Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (32,266)

Search Parameters:
Keywords = restriction

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 10816 KB  
Article
Numerical and Performance Optimization Research on Biphase Transport in PEMFC Flow Channels Based on LBM-VOF
by Zhe Li, Runyuan Zheng, Chengyan Wang, Lin Li, Yuanshen Xie and Dapeng Tan
Processes 2026, 14(2), 360; https://doi.org/10.3390/pr14020360 (registering DOI) - 20 Jan 2026
Abstract
Proton exchange membrane fuel cells (PEMFC) are recognized as promising next-generation energy technology. Yet, their performance is critically limited by inefficient gas transport and water management in conventional flow channels. Current rectangular gas channels (GC) restrict reactive gas penetration into the gas diffusion [...] Read more.
Proton exchange membrane fuel cells (PEMFC) are recognized as promising next-generation energy technology. Yet, their performance is critically limited by inefficient gas transport and water management in conventional flow channels. Current rectangular gas channels (GC) restrict reactive gas penetration into the gas diffusion layer (GDL) due to insufficient longitudinal convection. At the same time, the complex multiphase interactions at the mesoscale pose challenges for numerical modeling. To address these limitations, this study proposes a novel cathode channel design featuring laterally contracted fin-shaped barrier blocks and develops a mesoscopic multiphase coupled transport model using the lattice Boltzmann method combined with the volume-of-fluid approach (LBM-VOF). Through systematic investigation of multiphase flow interactions across channel geometries and GDL surface wettability effects, we demonstrate that the optimized barrier structure induces bidirectional forced convection, enhancing oxygen transport compared to linear channels. Compared with the traditional straight channel, the optimized composite channel achieves a 60.9% increase in average droplet transport velocity and a 56.9% longer droplet displacement distance, while reducing the GDL surface water saturation by 24.8% under the same inlet conditions. These findings provide critical insights into channel structure optimization for high-efficiency PEMFC, offering a validated numerical framework for multiphysics-coupled fuel cell simulations. Full article
(This article belongs to the Section Materials Processes)
Show Figures

Figure 1

29 pages, 6922 KB  
Article
Protection by Vitis vinifera L. Against Cisplatin-Induced Testicular Injury: Oxidative Stress, Inflammation, and Ferroptosis
by Salman A. A. Mohammed, Hebatallah M. Saad, Kariman A. Esmail, Duaa Eliwa, Aya H. Rohiem, Amal A. Awad, Samar A. El-Adawy, Shimaa S. Amer and Ehab Y. Abdelhiee
Pharmaceuticals 2026, 19(1), 178; https://doi.org/10.3390/ph19010178 (registering DOI) - 20 Jan 2026
Abstract
Background/Objectives: Testicular toxicity is one of the most important chemotherapeutic adverse effects of Cisplatin (Cisp), which restricts its use and effectiveness. This study investigated the preventive effects of Vitis vinifera L. extract on Cisp-induced testicular injury in rats. Methods: Forty adult [...] Read more.
Background/Objectives: Testicular toxicity is one of the most important chemotherapeutic adverse effects of Cisplatin (Cisp), which restricts its use and effectiveness. This study investigated the preventive effects of Vitis vinifera L. extract on Cisp-induced testicular injury in rats. Methods: Forty adult albino male rats were allocated into four groups: control, Vitis vinifera L. extract, Cisp, and co-treated (Vitis vinifera L. extract + Cisp). Sperm motility and count, serum reproductive hormones, oxidative/antioxidant biomarkers, pro-inflammatory cytokines, ferroptosis biomarkers, and gene expression profiles were evaluated. Results: Cisp administration markedly impaired reproductive performance, as evidenced by significant declines in serum FSH, LH, testosterone, and sperm motility and count. Cisp also induced oxidative stress by elevating MDA, GSSG, GPx, and 8-OHdG, while reducing SOD, Catalase, NRF2, and Ho-1 along with total and reduced GSH levels. Moreover, it triggered strong inflammatory responses and ferroptosis activation, with notable up-regulation of NFκB, TNF-α, IL-1β, ferritin, and cathepsin. Gene expression analysis revealed down-regulation of ARNTL, PI3K, and miR-125b and up-regulation of ASCL4, GSK3B, and COX2 following Cisp exposure. Conversely, co-treatment with Vitis vinifera L. extract significantly ameliorated these alterations, restoring sperm quality, hormone balance, antioxidant defenses, and modulating inflammatory, ferroptosis, and genetic responses toward normalcy in addition to restoring testicular and epididymal histoarchitecture without any significant effect in NRF2 and ARNTL expression. Additionally, co-treated groups with Vitis vinifera L. extract showed a significant decline in NF-kB p65 and increased PCNA testicular immunoreactivity with a substantial down-regulation in NF-kB p65 and PCNA epididymal immunoreactivity. Vitis vinifera L. extract alone did not affect any studied parameters as compared to the control group. Conclusions: These findings suggested that Vitis vinifera L. extract has a significant protective effect against Cisp-related testicular injury through antioxidative, anti-inflammatory, and anti-ferroptotic mechanisms. Full article
(This article belongs to the Section Natural Products)
Show Figures

