Site Variability in Fibers, Vessels, and Ring Width of Robinia pseudoacacia L. Wood: A Case Study in Hungary
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling
2.2. Measurements of Fiber Parameters
2.3. Ring Width Measurements
2.4. Data Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- IPCC. Climate Change 2023: Synthesis Report. In Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Core Writing Team, Lee, H., Romero, J., Eds.; IPCC: Geneva, Switzerland, 2023; p. 184. [Google Scholar]
- Al Bayati, A.A.S.Y. The Impact of Climate Change on Biodiversity and Ecosystem Functioning. Acad. Int. J. Pure Sci. 2024, 2, 15–25. [Google Scholar] [CrossRef]
- Zhang, S.; Belien, E.; Ren, H.; Rossi, S.; Huang, J.G. Wood anatomy of boreal species in a warming world: A review. Iforest-Biogeosci. For. 2020, 13, 130–138. [Google Scholar] [CrossRef]
- Nicolescu, V.; Rédei, K.; Mason, W.; Vor, T.; Pöetzelsberger, E.; Bastien, J.; Brus, R.; Benčať, T.; Đodan, M.; Cvjetkovic, B.; et al. Ecology, growth and management of black locust (Robinia pseudoacacia L.), a non-native species integrated into European forests. J. For. Res. 2020, 31, 1081–1101. [Google Scholar] [CrossRef]
- Rédei, K.; Keserű, Z.; Csiha, I.; Rásó, J.; Takács, M. Promising black locust (Robinia pseudoacacia L.) cultivars in Hungary. Int. J. Hortic. Sci. 2018, 24, 18–20. [Google Scholar] [CrossRef]
- Vítková, M.; Müllerová, J.; Sádlo, J.; Pergl, J.; Pyšek, P. Black locust (Robinia pseudoacacia) Beloved and despised: A story of an invasive tree in Central Europe. For. Ecol. Manag. 2017, 384, 287–302. [Google Scholar] [CrossRef]
- Rédei, K.M.; Osváth, B.Z.; Veperdi, I. Black locust (Robinia pseudoacacia L.) improvement in Hungary: A review. Acta Silv. Lignaria Hung. Int. J. For. Wood Environ. Sci. 2008, 4, 127–132. [Google Scholar] [CrossRef]
- Papadopoulou, F.; Tentsoglidou, M.; Pavloudakis, F.; Papadimopoulos, N.; Papadopoulos, I. Evaluation of honey producing potential of Robinia pseudoacacia in reforested old Lignite mines in West Macedonia. J. Environ. Sci. Eng. B 2018, 7, 354–359. [Google Scholar]
- Kortoci, K.M.; Kortoci, Y. Comparison of Growth Rate of Black Locust (Robinia pseudoacacia L.) on Productive and Marginal Cultivated Lands for Sustainable Agroforestry Systems. Ecol. Eng. Environ. Technol. 2022, 23, 206–212. [Google Scholar] [CrossRef]
- Rédei, K.; Csiha, I.; Keserű, Z.; Kamandiné, V.Á.; Győri, J. The silviculture of black locust (Robinia pseudoacacia L.) in Hungary: A review. South-East Eur. For. 2011, 2, 101–107. [Google Scholar] [CrossRef]
- Adamopoulos, S.; Voulgaridis, E. Within-tree variation in growth rate and cell dimensions in the wood of black locust (Robinia pseudoacacia). IAWA J. 2002, 23, 191–199. [Google Scholar] [CrossRef]
- Klisz, M.; Wojda, T.; Jastrzebowski, S.; Ukalska, J. Circumferential variation in heartwood in stands of black locust (Robinia pseudoacacia L.). Drewno Pr. Nauk. Doniesienia Komun. 2015, 58, 195. [Google Scholar] [CrossRef]
- Adamopoulos, S.; Passialis, C.; Voulgaridis, E. Ring width, latewood proportion and density relationships in black locust wood of different origins and clones. IAWA J. 2010, 31, 169–178. [Google Scholar] [CrossRef]
