Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (604)

Search Parameters:
Keywords = retinal tissue

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 1677 KiB  
Systematic Review
Pharmacoeconomic Profiles of Advanced Therapy Medicinal Products in Rare Diseases: A Systematic Review
by Marianna Serino, Milana Krstin, Sara Mucherino, Enrica Menditto and Valentina Orlando
Healthcare 2025, 13(15), 1894; https://doi.org/10.3390/healthcare13151894 - 2 Aug 2025
Viewed by 258
Abstract
Background and aim: Advanced Therapy Medicinal Products (ATMPs) are innovative drugs based on genes, tissues, or cells that target rare and severe diseases. ATMPs have shown promising clinical outcomes but are associated with high costs, raising questions about cost-effectiveness. Hence, this systematic [...] Read more.
Background and aim: Advanced Therapy Medicinal Products (ATMPs) are innovative drugs based on genes, tissues, or cells that target rare and severe diseases. ATMPs have shown promising clinical outcomes but are associated with high costs, raising questions about cost-effectiveness. Hence, this systematic review aims to analyze the cost-effectiveness and cost-utility profiles of the European Medicines Agency-authorized ATMPs for treating rare diseases. Methods: A systematic review was conducted following PRISMA guidelines. Studies were identified by searching PubMed, Embase, Web of Science, and ProQuest scientific databases. Economic evaluations reporting incremental cost-effectiveness/utility ratios (ICERs/ICURs) for ATMPs were included. Costs were standardized to 2023 Euros, and a cost-effectiveness plane was constructed to evaluate the results against willingness-to-pay (WTP) thresholds of EUR 50,000, EUR 100,000, and EUR 150,000 per QALY, as part of a sensitivity analysis. Results: A total of 61 studies met the inclusion criteria. ATMPs for rare blood diseases, such as tisagenlecleucel and axicabtagene ciloleucel, were found to be cost-effective in a majority of studies, with incremental QALYs ranging from 1.5 to 10 per patient over lifetime horizon. Tisagenlecleucel demonstrated a positive cost-effectiveness profile in the treatment of acute lymphoblastic leukemia (58%), while axicabtagene ciloleucel showed a positive profile in the treatment of diffuse large B-cell lymphoma (85%). Onasemnogene abeparvovec for spinal muscular atrophy (SMA) showed uncertain cost-effectiveness results, and voretigene neparvovec for retinal diseases was not cost-effective in 40% of studies, with incremental QALYs around 1.3 and high costs exceeding the WTP threshold set. Conclusions: ATMPs in treating rare diseases show promising economic potential, but cost-effectiveness varies across indications. Policymakers must balance innovation with system sustainability, using refined models and the long-term impact on patient outcomes. Full article
(This article belongs to the Special Issue Healthcare Economics, Management, and Innovation for Health Systems)
Show Figures

Figure 1

18 pages, 6694 KiB  
Article
Effects of a ROCK Inhibitor on Retinal Ganglion Cells In Vivo and In Vitro
by Wanjing Chen, Yoko Iizuka, Fumihiko Mabuchi and Kenji Kashiwagi
J. Clin. Med. 2025, 14(15), 5344; https://doi.org/10.3390/jcm14155344 - 29 Jul 2025
Viewed by 230
Abstract
Objective: To investigate the neuroprotective effects of a Rho-associated kinase (ROCK) inhibitor on retinal ganglion cells (RGCs) in vitro and in vivo. Methods: For in vivo studies, a unilateral optic nerve crush mouse model was established. Then, 100 mM Y-27632 (a [...] Read more.
Objective: To investigate the neuroprotective effects of a Rho-associated kinase (ROCK) inhibitor on retinal ganglion cells (RGCs) in vitro and in vivo. Methods: For in vivo studies, a unilateral optic nerve crush mouse model was established. Then, 100 mM Y-27632 (a ROCK inhibitor) or saline was applied to the experimental eyes once a day for 14 days. The effects of the ROCK inhibitor were evaluated by counting the surviving RGCs in the enucleated flat retina tissues and measuring the inner retinal thickness using optical coherence tomography (OCT), the amplitude of the electroretinogram (ERG), and the change in intraocular pressure (IOP). For the in vitro study, RGCs were isolated from five-day-old mice using a modified immunopanning method with magnetic beads. The isolated RGCs were incubated for 72 h with various concentrations of Y-27632, after which TUNEL assays were performed to determine the number of surviving RGCs. Results: Y-27632 has neuroprotective effects, as it significantly increased the number of surviving RGCs by approximately 6.3%. OCT and ERG data also revealed that Y-27632 induced neuroprotective effects in vivo; furthermore, Y-27632 reduced IOP by approximately 18.3%. The in vitro study revealed the dose-dependent neuroprotective effects of Y-27632, with the highest dose of Y-27632 (1000 nM) increasing the RGC survival rate after 72 h of incubation compared with that of the control. Conclusions: The ROCK inhibitor Y-27632 may exert some neuroprotective effects on RGCs when it is used as an eye drop through an IOP-independent mechanism. Full article
(This article belongs to the Section Ophthalmology)
Show Figures