Figure 1

15 pages, 239 KB  
Article
Family Dialogues on Sexuality: A Contingential Analysis of Gender, Care, and Mother–Adolescent Children Communication
by Angel de Jesús Angulo Moreno, Abner Daniel Ramírez Arzate and María Dolores Aragón Robles Linares
Healthcare 2026, 14(2), 251; https://doi.org/10.3390/healthcare14020251 (registering DOI) - 20 Jan 2026
Abstract
From an interbehavioral and contingential perspective, family dialogues about sexuality are understood as patterns of verbal interaction regulated by social, gender, and caregiving contingencies rather than as individual attitudes or intentions. Background: This study analyzes the functional conditions under which family dialogues about [...] Read more.
From an interbehavioral and contingential perspective, family dialogues about sexuality are understood as patterns of verbal interaction regulated by social, gender, and caregiving contingencies rather than as individual attitudes or intentions. Background: This study analyzes the functional conditions under which family dialogues about sexuality occur between mothers and their adolescent sons and daughters, considering caregiving roles and gender norms that regulate these interactions. The research aimed to identify the functional relations between communicative practices and the social contingencies that maintain or inhibit them. Methods: A qualitative approach grounded in interbehavioral psychology was employed, using semistructured interviews with 40 mothers of students from a public middle school in Puebla, Mexico. Data were analyzed through contingency analysis, distinguishing micro- and macrocontingential systems related to family sexual education. Results: Results show that, although patterns of avoidance and discourse displacement toward schools or peers persist, families exhibit increasing openness toward comprehensive sexuality education and recognize its preventive value against violence, adolescent pregnancy, and misinformation. Functional delegation and adolescent mediation of dialogue were identified, along with emerging inclusive macrocontingencies linked to the acceptance of diverse families and LGBTIQ+ themes. Conclusions: It is concluded that households function as self-regulated interbehavioral systems in which historical and gender contingencies restrict sexual dialogue, yet gradual functional changes toward respect, inclusion, and shared educational responsibility are observed. Full article
19 pages, 2280 KB  
Article
Maternal Protein Restriction and Branched-Chain Amino Acid Supplementation Differentially Affect Maternal Energy Balance and Impair Offspring Growth
by Daniela Redrovan, Souvik Patra, Md Tareq Aziz, Matthew W. Gorton, Emily A. Chavez, Scott Frederiksen, Joshua Rowe, Adel Pezeshki and Prasanth K. Chelikani
Nutrients 2026, 18(2), 322; https://doi.org/10.3390/nu18020322 (registering DOI) - 20 Jan 2026
Abstract
Background: The increasing prevalence of low-birth-weight (LBW) offspring from obese mothers underscores the need for dietary strategies to mitigate the transgenerational propagation of metabolic diseases. Objectives: We determined whether dietary protein restriction under obesogenic conditions altered maternal energy balance and led to LBW [...] Read more.
Background: The increasing prevalence of low-birth-weight (LBW) offspring from obese mothers underscores the need for dietary strategies to mitigate the transgenerational propagation of metabolic diseases. Objectives: We determined whether dietary protein restriction under obesogenic conditions altered maternal energy balance and led to LBW offspring and whether branched-chain amino acid (BCAA) supplementation improved maternal energy balance and mitigated weight and craniofacial skeletal deficits in offspring. Methods: High-fat-fed obese pregnant Sprague Dawley rats (~8–10 weeks of age, n = 8–11/group) were randomized in study 1 to control high-fat diet (20% protein; HFD), low-protein diet (LP; 5% protein), and LP + BCAA diet (100% BCAA requirements) and in study 2 to control HFD (20% protein), LP (10% protein), and LP + 2BCAA diet (200% BCAA requirements). Post-weaning offspring were fed HFD until 8 weeks of age. Results: Protein restriction promoted hyperphagia and energy expenditure, whereas BCAA supplementation attenuated such hyperphagic effects in pregnancy but not in lactation. Protein restriction reduced maternal body weight in lactation, and although BCAA supplementation did not reverse the weight loss, it enhanced insulin sensitivity and paradoxically reduced offspring survival. Maternal protein restriction reduced offspring body weight and craniofacial bone growth that persisted into adulthood, but BCAA supplementation did not rescue such deficits. Conclusions: Maternal protein restriction in obese dams enhanced maternal energy expenditure but impaired offspring growth and development. Although BCAA supplementation improved maternal energy balance, it was insufficient to reverse the adverse effects of maternal protein restriction on offspring growth under obesogenic conditions. Full article
Show Figures