- Page, V.M. Anatomical variation in the wood of Robinia pseudoacacia L. and the identity of Miocene fossil woods from southwestern United States. IAWA J. 1993, 14, 299–314. [Google Scholar] [CrossRef]
- Hejnowicz, A.; Hejnowicz, H. Variations of length of vessel members and fibres in the trunk of Robinia pseudoacacia. Acta Soc. Bot. Pol. 1959, 28, 453–460. [Google Scholar] [CrossRef]
- Rao, B.S. Variation in Structure of the Secondary Xylem in Individual Dicotyledonous Trees; University of London, Royal Holloway College: London, UK, 1959. [Google Scholar]
- Gadermaier, J.; Vospernik, S.; Grabner, M.; Wächter, E.; Keßler, D.; Kessler, M.; Lehner, F.; Klebinder, K.; Katzensteiner, K. Soil water storage capacity and soil nutrients drive tree ring growth of six European tree species across a steep environmental gradient. For. Ecol. Manag. 2024, 554, 121599. [Google Scholar] [CrossRef]
- Euring, D.; Janz, D.; Polle, A. Wood properties and transcriptional responses of poplar hybrids in mixed cropping with the nitrogen-fixing species Robinia pseudoacacia. Tree Physiol. 2021, 41, 865–881. [Google Scholar] [CrossRef]
- Bijak, S.; Lachowicz, H. Impact of tree age and size on selected properties of black locust (Robinia pseudoacacia L.) wood. Forests 2021, 12, 634. [Google Scholar] [CrossRef]
- Huda, A.S.; Koubaa, A.; Cloutier, A.; Hernández, R.E.; Périnet, P. Anatomical properties of selected hybrid poplar clones grown in southern Quebec. BioResources 2012, 7, 3779–3799. [Google Scholar] [CrossRef]
- Cedro, A.; Nowak, G. Effects of climatic conditions on annual tree ring growth of the Platanus x hispanica “Acerifolia” under urban conditions of Szczecin. Dendrobiology 2006, 55, 11–17. [Google Scholar]
- Fritts, H.C. Relationships of ring widths in arid-site conifers to variations in monthly temperature and precipitation. Ecol. Monogr. 1974, 44, 411–440. [Google Scholar] [CrossRef]
- Qaderi, M.M.; Martel, A.B.; Dixon, S.L. Environmental factors influence plant vascular system and water regulation. Plants 2019, 8, 65. [Google Scholar] [CrossRef] [PubMed]
- Waisel, Y.; Fahn, A. The Effects of Environment on Wood Formation and Cambial Activity in Robina pseudacacia L. New Phytol. 1965, 1, 436–442. [Google Scholar] [CrossRef]
- Lozjanin, R.; Jokanović, D.; Nikolić, J.V.; Živanović, K.; Desimirović, I.; Marinković, M. Anatomical Characteristics and Assessment of Wood Fibers Quality of Mature Pedunculate Oak (Quercus robur L.) Trees Grown in Different Environmental Conditions. South-East Eur. For. 2024, 15, 51–57. [Google Scholar] [CrossRef]
- Adebara, S.A.; Hassan, H.; Shittu, M.B.; Anifowose, M.A. Quality and utilization of timber species for building construction in Minna, Nigeria. Int. J. Eng. Sci. 2014, 3, 46–50. [Google Scholar]
- Larson, P.R. Wood Formation and the Concept of Wood Quality. Yale Sch. For. Environ. Stud. Bull. Ser. 1969, 69, 1–54. [Google Scholar]
- Pollet, C.; Verheyen, C.; Hebert, J.; Jourez, B. Physical and mechanical properties of black locust (Robinia pseudoacacia) wood grown in Belgium. Can. J. For. Res. 2012, 42, 831–840. [Google Scholar] [CrossRef]
- Molnar, S. Wood properties and utilization of black locust in Hungary. Drev. Vysk. Wood Res. 1995, 1, 27–33. [Google Scholar]
- Várallyay, G. Soils, as the most important natural resources in Hungary (potentialities and constraints)—A review. Agrokém. Tarlatans 2015, 64, 321–338. [Google Scholar] [CrossRef]