Figure 1

15 pages, 4965 KiB  
Article
The Rapid Activation of MYDGF Is Critical for Cell Survival in the Acute Phase of Retinal Regeneration in Fish
by Kayo Sugitani, Yuya Omori, Takumi Mokuya, Serika Hosoi, Haruto Kobayashi, Koki Miyata, Yuhei Araiso and Yoshiki Koriyama
Int. J. Mol. Sci. 2025, 26(15), 7251; https://doi.org/10.3390/ijms26157251 - 27 Jul 2025
Viewed by 213
Abstract
Myeloid-derived growth factor (MYDGF), named in reference to its secretion from myeloid cells in bone marrow, is a novel protein with anti-apoptotic and tissue-repairing properties. MYDGF is found in various human tissues affected by different diseases. To date, however, MYDGF expression has yet [...] Read more.
Myeloid-derived growth factor (MYDGF), named in reference to its secretion from myeloid cells in bone marrow, is a novel protein with anti-apoptotic and tissue-repairing properties. MYDGF is found in various human tissues affected by different diseases. To date, however, MYDGF expression has yet to be reported in the nervous system. Herein, we demonstrate for the first time that MYDGF mRNA levels increased in the zebrafish retina 1 h after optic nerve injury (ONI). MYDGF-producing cells were located in the photoreceptors and infiltrating leukocytic cells. We prepared the retina for MYDGF gene knockdown by performing intraocular injections using either MYDGF-specific morpholino or the CRISPR/Cas9 system. Under these MYDGF-knockdown retinal conditions, anti-apoptotic Bcl-2 mRNA was suppressed; in comparison, apoptotic caspase-3 and inflammatory TNFα mRNA were significantly upregulated in the zebrafish retina after ONI compared to the control. Furthermore, heat shock factor 1 (HSF1) was evidently suppressed under these conditions, leading to a significant number of apoptotic neurons. These findings indicate that MYDGF is a key molecule in the stimulation of neuronal regeneration in the central nervous system. Full article
Show Figures

Figure 1

17 pages, 13173 KiB  
Article
High-Resolution Imaging and Interpretation of Three-Dimensional RPE Sheet Structure
by Kevin J. Donaldson, Micah A. Chrenek, Jeffrey H. Boatright and John M. Nickerson
Biomolecules 2025, 15(8), 1084; https://doi.org/10.3390/biom15081084 - 26 Jul 2025
Viewed by 228
Abstract
The retinal pigment epithelium (RPE), a monolayer of pigmented cells, is critical for visual function through its interaction with the neural retina. In healthy eyes, RPE cells exhibit a uniform hexagonal arrangement, but under stress or disease, such as age-related macular degeneration (AMD), [...] Read more.
The retinal pigment epithelium (RPE), a monolayer of pigmented cells, is critical for visual function through its interaction with the neural retina. In healthy eyes, RPE cells exhibit a uniform hexagonal arrangement, but under stress or disease, such as age-related macular degeneration (AMD), dysmorphic traits like cell enlargement and apparent multinucleation emerge. Multinucleation has been hypothesized to result from cellular fusion, a compensatory mechanism to maintain cell-to-cell contact and barrier function, as well as conserve resources in unhealthy tissue. However, traditional two-dimensional (2D) imaging using apical border markers alone may misrepresent multinucleation due to the lack of lateral markers. We present high-resolution confocal images enabling three-dimensional (3D) visualization of apical (ZO-1) and lateral (α-catenin) markers alongside nuclei. In two RPE damage models, we find that seemingly multinucleated cells are often single cells with displaced neighboring nuclei and lateral membranes. This emphasizes the need for 3D analyses to avoid misidentifying multinucleation and underlying fusion mechanisms. Lastly, images from the NaIO3 oxidative damage model reveal variability in RPE damage, with elongated, dysmorphic cells showing increased ZsGreen reporter protein expression driven by EMT-linked CAG promoter activity, while more regular RPE cells displayed somewhat reduced green signal more typical of epithelial phenotypes. Full article
(This article belongs to the Section Molecular Biophysics: Structure, Dynamics, and Function)
Show Figures

