Cost-Effectiveness of Alternative Treatment Strategies of Subretinal Macular Hemorrhage
Abstract
1. Introduction
2. Materials and Methods
2.1. Cost
2.2. Calculations
3. Results
Sensitivity Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Steel, D.H.W.; Sandhu, S.S. Submacular Haemorrhages Associated with Neovascular Age-Related Macular Degeneration. Br. J. Ophthalmol. 2011, 95, 1051–1057. [Google Scholar] [CrossRef] [PubMed]
- Stanescu-Segall, D.; Balta, F.; Jackson, T.L. Submacular Hemorrhage in Neovascular Age-Related Macular Degeneration: A Synthesis of the Literature. Surv. Ophthalmol. 2016, 61, 18–32. [Google Scholar] [CrossRef]
- Avery, R.L.; Fekrat, S.; Hawkins, B.S.; Bressler, N.M. Natural History of Subfoveal Subretinal Hemorrhage in Age-Related Macular Degeneration. Retina 1996, 16, 183–189. [Google Scholar] [CrossRef]
- Yiu, G.; Mahmoud, T.H. Subretinal Hemorrhage. Dev. Ophthalmol. 2014, 54, 213–222. [Google Scholar] [CrossRef]
- Colijn, J.M.; Buitendijk, G.H.S.; Prokofyeva, E.; Alves, D.; Cachulo, M.L.; Khawaja, A.P.; Cougnard-Gregoire, A.; Merle, B.M.J.; Korb, C.; Erke, M.G.; et al. Prevalence of Age-Related Macular Degeneration in Europe: The Past and the Future. Ophthalmology 2017, 124, 1753–1763. [Google Scholar] [CrossRef]
- Fleckenstein, M.; Schmitz-Valckenberg, S.; Chakravarthy, U. Age-Related Macular Degeneration: A Review. JAMA 2024, 331, 147–157. [Google Scholar] [CrossRef] [PubMed]
- Mehta, H.; Kim, L.N.; Mathis, T.; Zalmay, P.; Ghanchi, F.; Amoaku, W.M.; Kodjikian, L. Trends in Real-World Neovascular AMD Treatment Outcomes in the UK. Clin. Ophthalmol. 2020, 14, 3331–3342. [Google Scholar] [CrossRef] [PubMed]
- Wong, W.L.; Su, X.; Li, X.; Cheung, C.M.G.; Klein, R.; Cheng, C.-Y.; Wong, T.Y. Global Prevalence of Age-Related Macular Degeneration and Disease Burden Projection for 2020 and 2040: A Systematic Review and Meta-Analysis. Lancet Glob. Health 2014, 2, e106–e116. [Google Scholar] [CrossRef]
- Kuhli-Hattenbach, C.; Fischer, I.B.; Schalnus, R.; Hattenbach, L.-O. Subretinal Hemorrhages Associated with Age-Related Macular Degeneration in Patients Receiving Anticoagulation or Antiplatelet Therapy. Am. J. Ophthalmol. 2010, 149, 316–321.e1. [Google Scholar] [CrossRef]
- Macular Hemorrhage Due to Age-Related Macular Degeneration or Retinal Arterial Macroaneurysm: Predictive Factors of Surgical Outcome. Available online: https://www.mdpi.com/2077-0383/10/24/5787 (accessed on 20 June 2025).