Figure 1

22 pages, 8990 KB  
Article
Rotor–Stator Configuration in Gas-Inducing Reactors: Effects of Blade Number and Thickness on Gas Holdup
by Ehsan Zamani Abyaneh, Farhad Ein-Mozaffari and Ali Lohi
Processes 2026, 14(2), 354; https://doi.org/10.3390/pr14020354 - 19 Jan 2026
Abstract
Gas-inducing reactors (GIRs) are widely used in applications where external gas recycling is unsafe or operationally restricted, yet quantitative design guidelines for impeller–stator geometry remain scarce, despite its strong influence on gas dispersion and retention. This study investigates the effects of stator blade [...] Read more.
Gas-inducing reactors (GIRs) are widely used in applications where external gas recycling is unsafe or operationally restricted, yet quantitative design guidelines for impeller–stator geometry remain scarce, despite its strong influence on gas dispersion and retention. This study investigates the effects of stator blade number and blade thickness on gas holdup in a double-impeller GIR using a three-dimensional Euler–Euler CFD framework. Stator configurations with 12–48 blades and blade thicknesses of 1.5–45 mm were examined and validated against experimental data, with gas holdup predictions agreeing within 5–10%. The results show that the stator open-area fraction (ϕA) is the dominant geometric parameter governing the balance between radial dispersion and axial confinement. High-ϕA stators (fewer, thinner blades) enhance bulk recirculation and bubble residence time, increasing gas holdup by up to ~20% relative to dense stator designs, whereas low-ϕA stators suppress macro-circulation, promote axial gas transport, and reduce holdup despite higher local dissipation near the rotor–stator gap. A modified gas-holdup correlation incorporating ϕA is proposed, yielding strong agreement with CFD and experimental data (R2 = 0.96). Torque analysis further reveals competing effects between impeller gassing, which lowers hydraulic loading, and increased flow resistance at low ϕA, which elevates torque. Overall, the results provide quantitative guidance on how stator blade number and thickness influence gas holdup, enabling informed stator design and optimization in GIRs to improve gas dispersion through rational geometric selection rather than trial and error approaches. Full article
(This article belongs to the Special Issue Modeling and Optimization for Multi-scale Integration)
17 pages, 1796 KB  
Article
Optical Genome Mapping Enhances Structural Variant Detection and Refines Risk Stratification in Chronic Lymphocytic Leukemia
by Soma Roy Chakraborty, Michelle A. Bickford, Narcisa A. Smuliac, Kyle A. Tonseth, Jing Bao, Farzana Murad, Irma G. Domínguez Vigil, Heather B. Steinmetz, Lauren M. Wainman, Parth Shah, Elizabeth M. Bengtson, Swaroopa PonnamReddy, Gabriella A. Harmon, Liam L. Donnelly, Laura J. Tafe, Jeremiah X. Karrs, Prabhjot Kaur and Wahab A. Khan
Genes 2026, 17(1), 106; https://doi.org/10.3390/genes17010106 - 19 Jan 2026
Abstract
Background: Optical genome mapping (OGM) detects genome-wide structural variants (SVs), including balanced rearrangements and complex copy-number alterations beyond standard-of-care cytogenomic assays. In chronic lymphocytic leukemia (CLL), cytogenetic and genomic risk stratification is traditionally based on fluorescence in situ hybridization (FISH), karyotyping, targeted next-generation [...] Read more.
Background: Optical genome mapping (OGM) detects genome-wide structural variants (SVs), including balanced rearrangements and complex copy-number alterations beyond standard-of-care cytogenomic assays. In chronic lymphocytic leukemia (CLL), cytogenetic and genomic risk stratification is traditionally based on fluorescence in situ hybridization (FISH), karyotyping, targeted next-generation sequencing (NGS), and immunogenetic assessment of immunoglobulin heavy chain variable region (IGHV) somatic hypermutation status, each of which interrogates only a limited aspect of disease biology. Methods: We retrospectively evaluated fifty patients with CLL using OGM and integrated these findings with cytogenomics, targeted NGS, IGHV mutational status, and clinical time-to-first-treatment (TTFT) data. Structural variants were detected using OGM and pathogenic NGS variants were derived from a clinical heme malignancy panel. Clinical outcomes were extracted from the electronic medical record. Results: OGM identified reportable structural variants in 82% (41/50) of cases. The most frequent abnormality was del(13q), observed in 29/50 (58%) and comprising 73% (29/40) of all OGM-detected deletions with pathologic significance. Among these, 12/29 (42%) represented large RB1-spanning deletions, while 17/29 (58%) were focal deletions restricted to the miR15a/miR16-1 minimal region, mapping to the non-coding host gene DLEU2. Co-occurrence of adverse lesions, including deletion 11q/ATM, BIRC3 loss, trisomy 12, and deletion 17p/TP53, were recurrent and strongly associated with shorter TTFT. OGM also uncovered multiple cryptic rearrangements involving chromosomal loci that are not represented in the canonical CLL FISH probe panel, including IGL::CCND1, IGH::BCL2, IGH::BCL11A, IGH::BCL3, and multi-chromosomal copy-number complexity. IGHV data were available in 37/50 (74%) of patients; IGHV-unmutated status frequently co-segregated with OGM-defined high-risk profiles (del(11q), del(17p), trisomy 12 with secondary hits, and complex genomes whereas mutated IGHV predominated in OGM-negative or structurally simple del(13q) cases and aligned with indolent TTFT. Integration of OGM with NGS further improved genomic risk classification, particularly in cases with discordant or inconclusive routine testing. Conclusions: OGM provides a comprehensive, genome-wide view of structural variation in CLL, resolving deletion architecture, identifying cryptic translocations, and defining complex multi-hit genomic profiles that tracked closely with clinical behavior. Combining OGM and NGS analysis refined risk stratification beyond standard FISH panels and supports more precise, individualized management strategies in CLL. Prospective studies are warranted to evaluate the clinical utility of OGM-guided genomic profiling in contemporary treatment paradigms. Full article
Show Figures