- Tóth, G.; Stolbovoy, V.; Montanarella, L. Soil Quality and Sustainability Evaluation. An Integrated Approach to Support Soil-Related Policies of the European Union; Office for Official Publications of the European Communities: Luxembourg, 2007. [Google Scholar]
- Franklin, G.L. Preparation of thin sections of synthetic resins and wood-resin composites, and a new macerating method for wood. Nature 1945, 155, 51. [Google Scholar] [CrossRef]
- Abràmoff, M.D.; Magalhães, P.J.; Ram, S.J. Image processing with ImageJ. Biophotonics Int. 2004, 11, 36–42. [Google Scholar]
- Rédei, K.; Keserű, Z.; CSiha, I.; Rásó, J.; Honfy, V. Plantation silviculture of black locust (Robinia pseudoacacia L.) cultivars in Hungary—A review. South-East Eur. For. 2017, 8, 151–156. [Google Scholar] [CrossRef]
- Sillero, L.; Prado, R.; Labidi, J. Optimization of different extraction methods to obtaining bioactive compounds from larix decidua bark. Chem. Eng. Trans. 2018, 70, 1369–1374. [Google Scholar]
- Jang, H.F.; Seth, R.S.; Wu, C.B.; Chan, B.K. Determining the transverse dimensions of fibers in wood using confocal microscopy. Wood Fiber Sci. 2005, 615–628. [Google Scholar]
- Olson, M.E.; Soriano, D.; Rosell, J.A.; Anfodillo, T.; Donoghue, M.J.; Edwards, E.J.; Martínez-Cabrera, H.I. Plant height and hydraulic vulnerability to drought and cold. Proc. Natl. Acad. Sci. USA 2018, 115, 7551–7556. [Google Scholar] [CrossRef]
- Nola, P.; Bracco, F.; Assini, S.; von Arx, G.; Castagneri, D. Xylem anatomy of Robinia pseudoacacia L. and Quercus robur L. is differently affected by climate in a temperate alluvial forest. Ann. For. Sci. 2020, 77, 8. [Google Scholar] [CrossRef]
- Hacke, U.G.; Sperry, J.S. Functional and ecological xylem anatomy. Perspect. Plant Ecol. Evol. Syst. 2001, 4, 97–115. [Google Scholar] [CrossRef]
- Schreiber, S.G.; Hacke, U.G.; Hamann, A. Variation of xylem vessel diameters across a climate gradient: Insight from a reciprocal transplant experiment with a widespread boreal tree. Funct. Ecol. 2015, 29, 1392–1401. [Google Scholar] [CrossRef]
- February, E.C.; Stock, W.D.; Bond, W.J.; Le, D.J. Relationships between water availability and selected vessel characteristics in Eucalyptus grandis and two hybrids. IAWA J. 1995, 16, 269–276. [Google Scholar] [CrossRef]
- Fonti, P.; von Arx, G.; García-González, I.; Eilmann, B.; Sass-Klaassen, U.; Gärtner, H.; Eckstein, D. Studying global change through investigation of the plastic responses of xylem anatomy in tree rings. New Phytol. 2010, 185, 42–53. [Google Scholar] [CrossRef]
- Sass-Klaassen, U.; Couralet, C.; Sahle, Y.; Sterck, F. Juniper from Ethiopia contains a missing link in the tropical tree ring network. Trees 2011, 25, 299–310. [Google Scholar]
- Ladányi, Z.; Blanka, V. Tree-ring width and its interrelation with environmental parameters: Case study in central Hungary. J. Environ. Geogr. 2015, 8, 53–59. [Google Scholar] [CrossRef]
- He, Y.; Yu, Q.; Wang, G.; Hao, M.; Fan, S.; Hu, D.; Li, Z.; Gao, P. Tree Ring Width Responses of Pinus densiflora and Robinia pseudoacacia to Climate Variation in the Mount Tai Area of Northern China. Forests 2023, 14, 2087. [Google Scholar] [CrossRef]