- Confalonieri, F.; Ferraro, V.; Barone, G.; Di Maria, A.; Petrovski, B.É.; Vallejo Garcia, J.L.; Randazzo, A.; Vinciguerra, P.; Lumi, X.; Petrovski, G. Outcomes in the Treatment of Subretinal Macular Hemorrhage Secondary to Age-Related Macular Degeneration: A Systematic Review. J. Clin. Med. 2024, 13, 367. [Google Scholar] [CrossRef]
- Fassbender, J.M.; Sherman, M.P.; Barr, C.C.; Schaal, S. TISSUE PLASMINOGEN ACTIVATOR FOR SUBFOVEAL HEMORRHAGE DUE TO AGE-RELATED MACULAR DEGENERATION: Comparison of 3 Treatment Modalities. Retina 2016, 36, 1860–1865. [Google Scholar] [CrossRef]
- González-López, J.J.; McGowan, G.; Chapman, E.; Yorston, D. Vitrectomy with Subretinal Tissue Plasminogen Activator and Ranibizumab for Submacular Haemorrhages Secondary to Age-Related Macular Degeneration: Retrospective Case Series of 45 Consecutive Cases. Eye 2016, 30, 929–935. [Google Scholar] [CrossRef] [PubMed]
- Veritti, D.; Sarao, V.; Martinuzzi, D.; Menzio, S.; Lanzetta, P. Submacular Hemorrhage during Neovascular Age-Related Macular Degeneration: A Meta-Analysis and Meta-Regression on the Use of tPA and Anti-VEGFs. Ophthalmologica 2024, 247, 191–201. [Google Scholar] [CrossRef] [PubMed]
- Brown, M.M.; Brown, G.C.; Lieske, H.B.; Tran, I.; Turpcu, A.; Colman, S. SOCIETAL COSTS ASSOCIATED WITH NEOVASCULAR AGE-RELATED MACULAR DEGENERATION IN THE UNITED STATES. Retina 2016, 36, 285–298. [Google Scholar] [CrossRef] [PubMed]
- Brown, M.M.; Brown, G.C.; Stein, J.D.; Roth, Z.; Campanella, J.; Beauchamp, G.R. Age-Related Macular Degeneration: Economic Burden and Value-Based Medicine Analysis. Can. J. Ophthalmol. 2005, 40, 277–287. [Google Scholar] [CrossRef]
- Hertzberg, S.N.W. Economic Assessments and Quantitative Modelling of Alternative Treatments for Retinal Disorders in Norway. Ph.D. Thesis, University of Oslo and Oslo University Hospital, Oslo, Norway, 2024. [Google Scholar]
- Walekhwa, S.N.; Moe, M.; Petrovski, G.; Bragadottir, R.; Jørstad, Ø.; Burger, E. Transition from Laser to Intravitreal Injections for Diabetic Retinopathy: Hospital Utilization and Costs from an Extended Healthcare Perspective. Int. J. Environ. Res. Public Health 2022, 19, 12603. [Google Scholar] [CrossRef]
- Ruiz-Moreno, J.M.; Arias, L.; Abraldes, M.J.; Montero, J.; Udaondo, P.; The RAMDEBURS Study Group. Economic Burden of Age-Related Macular Degeneration in Routine Clinical Practice: The RAMDEBURS Study. Int. Ophthalmol. 2021, 41, 3427–3436. [Google Scholar] [CrossRef]
- Tabano, D.; Watane, A.; Gale, R.; Cox, O.; Garmo, V.; Hill, S.; Longworth, L.; Oluboyede, Y.; Ahmed, A.; Patel, N. EE191 An Investigation of the Economic Burden of Treatment for Namd/Dme on Treatment Recipients and Caregivers in the US. Value Health 2023, 26, S94. [Google Scholar] [CrossRef]
- Finansiering. Available online: https://www.helsedirektoratet.no/tilskudd-og-finansiering/finansiering (accessed on 20 June 2025).
- Shaheen, A.; Mehra, D.; Ghalibafan, S.; Patel, S.; Buali, F.; Panneerselvam, S.; Perez, N.; Hoyek, S.; Flynn, H.W.; Patel, N.; et al. Efficacy and Safety of Anti-VEGF Injections and Surgery for Age-Related Macular Degeneration-Related Submacular Hemorrhage: A Systematic Review and Meta-Analysis. Ophthalmol. Retina 2025, 9, 4–12. [Google Scholar] [CrossRef]