Figure 1

20 pages, 349 KB  
Review
Prokaryotic Molecular Defense Mechanisms and Their Potential Applications in Cancer Biology: A Special Consideration for Cyanobacterial Systems
by Nermin Adel Hussein El Semary, Ahmed Fadiel, Kenneth D. Eichenbaum and Sultan Awwad Alhusayni
Curr. Issues Mol. Biol. 2026, 48(1), 105; https://doi.org/10.3390/cimb48010105 - 19 Jan 2026
Abstract
Cyanobacteria harbor sophisticated molecular defense systems that have evolved over billions of years to protect against viral invasion and foreign genetic elements. These ancient photosynthetic organisms possess a diverse array of restriction-modification (R-M) systems and CRISPR-Cas arrays that present challenges for genetic engineering, [...] Read more.
Cyanobacteria harbor sophisticated molecular defense systems that have evolved over billions of years to protect against viral invasion and foreign genetic elements. These ancient photosynthetic organisms possess a diverse array of restriction-modification (R-M) systems and CRISPR-Cas arrays that present challenges for genetic engineering, but also offer unique opportunities for cancer-targeted biotechnological applications. These systems exist in prokaryotes mainly as defense mechanisms but they are currently used in molecular applications as gene editing tools. Moreover, latest developments in nucleases such as zinc finger nucleases (ZFNs), TALENs (transcription-activator-like effector nucleases) are discussed. A comprehensive genomic analysis of 126 cyanobacterial species found 89% encode multiple R-M systems, averaging 3.2 systems per genome, creating formidable barriers to transformation but also providing molecular machinery that could be harnessed for precise recognition and targeting of cancer cells. This review critically examines the dual nature of these defense systems, their ecological functions, and the emerging strategies to translate their molecular precision into advanced anticancer therapeutics. Hence, the review main objectives are to explore the recent understanding of these mechanisms and to exploit the knowledge gained in opening new avenues for cancer-focused targeted interventions, while acknowledging the significant challenges to translate these systems from laboratory curiosities to practical applications. Full article
(This article belongs to the Section Biochemistry, Molecular and Cellular Biology)
63 pages, 4804 KB  
Review
Cellular Allies Against Glioblastoma: Therapeutic Potential of Macrophages and Mesenchymal Stromal Cells
by Bruno Agustín Cesca, Kali Pellicer San Martin and Luis Exequiel Ibarra
Pharmaceutics 2026, 18(1), 124; https://doi.org/10.3390/pharmaceutics18010124 - 19 Jan 2026
Abstract
Background/Objectives: Glioblastoma (GBM) remains the most aggressive primary brain tumor in adults, with limited therapeutic options and poor prognosis despite maximal surgery, radiotherapy, and chemotherapy. The complex and immunosuppressive tumor microenvironment, pronounced intratumoral heterogeneity, and the presence of the blood–brain barrier (BBB) [...] Read more.
Background/Objectives: Glioblastoma (GBM) remains the most aggressive primary brain tumor in adults, with limited therapeutic options and poor prognosis despite maximal surgery, radiotherapy, and chemotherapy. The complex and immunosuppressive tumor microenvironment, pronounced intratumoral heterogeneity, and the presence of the blood–brain barrier (BBB) severely restrict the efficacy of conventional and emerging therapies. In this context, cell-based strategies leveraging macrophages, mesenchymal stromal cells (MSCs), and their derivatives have gained attention as “cellular allies” capable of modulating the GBM microenvironment and acting as targeted delivery platforms. Methods: This review systematically analyzes preclinical and early clinical literature on macrophage- and MSC-based