significantly exacerbated drought conditions in the Vietnamese Mekong Delta (VMD). Understanding the temporal dynamics and propagation mechanisms of drought, coupled with the compounded impacts of human activities, is crucial. This study analyzed [...] Read more.
Climate change and river flow alterations in the Mekong River have significantly exacerbated drought conditions in the Vietnamese Mekong Delta (VMD). Understanding the temporal dynamics and propagation mechanisms of drought, coupled with the compounded impacts of human activities, is crucial. This study analyzed meteorological (1992–2021) and hydrological (2000–2021) drought trends in the Lower Mekong River Basin (LMB) using the Standardized Precipitation Index (SPI) and the Streamflow Drought Index (SDI), respectively, complemented by Mann–Kendall (MK) trend analysis. The results show an increasing trend of meteorological drought in Cambodia and Lao PDR, with mid-Mekong stations exhibiting a strong positive correlation with downstream discharge, particularly Tan Chau (Pearson r ranging from 0.60 to 0.70). A key finding highlights the complexity of flow regulation by the Tonle Sap system, evidenced by a very strong correlation (r = 0.71) between Phnom Penh and the 12-month SDI lagged by one year. Crucially, the comparison revealed a shift in drought severity since 2010: hydrological drought has exhibited greater severity (reaching severe levels in 2020–2021) compared to meteorological drought, which remained moderate. This escalation is substantiated by a statistically significant discharge reduction (95% confidence level) at the Chau Doc station during the wet season, indicating a decline in peak flow due to upstream dam operations. These findings provide a robust database on the altered hydrological regime, underlining the increasing vulnerability of the VMD and motivating the urgent need for comprehensive, adaptive water resource management strategies. Full article
Show Figures

Figure 1

30 pages, 12551 KB  
Article
Numerical Groundwater Flow Modeling in a Tropical Aquifer Under Anthropogenic Pressures: A Case Study in the Middle Magdalena Valley, Colombia
by Boris Lora-Ariza, Luis Silva Vargas, Juan Pescador, Mónica Vaca, Juan Landinez, Adriana Piña and Leonardo David Donado
Water 2025, 17(24), 3579; https://doi.org/10.3390/w17243579 - 17 Dec 2025
Viewed by 792
Abstract
Groundwater is one of the main sources of water supply in tropical developing countries; however, its integrated management is often constrained by limited hydrogeological information and increasing anthropogenic pressures on aquifer systems. This study presents the numerical modeling of groundwater flow in the [...] Read more.
Groundwater is one of the main sources of water supply in tropical developing countries; however, its integrated management is often constrained by limited hydrogeological information and increasing anthropogenic pressures on aquifer systems. This study presents the numerical modeling of groundwater flow in the Neogene–Quaternary aquifer system of the Middle Magdalena Valley (Colombia), focusing on the rural area of Puerto Wilches, which is characterized by strong surface–groundwater interactions, particularly with the Yarirí wetland and the Magdalena River. A three-dimensional model was implemented and calibrated in FEFLOW v.8.1 under steady-state and transient conditions, integrating both primary and secondary data. The dataset included piezometric levels measured with water level meters and automatic loggers, hydrometeorological records, 21 physicochemical and microbiological parameters analyzed in 45 samples collected during three field campaigns under contrasting hydrological conditions, 79 pumping tests, detailed lithological columns from drilled wells, and complementary geological and geophysical models. The results indicate a predominant east–west groundwater flow from the Eastern Cordillera toward the Magdalena River, with seasonal recharge and discharge patterns controlled by the bimodal rainfall regime. Microbiological contamination (total coliforms in 69% of groundwater samples) and nitrate concentrations above 10 mg/L in 21% of wells were detected, mainly due to agricultural fertilizers and domestic wastewater infiltration. Particle tracking revealed predominantly horizontal flow paths, with transit times of up to 800 years in intermediate units of the Real Group and around 60 years in shallow Quaternary deposits, highlighting the differential vulnerability of the system to contamination. These findings provide scientific foundations for strengthening integrated groundwater management in tropical regions under agroindustrial and hydrocarbon pressures and emphasize the need to consolidate monitoring networks, promote sustainable agricultural practices, and establish preventive measures to protect groundwater quality. Full article
(This article belongs to the Special Issue Groundwater Flow and Contaminant Transport Modeling)
Show Figures