Figure 1

26 pages, 1899 KiB  
Review
Extracellular Matrix (ECM) Aging in the Retina: The Role of Matrix Metalloproteinases (MMPs) in Bruch’s Membrane Pathology and Age-Related Macular Degeneration (AMD)
by Ali A. Hussain and Yunhee Lee
Biomolecules 2025, 15(8), 1059; https://doi.org/10.3390/biom15081059 - 22 Jul 2025
Viewed by 364
Abstract
The extracellular matrix (ECM) is a collagen-based scaffold that provides structural support and regulates nutrient transport and cell signaling. ECM homeostasis depends on a dynamic balance between synthesis and degradation, the latter being primarily mediated by matrix metalloproteinases (MMPs). These enzymes are secreted [...] Read more.
The extracellular matrix (ECM) is a collagen-based scaffold that provides structural support and regulates nutrient transport and cell signaling. ECM homeostasis depends on a dynamic balance between synthesis and degradation, the latter being primarily mediated by matrix metalloproteinases (MMPs). These enzymes are secreted as pro-forms and require activation to degrade ECM components. Their activity is modulated by tissue inhibitors of metalloproteinases (TIMPs). Aging disrupts this balance, leading to the accumulation of oxidized, cross-linked, and denatured matrix proteins, thereby impairing ECM function. Bruch’s membrane, a penta-laminated ECM structure in the eye, plays a critical role in supporting photoreceptor and retinal pigment epithelium (RPE) health. Its age-related thickening and decreased permeability are associated with impaired nutrient delivery and waste removal, contributing to the pathogenesis of age-related macular degeneration (AMD). In AMD, MMP dysfunction is characterized by the reduced activation and sequestration of MMPs, which further limits matrix turnover. This narrative review explores the structural and functional changes in Bruch’s membrane with aging, the role of MMPs in ECM degradation, and the relevance of these processes to AMD pathophysiology, highlighting emerging regulatory mechanisms and potential therapeutic targets. Full article
(This article belongs to the Special Issue Role of Matrix Metalloproteinase in Health and Disease)
Show Figures

Figure 1

29 pages, 922 KiB  
Review
Modulation of Oxidative Stress in Diabetic Retinopathy: Therapeutic Role of Natural Polyphenols
by Verónica Gómez-Jiménez, Raquel Burggraaf-Sánchez de las Matas and Ángel Luis Ortega
Antioxidants 2025, 14(7), 875; https://doi.org/10.3390/antiox14070875 - 17 Jul 2025
Viewed by 664
Abstract
Diabetic retinopathy (DR), a leading cause of blindness in working-age adults, arises from chronic hyperglycemia-induced oxidative stress, inflammation, and vascular dysfunction. Current therapies such as laser photocoagulation, intravitreal anti-vascular endothelial growth factor (VEGF) agents, and steroids target advanced stages but fail to prevent [...] Read more.
Diabetic retinopathy (DR), a leading cause of blindness in working-age adults, arises from chronic hyperglycemia-induced oxidative stress, inflammation, and vascular dysfunction. Current therapies such as laser photocoagulation, intravitreal anti-vascular endothelial growth factor (VEGF) agents, and steroids target advanced stages but fail to prevent early neuronal and microvascular damage. Emerging evidence highlights oxidative stress as a key driver of DR pathogenesis, disrupting the blood-retinal barrier (BRB), promoting neurodegeneration and angiogenesis. Advances in imaging, particularly optical coherence tomography angiography (OCTA), enable earlier detection of neurodegeneration and microvascular changes, underscoring DR as a neurovascular disorder. Polyphenols, such as resveratrol, curcumin, and pterostilbene, exhibit multitarget antioxidant, anti-inflammatory, and anti-angiogenic effects, showing promise in preclinical and limited clinical studies. However, their low bioavailability limits therapeutic efficacy. Nanotechnology-based delivery systems enhance drug stability, tissue targeting, and sustained release, offering potential for early intervention. Future strategies should integrate antioxidant therapies and precision diagnostics to prevent early irreversible retinal damage in diabetic patients. Full article
Show Figures