- Gabrielle, P.-H.; Delyfer, M.-N.; Glacet-Bernard, A.; Conart, J.B.; Uzzan, J.; Kodjikian, L.; Arndt, C.; Tadayoni, R.; Soudry-Faure, A.; Creuzot Garcher, C.P. Surgery, Tissue Plasminogen Activator, Antiangiogenic Agents, and Age-Related Macular Degeneration Study: A Randomized Controlled Trial for Submacular Hemorrhage Secondary to Age-Related Macular Degeneration. Ophthalmology 2023, 130, 947–957. [Google Scholar] [CrossRef]
- Iacono, T.; Bigby, C.; Unsworth, C.; Douglas, J.; Fitzpatrick, P. A Systematic Review of Hospital Experiences of People with Intellectual Disability. BMC Health Serv. Res. 2014, 14, 505. [Google Scholar] [CrossRef] [PubMed]
- Manrique-Lipa, R.; Jasim, H.; Safi, A.; Liyanage, S.E.; Keller, J. RHEGMATOGENOUS RETINAL DETACHMENT AFTER INJECTION OF TISSUE PLASMINOGEN ACTIVATOR AND GAS FOR SUBMACULAR HEMORRHAGE SECONDARY TO AGE-RELATED MACULAR DEGENERATION. Retin. Cases Brief Rep. 2024, 18, 131–134. [Google Scholar] [CrossRef]
- Brown, M.M.; Brown, G.C.; Sharma, S.; Landy, J. Health Care Economic Analyses and Value-Based Medicine. Surv. Ophthalmol. 2003, 48, 204–223. [Google Scholar] [CrossRef]
- Atik, A.; Barton, K.; Azuara-Blanco, A.; Kerr, N.M. Health Economic Evaluation in Ophthalmology. Br. J. Ophthalmol. 2021, 105, 602–607. [Google Scholar] [CrossRef]
- Kim, H.S.; Cho, H.J.; Yoo, S.G.; Kim, J.H.; Han, J.I.; Lee, T.G.; Kim, J.W. Intravitreal Anti-Vascular Endothelial Growth Factor Monotherapy for Large Submacular Hemorrhage Secondary to Neovascular Age-Related Macular Degeneration. Eye (Lond.) 2015, 29, 1141–1151. [Google Scholar] [CrossRef]
- Chay, J.; Fenner, B.J.; Finkelstein, E.A.; Teo, K.Y.C.; Cheung, C.M.G. Real-World Cost-Effectiveness of Anti-VEGF Monotherapy and Combination Therapy for the Treatment of Polypoidal Choroidal Vasculopathy. Eye 2022, 36, 2265–2270. [Google Scholar] [CrossRef]
- Miyazato, M.; Maruyama-Inoue, M.; Tanaka, S.; Inoue, T.; Yanagi, Y.; Kadonosono, K. Comparison Between Intravitreal Anti-Vascular Endothelial Growth Factor Monotherapy and Vitrectomy in Age-Related Macular Degeneration with Large Submacular Hemorrhages. J. Clin. Med. 2025, 14, 1477. [Google Scholar] [CrossRef] [PubMed]
- Oncel, D.; Lim, J.I. Effect of Anti-VEGF Therapy on Subretinal Hemorrhage. Investig. Ophthalmol. Vis. Sci. 2024, 65, 818. [Google Scholar]
- Maggio, E.; Peroglio Deiro, A.; Mete, M.; Sartore, M.; Polito, A.; Prigione, G.; Guerriero, M.; Pertile, G. Intravitreal Recombinant Tissue Plasminogen Activator and Sulphur Hexafluoride Gas for Submacular Haemorrhage Displacement in Age-Related Macular Degeneration: Looking behind the Blood. Ophthalmologica 2020, 243, 224–235. [Google Scholar] [CrossRef]
- Chang, W.; Garg, S.J.; Maturi, R.; Hsu, J.; Sivalingam, A.; Gupta, S.A.; Regillo, C.D.; Ho, A.C. Management of Thick Submacular Hemorrhage with Subretinal Tissue Plasminogen Activator and Pneumatic Displacement for Age-Related Macular Degeneration. Am. J. Ophthalmol. 2014, 157, 1250–1257. [Google Scholar] [CrossRef]
- Ho, C.P.S.; Lai, T.Y.Y. Current Management Strategy of Polypoidal Choroidal Vasculopathy. Indian J. Ophthalmol. 2018, 66, 1727–1735. [Google Scholar] [CrossRef] [PubMed]
- Kitagawa, Y.; Shimada, H.; Mori, R.; Tanaka, K.; Wakatsuki, Y.; Onoe, H.; Kaneko, H.; Machida, Y.; Nakashizuka, H. One-Year Outcome of Intravitreal Tissue Plasminogen Activator, Ranibizumab, and Gas Injections for Submacular Hemorrhage in Polypoidal Choroidal Vasculopathy. J. Clin. Med. 2022, 11, 2175. [Google Scholar] [CrossRef] [PubMed]
- Factors Prognostic of Visual Outcome in Patients with Subretinal Hemorrhage—PubMed. Available online: https://pubmed.ncbi.nlm.nih.gov/2297030/ (accessed on 20 June 2025).
