Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (598)

Search Parameters:
Keywords = ring widths

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 13213 KiB  
Article
Experimental Study on Mechanical Properties of European Oak and Norway Spruce Clear Wood
by Serena Gambarelli, Josipa Bošnjak, Rey Noé Fararoni Platas and Kexin Jin
Materials 2025, 18(14), 3257; https://doi.org/10.3390/ma18143257 - 10 Jul 2025
Viewed by 256
Abstract
The trends in the building industry related to sustainability and environmental footprint make timber structures more appealing than ever. Many challenges in understanding the behaviour of structural timber can be addressed by combining experimental and numerical methods. However, sophisticated numerical tools require a [...] Read more.
The trends in the building industry related to sustainability and environmental footprint make timber structures more appealing than ever. Many challenges in understanding the behaviour of structural timber can be addressed by combining experimental and numerical methods. However, sophisticated numerical tools require a complete description of the behaviour at the material level. Even though there are vast databases on the properties of different species, there are only limited studies on the mechanical response with complete stress–strain curves for all relevant directions. In order to bridge this gap, the present study investigates the mechanical response of European oak (hardwood) and Norway spruce (softwood). Uniaxial tensile and compressive tests were performed on small clear wood specimens. The behaviour was investigated for the direction parallel (longitudinal) and perpendicular to the grain (radial and tangential). Both species exhibit brittle tensile behaviour in all material directions, in contrast to the ductile performance under compression. The tensile strength lies at 70 MPa and 80 MPa for spruce and oak, respectively, whereas both species exhibit a compressive strength of approximately 50 MPa in the longitudinal direction. Due to the narrow range of the investigated density, growth-ring angle and growth-ring width, only a limited effect of these parameters was observed on the tensile behaviour in the longitudinal direction. Full article
(This article belongs to the Section Mechanics of Materials)
Show Figures

Figure 1

15 pages, 3286 KiB  
Article
Enhanced Sensitivity Microfluidic Microwave Sensor for Liquid Characterization
by Kim Ho Yeap, Kai Bor Tan, Foo Wei Lee, Han Kee Lee, Nuraidayani Effendy, Wei Chun Chin and Pek Lan Toh
Processes 2025, 13(7), 2183; https://doi.org/10.3390/pr13072183 - 8 Jul 2025
Viewed by 296
Abstract
This paper presents the development and analysis of a planar microfluidic microwave sensor featuring three circular complementary split-ring resonators (CSRRs) fabricated on an RO3035 substrate. The sensor demonstrates enhanced sensitivity in characterizing liquids contained in a fine glass capillary tube by leveraging a [...] Read more.
This paper presents the development and analysis of a planar microfluidic microwave sensor featuring three circular complementary split-ring resonators (CSRRs) fabricated on an RO3035 substrate. The sensor demonstrates enhanced sensitivity in characterizing liquids contained in a fine glass capillary tube by leveraging a novel configuration: a central 5-split-ring CSRR with a drilled hole to suspend the capillary, flanked by two 2-split-ring CSRRs to improve the band-stop filtering effect. The sensor’s performance is benchmarked against another CSRR-based microwave sensor with a similar configuration. High linearity is observed (R2 > 0.99), confirming its capability for precise ethanol concentration prediction. Compared to the replicated square CSRR design from the literature, the proposed sensor achieves a 35.22% improvement in sensitivity, with a frequency shift sensitivity of 567.41 kHz/% ethanol concentration versus 419.62 kHz/% for the reference sensor. The enhanced sensitivity is attributed to several key design strategies: increasing the intrinsic capacitance by enlarging the effective area and radial slot width to amplify edge capacitive effects, adding more split rings to intensify the resonance dip, placing additional CSRRs to improve energy extraction at resonance, and adopting circular CSRRs for superior electric field confinement. Additionally, the proposed design operates at a lower resonant frequency (2.234 GHz), which not only reduces dielectric and radiation losses but also enables the use of more cost-effective and power-efficient RF components. This advantage makes the sensor highly suitable for integration into portable and standalone sensing platforms. Full article
(This article belongs to the Special Issue Development of Smart Materials for Chemical Sensing)
Show Figures