therapeutic strategies in GBM, including engineered cells, extracellular vesicles (EVs), membrane-coated nanoparticles, and hybrid biomimetic systems. Studies were selected based on relevance to GBM biology, delivery across or bypass of the BBB, microenvironmental modulation, and translational potential. Evidence from in vitro models, orthotopic and syngeneic in vivo models, and available clinical trials was critically evaluated, with emphasis on efficacy endpoints, biodistribution, safety, and manufacturing considerations. Results: The reviewed evidence demonstrates that macrophages and MSCs can function as active therapeutic agents or delivery vehicles, enabling localized oncolysis, immune reprogramming, stromal and vascular remodeling, and enhanced delivery of viral, genetic, and nanotherapeutic payloads. EVs and membrane-based biomimetic platforms further extend these capabilities while reducing cellular risks. However, therapeutic efficacy is highly context-dependent, influenced by tumor heterogeneity, BBB integrity, delivery route, and microenvironmental dynamics. Clinical translation remains limited, with most approaches at preclinical or early-phase clinical stages. Conclusions: Cell-based and cell-derived platforms represent a promising but still evolving therapeutic paradigm for GBM. Their successful translation will require rigorous biomarker-driven patient selection, improved models that capture invasive GBM biology, scalable GMP-compliant manufacturing, and rational combination strategies to overcome adaptive resistance mechanisms. Full article
(This article belongs to the Special Issue Where Are We Now and Where Is Cell Therapy Headed? (2nd Edition))
21 pages, 1113 KB  
Review
Molecular Mechanisms of Insect Resistance in Rice and Their Application in Sustainable Pest Management
by Dilawar Abbas, Kamran Haider, Farman Ullah, Umer Liaqat, Naveed Akhtar, Yubin Li and Maolin Hou
Insects 2026, 17(1), 111; https://doi.org/10.3390/insects17010111 - 19 Jan 2026
Abstract
Rice is a key food crop worldwide, but its yield and quality are severely constrained by insect pests. As environmental and regulatory restrictions on chemical pesticides grow, developing insect-resistant rice varieties has become a sustainable way to protect food security. This review covers [...] Read more.
Rice is a key food crop worldwide, but its yield and quality are severely constrained by insect pests. As environmental and regulatory restrictions on chemical pesticides grow, developing insect-resistant rice varieties has become a sustainable way to protect food security. This review covers recent progress in functional genomics and molecular marker mapping related to insect resistance in rice. We highlight the identification, cloning, and functional analysis of resistance genes targeting major pests, including the brown planthopper, rice gall midge, white-backed planthopper, small brown planthopper, and rice leaf roller. Several important resistance genes (such as Bph14, Bph3, and Bph29) have been cloned, and their roles in rice immunity have been clarified—covering insect feeding signal recognition, activation of salicylic acid and jasmonic acid pathways, and regulation of MAPK cascades, calcium signaling, and reactive oxygen species production. We also discuss how molecular marker-assisted selection, gene pyramiding, and transgenic techniques are used in modern rice breeding. Finally, we address future challenges and opportunities, stressing the importance of utilizing wild rice germplasm, understanding insect effector–plant immune interactions, and applying molecular design breeding to create long-lasting insect-resistant rice varieties that can withstand changing pest pressures and climate conditions. Full article
(This article belongs to the Special Issue The 3M Approach to Insecticide Resistance in Insects)
Show Figures