- Moisseiev, E.; Ben Ami, T.; Barak, A. Vitrectomy and Subretinal Injection of Tissue Plasminogen Activator for Large Submacular Hemorrhage Secondary to AMD. Eur. J. Ophthalmol. 2014, 24, 925–931. [Google Scholar] [CrossRef] [PubMed]
Treatment Option | Unit Costs (NOK) | Source |
---|---|---|
Intravitreal anti-VEGF drugs | (Drug catalog, 2024) | |
Avastin 1 × 4 mL | 384 | |
Eylea 40 mg/mL | 3568 | |
Ozurdex 700 mg | 10,885 | |
Lucentis 10 mg/mL | 3402 | |
Tissue plasminogen activator (tPA) and gas | 3005 | (OUH) |
Pars plana vitrectomy | 83,545 | (Unit cost database, 2024) |
Scleral buckling | 13,532 | (Financing, 2024) |
Phacoemulsification | 12,592 | (Financing, 2024) |
Intravitreal injection | 3553 | (Financing, 2024) |
Other outpatient examination and treatment of eye conditions with specified measures | 1829 | (Financing, 2024; Unit cost database, 2024) |
Patient time cost/hour | 368 | (Unit cost database, 2024) |
Transport cost/one-way | 794 | (Unit cost database, 2024) |
General admission | 19788 | (Unit cost database, 2024) |
Treatment Option | Complication | Occurrence Rate | BCVA Median |
---|---|---|---|
Intravitreal anti-VEGF monotherapy | Insignificant | 0 | 0.21 |
Intravitreal tPA with gas displacement | Recurrent sub-macular hemorrhage | 0–27% | 0.1 |
Vitreous hemorrhage | 0–45% | ||
Retinal detachment | 0–7% | ||
Intravitreal tPA with gas displacement combined with anti-VEGF | Recurrent sub-macular hemorrhage | 0–13.6% | 0.13 |
Vitreous hemorrhage | 0–43% | ||
Retinal detachment | 0.5% | ||
PPV with subretinal tPA and gas displacement | Recurrent sub-macular hemorrhage | 0–27% | 0.03 |
Vitreous hemorrhage | 0–67% | ||
Retinal detachment | 0–11.8% | ||
Cataract | 0–11.5% | ||
PPV with subretinal tPA and gas displacement combined with anti-VEGF | Recurrent sub-macular hemorrhage | 0–20% | 0.16 |
Vitreous hemorrhage | 0–38% | ||
Cataract | 0–11.5% |
Treatment Option | Outpatient Cost (NOK) | Outpatient Cost/Unit of BCVA Improvement | Inpatient Cost (NOK) | Inpatient Cost/Unit of BCVA Improvement |
---|---|---|---|---|
Anti-VEGF | 9391 | 44,717 | 0 | 0 |
Intravitreal tPA + gas | 5329 | 53,285 | 33,210 | 332,103 |
Intravitreal tPA + gas + Anti-VEGF | 12,579 | 96,762 | 40,461 | 311,237 |
Subretinal tPA + gas | 88,137 | 2,937,909 | 116,755 | 3,891,827 |
Subretinal tPA + gas + Anti-VEGF | 95,388 | 596,174 | 124,005 | 775,034 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Confalonieri, F.; Hertzberg, S.N.W.; Dziedzic, K.A.; Lumi, X.; Lytvynchuk, L.; Znaor, L.; Petrovski, G.; Petrovski, B.É. Cost-Effectiveness of Alternative Treatment Strategies of Subretinal Macular Hemorrhage. Healthcare 2025, 13, 1550. https://doi.org/10.3390/healthcare13131550
Confalonieri F, Hertzberg SNW, Dziedzic KA, Lumi X, Lytvynchuk L, Znaor L, Petrovski G, Petrovski BÉ. Cost-Effectiveness of Alternative Treatment Strategies of Subretinal Macular Hemorrhage. Healthcare. 2025; 13(13):1550. https://doi.org/10.3390/healthcare13131550
Chicago/Turabian StyleConfalonieri, Filippo, Silvia N. W. Hertzberg, Krystian Andrzej Dziedzic, Xhevat Lumi, Lyubomyr Lytvynchuk, Ljubo Znaor, Goran Petrovski, and Beáta Éva Petrovski. 2025. "Cost-Effectiveness of Alternative Treatment Strategies of Subretinal Macular Hemorrhage" Healthcare 13, no. 13: 1550. https://doi.org/10.3390/healthcare13131550
APA StyleConfalonieri, F., Hertzberg, S. N. W., Dziedzic, K. A., Lumi, X., Lytvynchuk, L., Znaor, L., Petrovski, G., & Petrovski, B. É. (2025). Cost-Effectiveness of Alternative Treatment Strategies of Subretinal Macular Hemorrhage. Healthcare, 13(13), 1550. https://doi.org/10.3390/healthcare13131550