Figure 1

14 pages, 5083 KiB  
Article
Effect of Hypoxia on Adult Müller Glia Cultures
by Xabier Miguel-López, Laura Prieto-López, Elena Vecino and Xandra Pereiro
Biomedicines 2025, 13(7), 1743; https://doi.org/10.3390/biomedicines13071743 - 16 Jul 2025
Viewed by 269
Abstract
Background: The retina, a light-sensitive tissue of the central nervous system that is located at the posterior part of the eye, is particularly vulnerable to alterations in oxygen levels. In various retinal diseases, such as central retinal vein occlusion, glaucoma, and diabetic [...] Read more.
Background: The retina, a light-sensitive tissue of the central nervous system that is located at the posterior part of the eye, is particularly vulnerable to alterations in oxygen levels. In various retinal diseases, such as central retinal vein occlusion, glaucoma, and diabetic retinopathy, hypoxia (a condition of low oxygen levels) is commonly observed. Müller glia, the principal glial cells in the retina, play a crucial role in supporting the metabolic needs of retinal neurons. They are also responsible for sensing oxygen levels and, in response to hypoxia, express Hypoxia-Inducible Factor 1 (HIF-1), a transcription factor that activates signaling pathways related to hypoxia. Methods: In this study, primary rat Müller glial cells were cultured and exposed to a 1% oxygen for 72 h. Following this, immunohistochemical assays were conducted to assess the effects of hypoxia on various parameters, including HIF-1α expression, cell survival, Müller glia-specific markers (CRALBP and GS), gliosis (GFAP expression), apoptosis (caspase-3 expression), cell proliferation (Ki-67 expression), and metabolic stress (indicated by the number of mitochondria per cell). Results: Under hypoxic conditions, a decrease in Müller glial survival and proliferation was observed. Conversely, there was an increase in HIF-1α expression, GFAP expression, caspase-3-positive cells, and the number of mitochondria per cell. However, no significant changes were noted in the expression of the Müller glial markers GS and CRALBP. Conclusions: In conclusion, hypoxia resulted in reduced proliferation and survival of Müller glial cells, primarily due to increased apoptosis and heightened metabolic stress. Full article
(This article belongs to the Section Cell Biology and Pathology)
Show Figures