- Zobel, B.; van Buijtenen, J.P. Wood Variation: Its Causes and Control; Springer: Berlin/Heidelberg, Germany, 1989; pp. 189–217. [Google Scholar]
- Stringer, J.W.; Olson, J.R. Radial and vertical variation in stem properties of juvenile black locust (Robinia pseudoacacia). Wood Fiber Sci. 1987, 59–67. [Google Scholar]
- Klašnja, B.; Kopitović, Š.; Orlović, S.; Galić, Z. Variability of some structural and physical properties of Black Locust (Robinia pseudoacacia L.) wood. Genetika 2000, 32, 9–17. [Google Scholar]
- Lachowicz, H.; Bijak, S. Tree Age and Size Affect Selected Fiber Parameters in Black Locust (Robinia pseudoacacia L.) Wood. Forests 2025, 16, 111. [Google Scholar] [CrossRef]
- Kiaei, M.; Hamid, R.N.; Hazandy, A.H.; Mohammad, F. Radial variation of fiber dimensions, annual ring width, and wood density from natural and plantation trees of alder (Alnus glutinosa) wood. Wood Res. 2016, 61, 55–64. [Google Scholar]
County | Sites Within County | Number of Discs/Sites | Average DBH (cm) | Growth Conditions | Coordinates |
---|---|---|---|---|---|
Bács-Kiskun | Balotaszállás | 2 | 24.5 | GGC | 68.6546° N, 10.9105° E |
Kunfehértó | 3 | 17 | PGC | 67.4622° N, 11.4344° E | |
Szabolcs-Szatmár-Bereg | Ófehértó 33 | 2 | 26 | GGC | 87.7527° N, 29.1922° E |
Ófehértó 31 | 2 | 22 | PGC | 87.8676° N, 29.0636° E | |
Pap | 2 | 26 | GGC | 88.1955° N, 32.1529° E | |
Baktalórántháza | 2 | 27 | PGC | 87.5568° N, 29.6031° E | |
Vas | Telekes | 3 | 27 | MPGC | 47.5547° N, 17.9632° E |
Baranya | Ibafa | 1 | 22 | GGC | 46.0918° N, 17.5459° E |
Ibafa | 1 | 20 | PGC | ||
Győr-Moson-Sopron | Iván | 2 | 18 | PGC | 47.44633° N, 16.91224° E |
Iván | 2 | 27 | GGC |
County | Statistic | FL (mm) | FW (µm) | FWT (µm) | LD (µm) | VL (µm) | VW (µm) | RW (mm) |
---|---|---|---|---|---|---|---|---|
Szabolcs-Szatmár-Bereg | Mean | 1.11 | 17.6 | 3.47 | 8.97 | 139 | 177 | 3.63 |
Median | 1.09 | 17.50 | 3.80 | 8.18 | 140.85 | 172.31 | 3.12 | |
Min | 0.81 | 11.87 | 2.13 | 5.24 | 91.07 | 103.61 | 1.54 | |
Max | 1.42 | 21.82 | 4.83 | 13.30 | 202.76 | 288.95 | 6.34 | |
Std | 0.130 | 2.288 | 0.674 | 2.13 | 28.6 | 42.9 | 1.34 | |
Bács Kiskun | Mean | 1.08 | 15.5 | 2.55 | 8.19 | 136 | 242 | 1.25 |
Median | 1.07 | 15.93 | 2.78 | 9.05 | 128.81 | 271.79 | 1.19 | |
Min | 0.82 | 12.95 | 1.70 | 5.52 | 100 | 107.97 | 0.30 | |
Max | 1.39 | 17.63 | 3.33 | 9.84 | 195.76 | 366.73 | 2.68 | |
Std | 0.117 | 1.31 | 0.332 | 1.91 | 28.1 | 79.9 | 0.72 | |
Győr-Moson-Sopron | Mean | 1.08 | 17.1 | 3.24 | 8.90 | 118 | 193 | 3.21 |
Median | 1.06 | 16.86 | 3.60 | 8.29 | 142.71 | 200.03 | 3.02 | |
Min | 0.83 | 12.47 | 2.24 | 5.69 | 82.14 | 96.69 | 0.98 | |
Max | 1.37 | 22.96 | 4.44 | 13.13 | 228.55 | 299.64 | 5.95 | |
Std | 0.139 | 2.71 | 0.596 | 2.15 | 48.5 | 58.7 | 1.28 | |
Baranya | Mean | 1.06 | 17 | 3.30 | 9.98 | 144 | 188 | 3.11 |
Median | 1.07 | 16.13 | 3.19 | 8.87 | 150.43 | 184.24 | 3.06 | |
Min | 0.72 | 11.19 | 2.08 | 5.04 | 91.92 | 124.18 | 1.36 | |
Max | 1.47 | 23.98 | 4.82 | 16.59 | 194.51 | 283.57 | 5.09 | |
Std | 0.139 | 3.71 | 0.602 | 2.64 | 39.1 | 48.1 | 1.04 | |
Vas | Mean | 1.04 | 18.4 | 3.76 | 9.14 | 144 | 179 | 3.68 |
Median | 1.02 | 18.63 | 3.72 | 8.89 | 142.08 | 171.71 | 3.91 | |
Min | 0.75 | 13.46 | 2.24 | 5.06 | 92.43 | 141.53 | 1.36 | |
Max | 1.34 | 22.47 | 5.06 | 13.89 | 196.24 | 209.66 | 6.02 | |
Std | 0.155 | 2.71 | 0.757 | 2.40 | 31.4 | 26.3 | 1.25 |