Figure 1

22 pages, 5340 KiB  
Article
Vegetation Growth Carryover and Lagged Climatic Effect at Different Scales: From Tree Rings to the Early Xylem Growth Season
by Jiuqi Chen, Yonghui Wang, Tongwen Zhang, Kexiang Liu, Kailong Guo, Tianhao Hou, Jinghui Song, Zhihao He and Beihua Liang
Forests 2025, 16(7), 1107; https://doi.org/10.3390/f16071107 - 4 Jul 2025
Viewed by 216
Abstract
Vegetation growth is influenced not only by current climatic conditions but also by growth-enhancing signals and preceding climate factors. Taking the dominant species, Juniperus seravschanica Kom, in Tajikistan as the research subject, this study combines tree-ring width data with early xylem growth season [...] Read more.
Vegetation growth is influenced not only by current climatic conditions but also by growth-enhancing signals and preceding climate factors. Taking the dominant species, Juniperus seravschanica Kom, in Tajikistan as the research subject, this study combines tree-ring width data with early xylem growth season data (from the start of xylem growth to the first day of the NDVI peak month), simulated using the Vaganov–Shashkin (V-S) model, a process-based tree-ring growth model. This study aims to explore the effects of vegetation growth carryover (VGC) and lagged climatic effects (LCE) on tree rings and the early xylem growth season at two different scales by integrating tree-ring width data and xylem phenology simulations. A vector autoregression (VAR) model was employed to analyze the response intensity and duration of VGC and LCE. The results show that the VGC response intensity in the early xylem growth season is higher than that of tree-ring width. The LCE duration for both the early xylem growth season and tree-ring width ranges from 0 to 11 (years or seasons), with peak LCE response intensity observed at a lag of 2–3 (years or seasons). The persistence of the climate lag effect on vegetation growth has been underestimated, supporting the use of a lag of 0–3 (years or seasons) to study the long-term impacts of climate. The influence of VGC on vegetation growth is significantly stronger than that of LCEs; ultimately indicating that J. seravschanica adapts to harsh environments by modulating its growth strategy through VGC and LCE. Investigating the VGC and LCE of multi-scale xylem growth indicators enhances our understanding of forest ecosystem dynamics. Full article
(This article belongs to the Special Issue Tree-Ring Analysis: Response and Adaptation to Climate Change)
Show Figures