Figure 1

13 pages, 1784 KiB  
Article
Dark Rearing Does Not Alter Developmental Retinoschisis Cavity Formation in Rs1 Gene Knockout Rat Model of X-Linked Retinoschisis
by Zeljka Smit-McBride, In Hwan Cho, Ning Sun, Serafina Thomas and Paul A. Sieving
Genes 2025, 16(7), 815; https://doi.org/10.3390/genes16070815 - 11 Jul 2025
Viewed by 311
Abstract
Background/Objective: The Rs1 exon-1-del rat (Rs1KO) XLRS model shows normal retinal development until postnatal day 12 (P12) when small cystic spaces start to form in the inner nuclear layer. These enlarge rapidly, peak at P15, and then collapse by P19. These events overlap [...] Read more.
Background/Objective: The Rs1 exon-1-del rat (Rs1KO) XLRS model shows normal retinal development until postnatal day 12 (P12) when small cystic spaces start to form in the inner nuclear layer. These enlarge rapidly, peak at P15, and then collapse by P19. These events overlap with eye opening at P12–P15. We investigated whether new light-driven retinal activity could contribute to the appearance and progression of schisis cavities in this rat model of XLRS disease. Methods: For dark rearing (D/D), mating pairs of Rs1KO strain were raised in total darkness in a special vivarium at UC Davis. When pups were born, they were maintained in total darkness, and eyes were collected at P12, P15, and P30 (n = 3/group) for each of the D/D and cyclic light-reared 12 h light–12 h dark (L/D) Rs1KO and wild-type (WT) littermates. Eyes were fixed, paraffin-embedded, and sectioned. Tissue morphology was examined by H&E and marker expression of retinoschisin1 (Rs1), rhodopsin (Rho), and postsynaptic protein 95 (Psd95) by fluorescent immunohistochemistry. H&E-stained images were analyzed with ImageJ version 1.54h to quantify cavity size using the “Analyze Particles” function. Results: Small intra-retinal schisis cavities begin to form by P12 in the inner retina of both D/D and L/D animals. Cavity formation was equivalent or more pronounced in D/D animals than in L/D animals. We compared Iba1 (activation marker of immune cells) distribution and found that by P12, when schisis appeared, Iba1+ cells had accumulated in regions of schisis. Iba1+ cells were more abundant in Rs1KO animals than WT animals and appeared slightly more prevalent in D/D- than L/D-reared Rs1KO animals. We compared photoreceptor development using Rho, Rs1, and Psd95 expression, and these were similar; however, the outer segments (OSs) of D/D animals with Rho labeling at P12 were longer than L/D animals. Conclusions: The results showed that cavities formed at the same time in D/D and L/D XLRS rat pups, indicating that the timing of schisis formation is not light stimulus-driven but rather appears to be a result of developmental events. Cavity size tended to be larger under dark-rearing conditions in D/D animals, which could be due to the decreased rate of phagocytosis by the RPE in the dark, allowing for continued growth of the OSs without the usual shedding of the distal tip, a key mechanism behind dark adaptation in the retina. These results highlight the complexity of XLRS pathology; however, we found no evidence that light-driven metabolic activity accounted for schisis cavity formation. Full article
(This article belongs to the Special Issue Current Advances in Inherited Retinal Disease)
Show Figures

Figure 1

29 pages, 14985 KiB  
Article
Spatiotemporal Characterization of Changes in the Respiratory Tract and the Nervous System, Including the Eyes in SARS-CoV-2-Infected K18-hACE2 Mice
by Malgorzata Rosiak, Tom Schreiner, Georg Beythien, Eva Leitzen, Anastasiya Ulianytska, Lisa Allnoch, Kathrin Becker, Lukas M. Michaely, Sandra Lockow, Sabrina Clever, Christian Meyer zu Natrup, Asisa Volz, Wolfgang Baumgärtner, Malgorzata Ciurkiewicz, Kirsten Hülskötter and Katharina M. Gregor
Viruses 2025, 17(7), 963; https://doi.org/10.3390/v17070963 - 9 Jul 2025
Viewed by 545
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of coronavirus disease 2019 (COVID-19), is known to affect multiple organ systems, including the respiratory tract and nervous and ocular systems. This retrospective study aimed to characterize the spatiotemporal distribution of viral antigen [...] Read more.
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of coronavirus disease 2019 (COVID-19), is known to affect multiple organ systems, including the respiratory tract and nervous and ocular systems. This retrospective study aimed to characterize the spatiotemporal distribution of viral antigen and associated pathological changes in the nose, lungs, brain, and eyes of K18-hACE2 mice intranasally infected with SARS-CoV-2. Using histology and immunohistochemistry, tissues were examined at 3, 6, and 7/8 days post-infection (dpi). In addition, lung and brain tissues were analyzed by means of RT-qPCR to determine viral RNA titers. Viral antigen was most pronounced in the nose, brain, and lung at 3, 6, and 7/8 dpi, respectively, whereas viral antigen was detected at 6 and 7/8 dpi in the retina. Quantitative PCR confirmed increasing viral RNA levels in both lung and brain, peaking at 7/8 dpi. Nasal and lung inflammation mirrored viral antigen distribution and localization. In the brain, the predominantly basal viral spread correlated with lymphohistiocytic meningoencephalitis, neuronal vacuolation, and altered neurofilament immunoreactivity. Retinal ganglion cells showed viral antigen expression without associated lesions. Microglial activation was evident in both the optic chiasm and the brain. These findings highlight the K18-hACE2 model’s utility for studying extrapulmonary SARS-CoV-2 pathogenesis. Understanding the temporal and spatial dynamics of viral spread enhances insights into SARS-CoV-2 neurotropism and its clinical manifestations. Full article
(This article belongs to the Section Coronaviruses)
Show Figures