Figure 1

19 pages, 8119 KB  
Article
Metabolic Landscape and Core Regulatory Network of Monocotyledonous and Dicotyledonous Plants in Drought Response Based on Multi-Omics
by Jianing Zhang, Xiangyu Lin, Shixuan Li, Guo Xu, Xumin Ou, Shouchuang Wang, Ke Zhou and Jun Yang
Plants 2026, 15(2), 299; https://doi.org/10.3390/plants15020299 - 19 Jan 2026
Abstract
Drought stress severely restricts plant growth and substantially reduces crop productivity. Although drought-response mechanisms have been extensively characterized within individual plant species, the conserved metabolic strategies shared across species remain insufficiently understood. To elucidate both conserved and species-specific metabolic mechanisms underlying drought adaptation, [...] Read more.
Drought stress severely restricts plant growth and substantially reduces crop productivity. Although drought-response mechanisms have been extensively characterized within individual plant species, the conserved metabolic strategies shared across species remain insufficiently understood. To elucidate both conserved and species-specific metabolic mechanisms underlying drought adaptation, we performed an integrated transcriptomic and metabolomic analysis in rice, maize, and tomato. Profiling of 543 annotated metabolites revealed strikingly divergent baseline metabolic landscapes: tomato leaves were enriched in triglycerides and anthocyanins, whereas maize and rice accumulated higher levels of glycerophospholipids, tricin-derived flavonoids, and B vitamins. Under drought conditions, these differences were further reflected in the distinct sets of differentially accumulated metabolites (DAMs) detected in tomato (121), rice (98), and maize (94). Despite these species-specific signatures, we identified a conserved drought-responsive module consisting of five phenolamides that were consistently induced across all three species. Reconstruction of the associated regulatory network uncovered divergent enzymatic control strategies governing phenolamide biosynthesis: the drought-induced BAHD acyltransferases OsPHT4 in rice and SlPHT3 in tomato exhibited broad-spectrum catalytic activities, whereas the maize homolog ZmPHT4 fulfilled a similar biosynthetic role through constitutive, non-drought-inducible activity. Together, this study provides a comprehensive metabolic framework for plant drought response and demonstrates that extensive species-specific metabolic architectures and transcriptional regulatory divergence coexist beneath a conserved core metabolomic response, offering promising targets for the precise genetic enhancement of crop drought tolerance. Full article
(This article belongs to the Section Plant Response to Abiotic Stress and Climate Change)
Show Figures