Figure 1

29 pages, 21376 KiB  
Article
Numerical Simulation of Fracture Failure Propagation in Water-Saturated Sandstone with Pore Defects Under Non-Uniform Loading Effects
by Gang Liu, Yonglong Zan, Dongwei Wang, Shengxuan Wang, Zhitao Yang, Yao Zeng, Guoqing Wei and Xiang Shi
Water 2025, 17(12), 1725; https://doi.org/10.3390/w17121725 - 7 Jun 2025
Cited by 1 | Viewed by 480
Abstract
The instability of mine roadways is significantly influenced by the coupled effects of groundwater seepage and non-uniform loading. These interactions often induce localized plastic deformation and progressive failure, particularly in the roof and sidewall regions. Seepage elevates pore water pressure and deteriorates the [...] Read more.
The instability of mine roadways is significantly influenced by the coupled effects of groundwater seepage and non-uniform loading. These interactions often induce localized plastic deformation and progressive failure, particularly in the roof and sidewall regions. Seepage elevates pore water pressure and deteriorates the mechanical properties of the rock mass, while non-uniform loading leads to stress concentration. The combined effect facilitates the propagation of microcracks and the formation of shear zones, ultimately resulting in localized instability. This initial damage disrupts the mechanical equilibrium and can evolve into severe geohazards, including roof collapse, water inrush, and rockburst. Therefore, understanding the damage and failure mechanisms of mine roadways at the mesoscale, under the combined influence of stress heterogeneity and hydraulic weakening, is of critical importance based on laboratory experiments and numerical simulations. However, the large scale of in situ roadway structures imposes significant constraints on full-scale physical modeling due to limitations in laboratory space and loading capacity. To address these challenges, a straight-wall circular arch roadway was adopted as the geometric prototype, with a total height of 4 m (2 m for the straight wall and 2 m for the arch), a base width of 4 m, and an arch radius of 2 m. Scaled physical models were fabricated based on geometric similarity principles, using defect-bearing sandstone specimens with dimensions of 100 mm × 30 mm × 100 mm (length × width × height) and pore-type defects measuring 40 mm × 20 mm × 20 mm (base × wall height × arch radius), to replicate the stress distribution and deformation behavior of the prototype. Uniaxial compression tests on water-saturated sandstone specimens were performed using a TAW-2000 electro-hydraulic servo testing system. The failure process was continuously monitored through acoustic emission (AE) techniques and static strain acquisition systems. Concurrently, FLAC3D 6.0 numerical simulations were employed to analyze the evolution of internal stress fields and the spatial distribution of plastic zones in saturated sandstone containing pore defects. Experimental results indicate that under non-uniform loading, the stress–strain curves of saturated sandstone with pore-type defects typically exhibit four distinct deformation stages. The extent of crack initiation, propagation, and coalescence is strongly correlated with the magnitude and heterogeneity of localized stress concentrations. AE parameters, including ringing counts and peak frequencies, reveal pronounced spatial partitioning. The internal stress field exhibits an overall banded pattern, with localized variations induced by stress anisotropy. Numerical simulation results further show that shear failure zones tend to cluster regionally, while tensile failure zones are more evenly distributed. Additionally, the stress field configuration at the specimen crown significantly influences the dispersion characteristics of the stress–strain response. These findings offer valuable theoretical insights and practical guidance for surrounding rock control, early warning systems, and reinforcement strategies in water-infiltrated mine roadways subjected to non-uniform loading conditions. Full article
Show Figures

Figure 1

26 pages, 3355 KiB  
Article
Dendrochronology and Isotope Chronology of Juglans neotropica and Its Response to El Niño-Related Rainfall Events in Tropical Highlands of Piura, Northern Peru
by Tone Marie Ektvedt, Michael N. Evans, Donald A. Falk and Paul R. Sheppard
Plants 2025, 14(11), 1704; https://doi.org/10.3390/plants14111704 - 3 Jun 2025
Cited by 1 | Viewed by 830
Abstract
Tropical trees represent an important potential archive of climate and ecological information, but their dendrochronology based on conventional techniques has been challenging. We conducted a pilot study of the wood anatomy and dendroclimatological potential of Juglans neotropica Diels (Juglandaceae), an IUCN Red List [...] Read more.
Tropical trees represent an important potential archive of climate and ecological information, but their dendrochronology based on conventional techniques has been challenging. We conducted a pilot study of the wood anatomy and dendroclimatological potential of Juglans neotropica Diels (Juglandaceae), an IUCN Red List species, using 225 radii sampled from 57 trees in Piura (4°55′ S, 79° 56′ W), northern Peru. A total of 112 radii from 40 trees passed quality control and are included in the tree-ring width chronology for this species. J. neotropica has demonstrably annual rings, and results are consistent with reports that the species has a dormant period during the dry season, which locally is approximately June–November. Local precipitation is correlated (p = 0.10, 1-tailed test) with tree-ring growth, lagged by one year, consistent with other studies of tropical tree species. The age distribution of the sample collection of J. neotropica is young and invariant, probably because of selective cutting by local villagers. To supplement ring-width analysis, we conducted the first oxygen isotopic (δ18O) and radiocarbon (∆14C) analysis for this species on radii from two individuals; results are preliminary given sample size limitations, but consistent with dendrochronological dating, within uncertainties, in all three chronometric analyses. A two-sample composite annually-averaged δ18O anomaly data series is correlated significantly with gridded regional growing season (December–May) precipitation (1973/74–2005/06). Qualitatively consistent with simulation of ring width and δ18O, responses to El Niño events are manifested in positive ring-growth anomalies and negative isotopic anomalies following known event years. The combination of tree-ring, radiocarbon, stable isotopic analyses, and the application of sensor and chronological modeling provides a degree of confidence in the results that would not have been possible by relying on any single approach and indicates the potential for further investigation of this and other tropical tree species with uncertain ring boundaries. Full article
(This article belongs to the Special Issue New Perspectives on New World Tropical Forests)
Show Figures