Graphical abstract

17 pages, 932 KiB  
Review
Retinal Neurochemistry
by Dominic Man-Kit Lam and George Ayoub
Brain Sci. 2025, 15(7), 727; https://doi.org/10.3390/brainsci15070727 - 8 Jul 2025
Viewed by 320
Abstract
The vertebrate retina is a complex neural tissue composed of a repeating array of distinct cell types that communicate through specialized synaptic connections. The neurochemistry underlying these connections reveals the synaptic chemistry, including the neurotransmitters involved and their corresponding receptors. The basic pattern [...] Read more.
The vertebrate retina is a complex neural tissue composed of a repeating array of distinct cell types that communicate through specialized synaptic connections. The neurochemistry underlying these connections reveals the synaptic chemistry, including the neurotransmitters involved and their corresponding receptors. The basic pattern of communication is that the pathway from photoreceptors to bipolar cells to ganglion cells typically uses glutamate as the signaling transmitter, with three ionotropic and one metabotropic receptor types. In contrast, much of the lateral feedback, performed by horizontal cells and amacrine cells, uses the inhibitory neurotransmitter GABA, while other amacrine cells use glycine or dopamine. This review examines all of these neurotransmitter systems for each retinal cell type, along with how these systems process the visual signals transmitted to the lateral geniculate nucleus and the visual cortex. Full article
(This article belongs to the Special Issue Retinal Neurochemistry and Development)
Show Figures

Figure 1

12 pages, 1374 KiB  
Article
Cost-Effectiveness of Alternative Treatment Strategies of Subretinal Macular Hemorrhage
by Filippo Confalonieri, Silvia N. W. Hertzberg, Krystian Andrzej Dziedzic, Xhevat Lumi, Lyubomyr Lytvynchuk, Ljubo Znaor, Goran Petrovski and Beáta Éva Petrovski
Healthcare 2025, 13(13), 1550; https://doi.org/10.3390/healthcare13131550 - 29 Jun 2025
Viewed by 361
Abstract
Purpose: To evaluate the cost-effectiveness of alternative treatment strategies for subretinal macular hemorrhage (SRMH), a condition often associated with neovascular age-related macular degeneration (AMD) and other retinal vascular disorders, leading to severe visual impairment. Methods: A retrospective cross-sectional study conducted at Oslo University [...] Read more.
Purpose: To evaluate the cost-effectiveness of alternative treatment strategies for subretinal macular hemorrhage (SRMH), a condition often associated with neovascular age-related macular degeneration (AMD) and other retinal vascular disorders, leading to severe visual impairment. Methods: A retrospective cross-sectional study conducted at Oslo University Hospital assessed the cost and utility of various SRMH treatment modalities. These included intravitreal anti-VEGF monotherapy, intravitreal tissue plasminogen activator (tPA) with gas displacement (alone and in combination with anti-VEGF), and pars plana vitrectomy (PPV) with subretinal tPA and gas displacement (with and without anti-VEGF). Costs were analyzed from a healthcare perspective, encompassing direct and indirect costs. Effectiveness was measured using median best-corrected visual acuity (BCVA) improvements. Sensitivity analyses were performed to account for complications and variations in follow-up. Results: Anti-VEGF monotherapy was the most cost-effective treatment, with the lowest cost per unit of BCVA improvement (NOK 44,717) in outpatient settings. Intravitreal tPA with gas displacement emerged as a cost-effective alternative but exhibited higher costs when combined with anti-VEGF or performed as an inpatient procedure. PPV with subretinal tPA and gas displacement, with or without anti-VEGF, was the least cost-effective modality, particularly in inpatient settings. Sensitivity analyses indicated that anti-VEGF therapy remained cost-effective even with increased follow-up requirements and complications, while tPA-based therapies required significant BCVA improvements to match anti-VEGF’s cost–utility. Conclusions: Outpatient intravitreal anti-VEGF monotherapy followed by tPA with gas displacement are the most cost-effective strategies for SRMH management. Subretinal tPA-based treatments are associated with higher costs and limited economic viability, highlighting the importance of tailored treatment selection. These findings support strategic resource allocation in managing SRMH while optimizing patient outcomes. Full article
Show Figures