Figure 1

31 pages, 1778 KB  
Article
Long-Term Trends and Characteristics of Water Temperature Extremes of a Large Lowland River During the Summer Season from 1920 to 2023—Case Study of the Bug River in Poland, Eastern Europe
by Ewa Kaznowska, Michał Wasilewicz, Agnieszka Hejduk, Mateusz Stelmaszczyk and Leszek Hejduk
Sustainability 2025, 17(24), 11189; https://doi.org/10.3390/su172411189 - 14 Dec 2025
Viewed by 638
Abstract
Sustainable water resource management must address the current challenges posed by changes in the thermal regime of water bodies. The ongoing increase in air temperature leads to higher water temperatures, resulting in various unfavorable changes in the aquatic environment and limiting its capacity [...] Read more.
Sustainable water resource management must address the current challenges posed by changes in the thermal regime of water bodies. The ongoing increase in air temperature leads to higher water temperatures, resulting in various unfavorable changes in the aquatic environment and limiting its capacity to meet human subsistence and economic needs. The aim of this study was to evaluate the impact of climate change on the thermal regime of the Bug River, a large lowland river in Eastern Europe (Poland) that remains thermally unpolluted. Using archival sources, we collected, reconstructed, and standardized water temperature data for the Bug River at the Wyszków profile during the summer months (April to October) from 1920 to 2023, despite several gaps in the data. Our analysis revealed a significant increase in the average summer water temperature, along with maximum and minimum temperatures, although there was considerable month-to-month variability throughout the study period. The observed upward trend in water temperature corresponds to the rise in air temperature. Between the subsequent 30-year climate norms of 1971–2000, 1981–2010, and 1991–2020, we noted a steady increase of 0.4 °C in average summer water temperatures. The highest average monthly water temperatures in recent years occurred during the summer seasons of 2018, 2019, 2021, and 2023. Notably, we also recorded some of the highest water temperatures in July 1951, June 1932, and July 1947 and 2010. Furthermore, we found a significant relationship (R2 = 0.68) between maximum water temperature during low flow events and the average discharge. The results of this study indicate a warming trend in the waters of the Bug River. Full article
(This article belongs to the Section Sustainable Water Management)
Show Figures

Figure 1

22 pages, 2565 KB  
Article
The Significance of the Harirud River Basin: Sustainable Development Climate Change and Unilateral Action
by Mujib Ahmad Azizi and Jorge Leandro
Geosciences 2025, 15(12), 459; https://doi.org/10.3390/geosciences15120459 - 2 Dec 2025
Viewed by 568
Abstract
This paper examines the Harirud (Harirod, Tejen) River Basin, a vital transboundary water source shared by Afghanistan, Iran, and Turkmenistan. The basin supports farming, energy production, and home supply in a dry area. Despite its ecological, socio-economic, and geopolitical importance, the basin lacks [...] Read more.
This paper examines the Harirud (Harirod, Tejen) River Basin, a vital transboundary water source shared by Afghanistan, Iran, and Turkmenistan. The basin supports farming, energy production, and home supply in a dry area. Despite its ecological, socio-economic, and geopolitical importance, the basin lacks a cooperative governance framework, leaving it vulnerable to unilateral development, institutional weakness, and climate stress. Addressing an important research gap, this study investigates how unilateral water infrastructure and climate change jointly reshape water security and governance between Afghanistan and Iran. A qualitative case study approach integrates insights from hydropolitics, benefit sharing, and environmental security to analyse ecological and political dynamics. Findings show that climate change has disrupted hydrological regimes—average temperatures have increased by about 1.7 °C and rainfall has declined by roughly 150 mm since 1980. Unilateral dam constructions have altered seasonal flows and intensified hydro-political tensions. The study concludes that implementing Integrated Water Resources Management (IWRM), joint hydrological monitoring, climate adaptation, and equitable benefit-sharing can transform the Harirud from a contested river into a foundation for regional stability and sustainable development. Full article
(This article belongs to the Section Climate and Environment)
Show Figures