Figure 1

14 pages, 1705 KiB  
Article
The Influence of Pruning on the Growth and Wood Properties of Populus deltoides “Nanlin 3804”
by Weiqi Leng, Pei Cao, Chao Chen and Luozhong Tang
Forests 2025, 16(5), 848; https://doi.org/10.3390/f16050848 - 19 May 2025
Viewed by 333
Abstract
During the natural growth of trees, a large number of branches are formed, with a negative impact on timber quality. Therefore, pruning is an essential measure in forest cultivation. In this work, the effect of pruning on poplar timber quality was evaluated. This [...] Read more.
During the natural growth of trees, a large number of branches are formed, with a negative impact on timber quality. Therefore, pruning is an essential measure in forest cultivation. In this work, the effect of pruning on poplar timber quality was evaluated. This study used an artificial forest of Populus deltoides “Nanlin 3804”, established in 2014, as the research object. Pruning was carried out in March 2018 and March 2020 with a pruning intensity of one-third, and a control group was also set up. In December 2023, the growth of 11-year-old poplars under different treatments was investigated and analyzed, and sample trees were cut down for a wood property analysis. The results showed that pruning did not have a significant effect on the growth of the diameter at breast height, the tree height, or the volume. However, pruning could significantly facilitate the forming of higher-quality timber with smaller knots. Compared to unpruned wood, the ring width decreased 1–2 years after pruning, while it turned out to be greater than that of the control 3 years after pruning. Moreover, pruning can reduce the degree of trunk tapering. The fiber aspect ratio two years after pruning was greater than that of the control. The distribution frequency of fiber lengths of between 1500 μm and 1900 μm and that of fiber widths of between 32 μm and 38 μm were higher than that of the control. However, pruning had little effect on their density and oven-dried shrinkage. In addition, compared to the control, the bending strength and the modulus of elasticity increased by approximately 11%–14%, the impact toughness decreased by approximately 5%, and the compressive strength increased by approximately 6%. Pruning proved to be a successful method to improve the timber quality. Full article
(This article belongs to the Special Issue Uses, Structure and Properties of Wood and Wood Products)
Show Figures

Figure 1

17 pages, 3522 KiB  
Article
The Changes in Annual Precipitation in the Forest–Steppe Ecotone of North China Since 1540
by Xiaodong Wang, Jinfeng Ma, Long Fei, Xiaohui Liu and Xiaoqiang Li
Forests 2025, 16(5), 847; https://doi.org/10.3390/f16050847 - 19 May 2025
Viewed by 432
Abstract
Understanding precipitation changes over a long period of time can provide valuable insights into global climate change. Taking the forest–steppe ecotone of North China as the research area, based on the tree ring width index of Carya cathayensis Sarg (Carya cathayensis), [...] Read more.
Understanding precipitation changes over a long period of time can provide valuable insights into global climate change. Taking the forest–steppe ecotone of North China as the research area, based on the tree ring width index of Carya cathayensis Sarg (Carya cathayensis), the relationship between tree growth and climate factors is analyzed, and the annual precipitation is reconstructed from data from the nearest five weather stations from AD 1540 to 2019. The results show that the growth of trees was affected by the changes in precipitation. The precipitation was divided into three dry periods and three wet periods over 480 years, based on wavelet analysis. There were 328 years of precipitation within the mean plus or minus one standard deviation (SD) (accounting for 68.3% of 480 years), indicating that relatively stable climate conditions exist in the study area, which has become one of the main agricultural areas in China. Each period lasted 2–7 years according to the multi-taper method, indicating that precipitation change was closely related to the El Niño–Southern Oscillation (ENSO) on a short time scale and affected by the Atlantic Multidecadal Oscillation (AMO) on a medium time scale during the period of 60–80 years based on wavelet analysis. Full article
Show Figures