Figure 1

17 pages, 1467 KB  
Article
Generalized Voronoi Diagram-Guided and Contact-Optimized Motion Planning for Snake Robots
by Mhd Ali Shehadeh and Milos Seda
Mathematics 2026, 14(2), 332; https://doi.org/10.3390/math14020332 - 19 Jan 2026
Abstract
In robot motion planning in a space with obstacles, the goal is to find a collision-free path for robots from the start to the target position. Numerous fundamentally different approaches, and their many variants, address this problem depending on the types of obstacles, [...] Read more.
In robot motion planning in a space with obstacles, the goal is to find a collision-free path for robots from the start to the target position. Numerous fundamentally different approaches, and their many variants, address this problem depending on the types of obstacles, the dimensionality of the space and the restrictions on robot movements. We present a hierarchical motion planning framework for snake-like robots navigating cluttered environments. At the global level, a bounded Generalized Voronoi Diagram (GVD) generates a maximal-clearance path through complex terrain. To overcome the limitations of pure avoidance strategies, we incorporate a local trajectory optimization layer that enables Obstacle-Aided Locomotion (OAL). This is realized through a simulation-in-the-loop system in CoppeliaSim, where gait parameters are optimized using Particle Swarm Optimization (PSO) based on contact forces and energy efficiency. By coupling high-level deliberative planning with low-level contact-aware control, our approach enhances both adaptability and locomotion efficiency. Experimental results demonstrate improved motion performance compared to conventional planners that neglect environmental contact. Full article
(This article belongs to the Special Issue Computational Geometry: Theory, Algorithms and Applications)
Show Figures

Figure 1

14 pages, 860 KB  
Article
Diagnosing ASD in Children Aged 6–18: Gender Differences and the Diagnostic Process
by Shahar Gindi, Hagit Nagar-Shimoni, Efrat Zilbershot Fink, Asi Fares, Noy Oppenheim and Yael Leitner
J. Clin. Med. 2026, 15(2), 803; https://doi.org/10.3390/jcm15020803 - 19 Jan 2026
Abstract
Background/Objectives: Diagnosing ASD becomes more difficult with age, especially in girls. This study explores developmental factors and diagnostic tools that affect ASD diagnoses after age six. The study also integrates the neurodiversity paradigm to evaluate how diagnostic tools like the ADOS-2 and [...] Read more.
Background/Objectives: Diagnosing ASD becomes more difficult with age, especially in girls. This study explores developmental factors and diagnostic tools that affect ASD diagnoses after age six. The study also integrates the neurodiversity paradigm to evaluate how diagnostic tools like the ADOS-2 and Social Attribution Test (SAT) capture the heterogeneous presentation of ASD across genders. Methods: This retrospective study analyzed data from 91 children (73 boys, 18 girls) assessed for ASD between ages 6–18. Multivariate Generalized Linear Models (GLMs) were employed to identify independent predictors of diagnosis, controlling for age, gender, and language difficulties. Results: Notable gender differences emerged: boys showed more atypical development and restricted interests, while girls showed higher sensory sensitivity. Multivariate analysis confirmed that Social Affect (SA), age of initial concern, and the absence of structural language difficulties significantly impacted diagnosis likelihood. Conclusions: This study emphasizes the need for gender-sensitive criteria and implicit measures like the SAT to identify “masking” phenotypes. It emphasizes current tool limitations, the risk of diagnostic overshadowing, and the importance of longitudinal studies with comprehensive assessments to better capture ASD diversity, especially in social and language skills. Full article
(This article belongs to the Special Issue Autism Spectrum Disorder: Diagnosis, Treatment, and Management)
Show Figures