Figure 1

27 pages, 2478 KiB  
Article
Early Diabetic Retinopathy Detection from OCT Images Using Multifractal Analysis and Multi-Layer Perceptron Classification
by Ahlem Aziz, Necmi Serkan Tezel, Seydi Kaçmaz and Youcef Attallah
Diagnostics 2025, 15(13), 1616; https://doi.org/10.3390/diagnostics15131616 - 25 Jun 2025
Viewed by 571
Abstract
Background/Objectives: Diabetic retinopathy (DR) remains one of the primary causes of preventable vision impairment worldwide, particularly among individuals with long-standing diabetes. The progressive damage of retinal microvasculature can lead to irreversible blindness if not detected and managed at an early stage. Therefore, the [...] Read more.
Background/Objectives: Diabetic retinopathy (DR) remains one of the primary causes of preventable vision impairment worldwide, particularly among individuals with long-standing diabetes. The progressive damage of retinal microvasculature can lead to irreversible blindness if not detected and managed at an early stage. Therefore, the development of reliable, non-invasive, and automated screening tools has become increasingly vital in modern ophthalmology. With the evolution of medical imaging technologies, Optical Coherence Tomography (OCT) has emerged as a valuable modality for capturing high-resolution cross-sectional images of retinal structures. In parallel, machine learning has shown considerable promise in supporting early disease recognition by uncovering complex and often imperceptible patterns in image data. Methods: This study introduces a novel framework for the early detection of DR through multifractal analysis of OCT images. Multifractal features, extracted using a box-counting approach, provide quantitative descriptors that reflect the structural irregularities of retinal tissue associated with pathological changes. Results: A comparative evaluation of several machine learning algorithms was conducted to assess classification performance. Among them, the Multi-Layer Perceptron (MLP) achieved the highest predictive accuracy, with a score of 98.02%, along with precision, recall, and F1-score values of 98.24%, 97.80%, and 98.01%, respectively. Conclusions: These results highlight the strength of combining OCT imaging with multifractal geometry and deep learning methods to build robust and scalable systems for DR screening. The proposed approach could contribute significantly to improving early diagnosis, clinical decision-making, and patient outcomes in diabetic eye care. Full article
(This article belongs to the Section Machine Learning and Artificial Intelligence in Diagnostics)
Show Figures

Figure 1

9 pages, 2497 KiB  
Brief Report
Surgical Technique: Viscodissection for Managing Funnel Retinal Detachments
by David Oliver-Gutierrez, Claudia García-Arumí, Daniel Gómez Plaza and José García-Arumí
J. Clin. Med. 2025, 14(13), 4394; https://doi.org/10.3390/jcm14134394 - 20 Jun 2025
Viewed by 306
Abstract
Purpose: To evaluate and describe the efficacy and safety of viscodissection in managing complex funnel-shaped retinal detachments, minimizing trauma and facilitating safer perfluorocarbon liquid (PFCL) application. Methods: A retrospective case series of five patients with funnel-shaped retinal detachments: three due to [...] Read more.
Purpose: To evaluate and describe the efficacy and safety of viscodissection in managing complex funnel-shaped retinal detachments, minimizing trauma and facilitating safer perfluorocarbon liquid (PFCL) application. Methods: A retrospective case series of five patients with funnel-shaped retinal detachments: three due to perforating trauma and two from recurrent detachments. Initial visual acuities ranged from light perception to hand motion. Viscodissection was used to separate adhered retinal tissues in the funnel-shaped retinal detachment in a controlled, minimally traumatic manner, allowing funnel opening and PFCL application. Data collected included demographics, visual acuities, surgical details, and complications. Results: Viscodissection enabled successful funnel opening and PFCL use in all cases, with one instance of subretinal migration of PFCL. No retinal detachment recurrences occurred, but three patients required reoperation for new premacular proliferative vitreoretinopathy (PVR). Postoperative visual acuities improved in four patients (up to 20/100), while one remained at hand motion. Conclusions: Viscodissection is a promising technique for complex funnel-shaped retinal detachments, allowing non-traumatic tissue separation and improving visualization and safety during PFCL application. This approach may enhance surgical outcomes and reduce complications. Full article
Show Figures