Figure 1

19 pages, 12488 KiB  
Article
Morphological and Anatomical Characterization of Stems in Lilium Taxa
by Peng Zhou, Kuangkuang Liao, Xiunian Feng, Rui Liang, Nianjun Teng and Fang Du
Horticulturae 2025, 11(5), 546; https://doi.org/10.3390/horticulturae11050546 - 18 May 2025
Viewed by 507
Abstract
Lilium holds significant horticultural and ecological importance. Understanding the morpho-anatomical diversity of the stems can provide insights into taxonomy and breeding strategies. This study comprehensively examined the stem morpho-anatomy of 71 Lilium taxa to elucidate taxonomic and structural differences. For the first time, [...] Read more.
Lilium holds significant horticultural and ecological importance. Understanding the morpho-anatomical diversity of the stems can provide insights into taxonomy and breeding strategies. This study comprehensively examined the stem morpho-anatomy of 71 Lilium taxa to elucidate taxonomic and structural differences. For the first time, four distinct jigsaw-puzzle-shaped shapes of epidermal cells (Ep) in monocot stems, novel I-shaped and Co-xylem (O-, X-, W-, Q-shaped) vascular bundles (Vb) in Lilium stems, and quantitative characteristics (Vb density, xylem/phloem area ratio, etc.) were systematically discovered and analyzed. Asiatic (A) and Longiflorum × A (LA) hybrids displayed epidermal appendages, while Oritenal × Trumpet (OT) hybrids featured thicker sclerenchymatous rings (Sr). Collateral Vb in hybrids visually displayed bicollateral with degraded bundle sheaths (Bs), contrasting with intact circular Bs in wild species. Ward.D clustering categorized Lilium taxa into group A (Oritenal and OT hybrids) and B (A, LA, Trumpet, Longiflorum × Oriental hybrids and wild species), with Mantel’s test identified height, Ep shape, Ep length/width ratio, cortex/Sr thickness ratio and Bs integrity as key discriminators. Bending stems exhibited a higher Vb area. These findings establish a comprehensive pheno-anatomical framework for Lilium, which can guide future breeding programs and ecological studies. Full article
(This article belongs to the Section Floriculture, Nursery and Landscape, and Turf)
Show Figures

Figure 1

11 pages, 3162 KiB  
Article
Site Variability in Fibers, Vessels, and Ring Width of Robinia pseudoacacia L. Wood: A Case Study in Hungary
by Fath Alrhman Awad Ahmed Younis, Mátyás Báder, Miklós Bak and Róbert Németh
Forests 2025, 16(5), 807; https://doi.org/10.3390/f16050807 - 12 May 2025
Viewed by 974
Abstract
The black locust tree is a plantation-grown species that occupies a large area in Hungary. Due to variations in the growth environment of trees across different locations, the anatomical features of wood may differ. This study investigated the variability in fiber properties (fiber [...] Read more.
The black locust tree is a plantation-grown species that occupies a large area in Hungary. Due to variations in the growth environment of trees across different locations, the anatomical features of wood may differ. This study investigated the variability in fiber properties (fiber length, width, wall thickness, vessel length, and width) and growth rate of Robinia pseudoacacia L. from five counties and in three specific growing conditions. The parameters were investigated based on a sample of discs taken from the trees at breast height. The statistical analysis revealed significant differences in wood fiber and vessel dimensions, as well as ring width, between counties and growth conditions. Nearly all examined parameters showed the lowest values in Bács-Kiskun County, whereas the highest values were observed in Szabolcs-Szatmár-Bereg and Vas. Regarding the growth conditions, wood in poor growth conditions (mixed trees) and good growth conditions produced superior wood fiber properties and ring widths. Full article
(This article belongs to the Section Wood Science and Forest Products)
Show Figures