Figure 1

26 pages, 10064 KB  
Article
A New Method for Determining the Ecological Flow Regime to Support Sustainable Restoration of Target Fish Habitats in Impaired Rivers
by Zheng Zhou, Yang Ding, Zicheng Yu, Jinyong Zhao, Jingzhou Zhang and Zhe Liu
Sustainability 2025, 17(23), 10703; https://doi.org/10.3390/su172310703 - 28 Nov 2025
Viewed by 496
Abstract
Large-scale river degradation constitutes a global challenge, rendering the ecological restoration of impaired rivers ever more crucial. While ecological restoration projects have enhanced the quality of river habitats, given the dynamic nature and complexity of river and lake ecosystems, the achievement of sustainable [...] Read more.
Large-scale river degradation constitutes a global challenge, rendering the ecological restoration of impaired rivers ever more crucial. While ecological restoration projects have enhanced the quality of river habitats, given the dynamic nature and complexity of river and lake ecosystems, the achievement of sustainable restoration of fish habitats and the assurance of its effectiveness continue to face numerous challenges. Consequently, this study proposes an improved approach to determine the ecological flow requirements of fish habitats in impaired rivers. In relation to the screening of key species, a bespoke evaluation index system has been developed specifically for impaired rivers lacking rare and endemic fish species. Primary data were collected via field surveys, ecological monitoring, and a review of the literature, while the analytic hierarchy process (AHP) was utilized to quantitatively identify key species. In the development of the assessment framework, three core indicators were integrated: habitat-weighted usable area (WUA), habitat connectivity index (HCI), and microhabitat heterogeneity index (RMH). Incorporating the ecological requirements of key fish species across different life stages, a systematic analysis was undertaken to explore the ecological response effects of different indicator combinations under varying flow regimes. The results revealed that a flow rate of 160 m3/s gives rise to an inflection point in the RMH diversity index at 1.618, whereas a flow rate of 240 m3/s results in a significant inflection point in the HCI at 0.652. At a flow rate of 260 m3/s, the WUA attains 2,007,928 m2. The optimal ecological flow range was determined to be 160–240 m3/s for the breeding period (March–June), 240–260 m3/s for the foraging period (July–October), and 120 m3/s for the winter period. These findings provide a theoretical framework for the restoration of target fish populations in similarly degraded rivers. Full article
Show Figures

Figure 1

21 pages, 7144 KB  
Article
Mangrove Zonation as a Tool to Infer the Freshwater Inflow Regime in the Data-Poor Ruvu Estuary, Tanzania
by Amartya Kumar Saha and Michael Honorati Kimaro
Water 2025, 17(23), 3404; https://doi.org/10.3390/w17233404 - 28 Nov 2025
Viewed by 662
Abstract
Estuaries provide numerous ecosystem services, including fisheries, coastal community livelihoods, and resistance to saltwater intrusion. Despite this knowledge, estuaries worldwide are threatened by decreasing and/or aseasonal freshwater inflows, which negatively affect ecosystem structure and function. Sound estuarine management requires an understanding of the [...] Read more.
Estuaries provide numerous ecosystem services, including fisheries, coastal community livelihoods, and resistance to saltwater intrusion. Despite this knowledge, estuaries worldwide are threatened by decreasing and/or aseasonal freshwater inflows, which negatively affect ecosystem structure and function. Sound estuarine management requires an understanding of the natural freshwater inflow regime and knowledge of the salinity tolerances of local plant and animal communities—data that are completely lacking in most estuaries. This paper describes a 2-week field survey of mangrove zonation in the Ruvu River estuary carried out during the wet–dry season transition to obtain a multi-decadal proxy for the salinity regime within the estuary. Salinity conditions arising from the mixing of freshwater inflows and sea tides influence the species composition of mangroves. The mouth of the estuary (highest salinity −35 ppt) had monospecific stands of Sonneratia alba—the mangrove with the highest salinity tolerance. Salinity decreased going upriver, from 30 ppt to 5 ppt over 13 km, with 7 other mangrove species progressively appearing in the riverbank forests, ultimately transitioning to palms and other trees intolerant of salinity (<5 ppt). The resulting map relating mangrove zonation with salinity can then be used to calibrate estuary salinity mixing models for calculating minimum freshwater inflows necessary to maintain the estuarine ecosystem. Such periodic surveys and maps can also serve to calibrate/validate remote sensing products for continued coastal vegetation monitoring. The study also reviews available information on climate and land use relating to river flow in the Ruvu basin to summarize the hydrologic vulnerability of the Ruvu estuary to climate change, land use change, and river water demands in the Basin. Full article
Show Figures

Figure 1

Back to TopTop