Figure 1

33 pages, 178656 KiB  
Article
Molecular Determinants of the Human Retinal Pigment Epithelium Cell Fate and Potential Pharmacogenomic Targets for Precision Medicine
by Cristina Zibetti
Int. J. Mol. Sci. 2025, 26(12), 5817; https://doi.org/10.3390/ijms26125817 - 17 Jun 2025
Viewed by 914
Abstract
Age-related macular degeneration (AMD) is a common cause of blindness worldwide, and it is projected to affect several million individuals by 2040. The human retinal pigment epithelium (hRPE) degenerates in dry AMD, prompting the need to develop stem cell therapies to replace the [...] Read more.
Age-related macular degeneration (AMD) is a common cause of blindness worldwide, and it is projected to affect several million individuals by 2040. The human retinal pigment epithelium (hRPE) degenerates in dry AMD, prompting the need to develop stem cell therapies to replace the lost tissue by autologous transplantation and restore the visual function. Nevertheless, the molecular factors behind the hRPE cell fate determination have not been elucidated. Here we identify all molecular determinants of the hRPE cell fate identity by comprehensive and unbiased screening of predicted pioneer factors in the human genome: such TFs mediate coordinated transitions in chromatin accessibility and transcriptional outcome along three major stages of the hRPE genesis. Furthermore, we compile a complete census of all transcription factor-specific binding sites by footprinting analysis of the human epigenome along the RPE developmental trajectory. Gene regulatory networks were found to be involved in cellular responses to glucose and hypoxia, RPE nitrosative stress, type II epithelial-to-mesenchymal transition (EMT), and type III tumorigenic EMT, providing routes for therapeutic intervention on pleiotropic targets dysregulated in AMD, diabetic retinopathy, and cancer progression. Genome editing technologies may leverage this repository to devise functional screenings of regulatory elements and pharmacogenomic therapies in complex diseases, paving the way for strategies in precision medicine. Full article
Show Figures

Figure 1

15 pages, 908 KiB  
Article
Efficient Enrichment of Docosahexaenoic Acid (DHA) in Mother’s Milk and in the Brain and Retina of the Offspring by Lysophosphatidylcholine (LPC)-DHA in the Maternal Diet
by Poorna C. R. Yalagala, Dhavamani Sugasini, Sutape Chantapim, Karyna Caal, Haijing Sun, Sofia Nicastro, Robert M. Sargis, Brigid Gregg and Papasani V. Subbaiah
Nutrients 2025, 17(11), 1864; https://doi.org/10.3390/nu17111864 - 29 May 2025
Viewed by 1055
Abstract
Background: Docosahexaenoic acid (DHA) is the most important fatty acid (FA) for the development and function of brain and retina. Mother’s milk is the predominant source of DHA for the baby’s postnatal life, and the omega 3 FA content of a mother’s diet [...] Read more.
Background: Docosahexaenoic acid (DHA) is the most important fatty acid (FA) for the development and function of brain and retina. Mother’s milk is the predominant source of DHA for the baby’s postnatal life, and the omega 3 FA content of a mother’s diet is highly correlated with the cognitive and visual functions of the infant. However, clinical trials aimed at increasing the DHA content of mother’s milk and thereby improving infant cognitive function have been inconclusive. Methods: In this study, we tested the hypothesis that the molecular form of dietary DHA is important in enriching DHA in mother’s milk as well as in pup tissues. Lactating dams were fed defined diets containing DHA either in the form of triacylglycerol (TAG) or lysophosphatidylcholine (LPC), and the FA composition of mother’s milk and pup tissues was determined on postnatal day 16. Results: The results showed that LPC-DHA was 5-fold more efficient than TAG-DHA in enriching milk DHA. Moreover, DHA content was increased by 31% in the brain, 56% in the retina, and 14% in the liver of the pups by LPC-DHA in the maternal diet, whereas no increases were observed with TAG-DHA. The DHA content of the pup adipose tissue, however, was increased equally by the DHA supplements. Conclusions: These results show that dietary LPC-DHA is a promising new strategy to increase milk DHA content and to potentially improve brain and retinal health in infants. This strategy may be more important in the care of premature infants who miss the critical prenatal period of DHA accretion in the last trimester of pregnancy. Full article
(This article belongs to the Section Lipids)
Show Figures

Figure 1

Back to TopTop