Figure 1

14 pages, 4181 KiB  
Article
Behavioral Study of Elastomeric O-Rings Built into Coaxial Sealing Systems
by Andrea Deaconescu and Tudor Deaconescu
Polymers 2025, 17(9), 1275; https://doi.org/10.3390/polym17091275 - 7 May 2025
Viewed by 562
Abstract
Coaxial sealing systems are increasingly used in the construction of hydraulic cylinders. In addition to the seal that ensures the actual packing of the entire system, the O-ring plays an important role in the functioning of the hydraulic subassembly. In order to understand [...] Read more.
Coaxial sealing systems are increasingly used in the construction of hydraulic cylinders. In addition to the seal that ensures the actual packing of the entire system, the O-ring plays an important role in the functioning of the hydraulic subassembly. In order to understand the sealing phenomenon of coaxial systems, a physical and mathematical model of the contact between the O-ring and its contacting surfaces is required. Within this context, this paper presents a calculation method of the pressures generated in the contact areas of the O-ring with its adjacent surfaces, as well as of the widths of the contact areas. The input quantities for these calculations were certain material characteristics (hardness, elasticity modulus, and Poisson’s coefficient) of the sealed-off fluid pressure and the specific radial deformation, which is a characteristic that describes the mounting of the O-ring in its groove. This article concludes with recommendations for the mounting of the O-ring and the required characteristics of the used materials. Full article
Show Figures

Figure 1

18 pages, 2448 KiB  
Article
The History of a Pinus Stand on a Bog Degraded by Post-War Drainage and Exploitation in Southern Poland
by Anna Cedro, Bernard Cedro, Katarzyna Piotrowicz, Anna Hrynowiecka, Tomasz Mirosław Karasiewicz and Michał Mirgos
Appl. Sci. 2025, 15(9), 5172; https://doi.org/10.3390/app15095172 - 6 May 2025
Viewed by 504
Abstract
A dendrochronological study was conducted on a submontane raised bog, Bór na Czerwonem, in the Orava–Nowy Targ Basin in Southern Poland. In the past, the bog was drained to enable peat extraction. In recent years, a number of measures considered as active protection [...] Read more.
A dendrochronological study was conducted on a submontane raised bog, Bór na Czerwonem, in the Orava–Nowy Targ Basin in Southern Poland. In the past, the bog was drained to enable peat extraction. In recent years, a number of measures considered as active protection were undertaken, including the construction of ridges and locks, filling of the drainage trenches, and clearance of most of the tree stand on the bog dome. Pinus sylvestris, P. × rhaetica, and P. mugo were the focuses of the study, which aimed to determine the age of the genus stand and its age structure and to identify the factors influencing tree ring width. The age of the trees indicates a post-war succession induced by large-scale drainage in 1942, although single trees were present on the bog dome as early as the late 19th century, and probably earlier. High values of pith eccentricity at ground level testify to substratum instability and the impact of strong winds on tree ring formation. The growth–climate relationships change with the progressive climate change: the significance of insolation increases, while the significance of the absolute air temperature decreases. The thermal and pluvial conditions of the summer in the previous growth season, however, make the strongest impact on the tree ring width in the following growth season. The health of the trees left growing on the bog, due to the constantly rising water level, will likely deteriorate, and a decreasing number of seedlings will be observed. A full assessment of the conducted restoration efforts, however, will be possible after years of monitoring of the bog environment. Full article
Show Figures