Parameters | Comparison | Z-Statistic | Adjusted p-Value |
---|---|---|---|
FL | Szabolcs-Szatmár-Bereg vs. Vas | 3.12 | 0.008 |
FW | Bács Kiskun vs. Győr-Moson-Sopron | −2.97 | 0.04 |
Bács Kiskun vs. Szabolcs-Szatmár-Bereg | −4.55 | 0.0001 | |
Bács Kiskun vs. Vas | −4.63 | 0.0001 | |
Baranya vs. Vas | −2.92 | 0.0001 | |
FWT | Bács Kiskun vs. Baranya | −5.99 | 0.0001 |
Bács Kiskun vs. Győr-Moson-Sopron | −5.54 | 0.0001 | |
Bács Kiskun vs. Szabolcs-Szatmár-Bereg | −8.44 | 0.0001 | |
Bács Kiskun vs. Vas | −7.26 | 0.0001 | |
VW | Bács Kiskun vs. Szabolcs-Szatmár-Bereg | 3.68 | 0.001 |
RW | Bács Kiskun vs. Baranya | −7.95 | 0.0001 |
Bács Kiskun vs. Győr-Moson-Sopron | −7.99 | 0.0001 | |
Baranya vs. Szabolcs-Szatmár-Bereg | −11.18 | 0.0001 | |
Baranya vs. Vas | −11 | 0.0001 |
Growth Conditions | Statistic | FL (mm) | FW (µm) | FWT (µm) | LD (µm) | VL (µm) | VW (µm) | RW (mm) |
---|---|---|---|---|---|---|---|---|
GGC | Mean | 1.12 | 16.9 | 3.33 | 8.34 | 125 | 227 | 3.68 |
Median | 1.11 | 16.87 | 3.21 | 7.98 | 143.61 | 202.98 | 3.34 | |
Min | 0.80 | 12.32 | 1.70 | 5.04 | 91.92 | 103.61 | 1.05 | |
Max | 1.42 | 22.96 | 5.20 | 13.32 | 228.55 | 366.73 | 5.67 | |
Std | 0.139 | 2.87 | 0.745 | 1.97 | 43.6 | 87.9 | 1.25 | |
PGC | Mean | 1.06 | 17.0 | 3.09 | 8.93 | 118 | 182 | 2.70 |
Median | 1.05 | 16.29 | 3.05 | 8.86 | 137.04 | 169.94 | 2.74 | |
Min | 0.81 | 11.19 | 1.65 | 5.09 | 82.14 | 96.69 | 1.43 | |
Max | 1.39 | 23.98 | 4.82 | 13.80 | 202.76 | 299.64 | 3.81 | |
Std | 0.119 | 2.93 | 0.582 | 2.18 | 45 | 95.9 | 0.67 | |
MPGC | Mean | 1.04 | 18.4 | 3.76 | 9.14 | 122 | 215 | 3.68 |
Median | 1.02 | 18.44 | 3.72 | 8.89 | 142.08 | 171.71 | 3.91 | |
Min | 0.95 | 13.46 | 2.24 | 5.06 | 92.43 | 141.53 | 1.36 | |
Max | 1.34 | 22.47 | 5.06 | 13.89 | 196.24 | 209.66 | 6.02 | |
Std | 0.155 | 2.71 | 0.757 | 2.40 | 42.2 | 78.9 | 1.25 |
Parameter | Comparison | Z-Statistic | Adjusted p-Value |
---|---|---|---|
FL | GGC vs. PGC | 4.36 | 0.0001 |
GGC vs. MPGC | 3.60 | 0.0005 | |
FW | GGC vs. PMGC | −2.90 | 0.005 |
MPGC vs. PGC | 2.72 | 0.009 | |
FWT | GGC vs. MPGC | −262 | 0.01 |
GGC vs. PGC | 2.50 | 0.01 | |
MPGC vs. PGC | 4.06 | 0.0001 | |
VW | GGC vs. PGC | 3.9 | 0.0001 |
RW | GGC vs. MPGC | −3.89 | 0.0001 |
GGC vs. PGC | 4.02 | 0.0001 | |
MPGC vs. PGC | 7.43 | 0.0001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Younis, F.A.A.A.; Báder, M.; Bak, M.; Németh, R. Site Variability in Fibers, Vessels, and Ring Width of Robinia pseudoacacia L. Wood: A Case Study in Hungary. Forests 2025, 16, 807. https://doi.org/10.3390/f16050807
Younis FAAA, Báder M, Bak M, Németh R. Site Variability in Fibers, Vessels, and Ring Width of Robinia pseudoacacia L. Wood: A Case Study in Hungary. Forests. 2025; 16(5):807. https://doi.org/10.3390/f16050807
Chicago/Turabian StyleYounis, Fath Alrhman Awad Ahmed, Mátyás Báder, Miklós Bak, and Róbert Németh. 2025. "Site Variability in Fibers, Vessels, and Ring Width of Robinia pseudoacacia L. Wood: A Case Study in Hungary" Forests 16, no. 5: 807. https://doi.org/10.3390/f16050807
APA StyleYounis, F. A. A. A., Báder, M., Bak, M., & Németh, R. (2025). Site Variability in Fibers, Vessels, and Ring Width of Robinia pseudoacacia L. Wood: A Case Study in Hungary. Forests, 16(5), 807. https://doi.org/10.3390/f16050807