Figure 1

22 pages, 6945 KiB  
Article
Parameter Calculation and Rotor Structure Optimization Design of Solid Rotor Induction Motors
by Hao Xu, Jinghong Zhao and Sinian Yan
Sensors 2025, 25(9), 2929; https://doi.org/10.3390/s25092929 - 6 May 2025
Viewed by 479
Abstract
Solid rotor induction motors have a solid body rotor, which leads to low efficiency and power factor, and currently, the rotor is mostly optimized by slotted and squirrel cage structures. A generalized multilayer analytical model for different rotor structures is established, which can [...] Read more.
Solid rotor induction motors have a solid body rotor, which leads to low efficiency and power factor, and currently, the rotor is mostly optimized by slotted and squirrel cage structures. A generalized multilayer analytical model for different rotor structures is established, which can consider the effects of rotor eddy currents and saturation, based on which a generalized equivalent circuit model is established. The effects of number of slots, depth of slots, width of slots, squirrel cage material and end ring thickness on rotor impedance, torque and rotor losses are analyzed. On this basis, with efficiency, power factor, starting torque and starting current as the optimization objectives, and the number of slots, slot depth, slot width, squirrel cage material and end ring thickness as the optimization variables, the optimization schemes of slotted rotor and squirrel cage rotor are obtained by using the three-dimensional finite element method. The theoretical analysis is verified by finite element simulation and prototype experiment, and the results show that the electromagnetic parameters of solid rotor induction motors with different rotor structures can be accurately calculated using the universal magnetic field analytical model and the universal equivalent circuit model with an error within 5.8%. Slotted and squirrel cage rotors can effectively improve the motor power factor and efficiency, but this will lead to a decrease in starting performance. For the optimization function established in this paper, compared with the smooth rotor, the performance of the squirrel cage rotor is improved by 6.08%, which verifies the accuracy and validity of this paper and the optimization design scheme. Full article
(This article belongs to the Special Issue Recent Trends in AI-Based Intelligent Sensing Systems and IoTs)
Show Figures

Figure 1

24 pages, 4897 KiB  
Article
Reconstructing Hydroclimatic Variability (1657 AD) Using Tree-Ring Time Series and Observed and Gridded Precipitation Data in Central Greece
by Vasileios D. Sakalis and Aristeidis Kastridis
Forests 2025, 16(5), 773; https://doi.org/10.3390/f16050773 - 1 May 2025
Viewed by 691
Abstract
This study evaluated the long-term hydroclimatic trend through a reconstruction procedure of precipitation variability in central Greece (1657–2020), using eight tree-ring chronologies (Pinus sp. and Abies sp.). Through the combination of gridded climate datasets with tree-ring width (TRW) and earlywood width (EWW) [...] Read more.
This study evaluated the long-term hydroclimatic trend through a reconstruction procedure of precipitation variability in central Greece (1657–2020), using eight tree-ring chronologies (Pinus sp. and Abies sp.). Through the combination of gridded climate datasets with tree-ring width (TRW) and earlywood width (EWW) chronologies, we created three precipitation reconstructions, (1) April–August (AMJJA) and (2) May–June (MJ) using TRW and (3) EWW chronologies, utilizing both measured and gridded precipitation data. Chronologies were standardized using ARSTAN, while principal component analysis (PCA) was used for the development of the reconstructions. Verification and calibration of the derived time series (split-period tests, RE > 0, R = 0.62–0.67) confirmed a strong reconstruction that explained 15%–45% of the variability in precipitation. The results revealed strong growth–precipitation relationships throughout spring–summer (AMJJA/MJ). Multi-decadal variability is captured by TRW chronologies, while higher-frequency signals are reflected by EWW. Significant time intervals (19.6-, 12.5-, and 2.2-year cycles) were found by spectral analysis, indicating climatic impacts on tree-ring chronologies. Extremely wet (e.g., 1885, 1913) and dry (e.g., 1894–1895) episodes were confirmed against regional paleoclimate data and were consistent among previous reconstructions (72%–92% agreement). Despite the fact that sample depth reduced after 1978, the EPS was constantly higher than the threshold (EPS > 0.85 post-1746), showing the reliability of the reconstruction. This study expanded the hydroclimatic record of the southeast Mediterranean and highlighted that tree-ring chronologies are reliable variables to predict the historical precipitation. Full article
(This article belongs to the Section Forest Hydrology)
Show Figures

Figure 1

11 pages, 5790 KiB  
Communication
A Quasi-Distributed Crack Sensor Based on Weakly Coupled Vertical U-Shaped Ring Array
by Chenjie Chu, Jiayi Huang, Xuan Xie and Jun Zhang
Sensors 2025, 25(9), 2852; https://doi.org/10.3390/s25092852 - 30 Apr 2025
Viewed by 364
Abstract
Cracks are common defects in metallic components, the presence of which can significantly affect service life and operational stability. Sensors based on electromagnetic resonators have relatively high sensitivity; however, they are limited in size, which restricts their coverage and makes large-area monitoring unattainable. [...] Read more.
Cracks are common defects in metallic components, the presence of which can significantly affect service life and operational stability. Sensors based on electromagnetic resonators have relatively high sensitivity; however, they are limited in size, which restricts their coverage and makes large-area monitoring unattainable. The uneven internal field distribution within the resonator is a critical factor contributing to sensitivity variation at different locations. In this study, a vertical U-shaped ring structure is excited using a microstrip line. This allows the sensor to achieve large-area monitoring while maintaining sensitivity. The shift in resonance frequency is investigated and extracted as a characteristic feature for crack identification. The sensitivity of the measurement is 0.95 GHz/mm2 for depth and 0.685 GHz/mm2 for width. The proposed sensor can be used to detect potential cracks in metal structures. Full article
(This article belongs to the Section Fault Diagnosis & Sensors)
Show Figures

Figure 1

18 pages, 3336 KiB  
Article
A Standardized Framework to Estimate Drought-Induced Vulnerability and Its Temporal Variation in Woody Plants Based on Growth
by Antonio Gazol, Elisa Tamudo-Minguez, Cristina Valeriano, Ester González de Andrés, Michele Colangelo and Jesús Julio Camarero
Forests 2025, 16(5), 760; https://doi.org/10.3390/f16050760 - 29 Apr 2025
Viewed by 525
Abstract
Forests and scrubland comprise a large proportion of terrestrial ecosystems and, due to the long lifespan of trees and shrubs, their capacity to grow and store carbon as lasting woody tissues is particularly sensitive to warming-enhanced drought occurrence. Climate change may trigger a [...] Read more.
Forests and scrubland comprise a large proportion of terrestrial ecosystems and, due to the long lifespan of trees and shrubs, their capacity to grow and store carbon as lasting woody tissues is particularly sensitive to warming-enhanced drought occurrence. Climate change may trigger a transition from forests to scrubland in many drylands during the coming decades due to the higher resilience of shrubs. However, we lack standardized frameworks to compare the response to drought of woody plants. We present a framework and develop an index to estimate the drought-induced vulnerability (DrVi) of trees and shrubs based on the radial growth trajectory and the response of growth variability to a drought index. We used tree-ring width series of three tree (Pinus halepensis Mill., Juniperus thurifera L., and Acer monspessulanum L.) and three shrub (Juniperus oxycedrus L., Pistacia lentiscus L., and Ephedra nebrodensis Tineo ex Guss.) species from semi-arid areas to test this framework. We compared the DrVi values between species and populations and explored their temporal changes. Across species, the strongest DrVi values were found in declining P. halepensis stands and J. oxycedrus from the same site, while the lowest DrVi values were found in A. monspessulanum, P. lentiscus, and E. nebrodensis. Across populations, J. oxycedrus presented higher vulnerability in one of the dry sites. The P. halepensis declining stand showed a steady increase in DrVi value after the 1980s as the climate shifted toward warmer and drier conditions. We conclude that the DrVi allows comparing species and populations using a standardized general framework. Full article
Show Figures

Figure 1

Back to TopTop