Figure 1

19 pages, 14577 KB  
Article
The Sequential Joint-Scatterer InSAR for Sentinel-1 Long-Term Deformation Estimation
by Jinbao Zhang, Wei Duan, Huihua Hu, Huiming Chai, Ye Yun and Xiaolei Lv
Remote Sens. 2026, 18(2), 329; https://doi.org/10.3390/rs18020329 - 19 Jan 2026
Abstract
Synthetic Aperture Radar (SAR) and Interferometric SAR (InSAR) techniques have received rapid advance in recent years, and the Multi-temporal InSAR (MT-InSAR) has been widely applied in various earth observations. Distributed scatterer (DS) InSAR is one of the most advanced MT-InSAR methods, and has [...] Read more.
Synthetic Aperture Radar (SAR) and Interferometric SAR (InSAR) techniques have received rapid advance in recent years, and the Multi-temporal InSAR (MT-InSAR) has been widely applied in various earth observations. Distributed scatterer (DS) InSAR is one of the most advanced MT-InSAR methods, and has overcome the limitation of the lack of enough measurement points in the low coherent regions for traditional methods. While the Joint-Scatterer InSAR (JS-InSAR) is the extension of DS InSAR method, which exploited the overall information of Joint Scatterers to carry out DS identification and phase optimization. And it can avoid the inaccuracy caused by the offset errors between scatterers in complex terrain areas. However, the intensive computation and low efficiency have severely restricted the application of JS-InSAR, especially when dealing with massive and long historical SAR images. As the sequential estimator has proven to successfully improve the efficiency of MT-InAR and obtain near-time deformation time series, in this work, we proposed the sequential-based JS-InSAR (S-JSInSAR) method with flexible batches. This method has adaptively divided large single look complex (SLC) stack into different batches with flexible number and certain overlaps. Then, the JS-InSAR processing is performed on each batch, respectively, and these estimated results are integrated into the final deformation time series based on the connection mode. Thus, S-JSInSAR can efficiently process large InSAR dataset, and mitigate the decorrelation effect caused by long temporal baselines. To demonstrate the effectiveness of the S-JSInSAR, a multi-year of 145 Sentinel-1 ascending SAR images in Tangshan, China, were collected to estimate the long deformation time series. And the results compared with other methods have shown the processing time has substantially decreased without the loss of deformation accuracy, and obtain deformation spatial distribution with more details in local regions, which have well validated the efficiency and reliability of the proposed method. Full article
Show Figures

Figure 1

18 pages, 2156 KB  
Review
Something Old, Something New, Something Borrowed… About the Placenta
by Nadezhda Milova, Maria Nikolova, Angel Yordanov, Antoan Milov and Stoilka Mandadzhieva
Epigenomes 2026, 10(1), 5; https://doi.org/10.3390/epigenomes10010005 - 19 Jan 2026
Abstract
The connection between the mother and the child has been considered one of the strongest bonds in nature. Though there are numerous factors that can influence the establishment of pregnancy, in its essence, three are considered major: a good quality embryo, a receptive [...] Read more.
The connection between the mother and the child has been considered one of the strongest bonds in nature. Though there are numerous factors that can influence the establishment of pregnancy, in its essence, three are considered major: a good quality embryo, a receptive endometrium, and successful cross-talk between them. The placenta, which derives from the trophoblast of the embryo, develops when a successful implantation occurs. It is an ephemeral organ through which the turnover of nutrients, gases, and waste molecules is realized. It serves as a barrier and can provide the embryo with immune factors. Placental disorders are observed in some rare but life-threatening obstetric conditions like preeclampsia (PE), fetal growth restriction (FGR), gestational trophoblastic diseases (GTDs), and gestational diabetes mellitus (GDM). The etiology and pathogenesis of some are still partially enigmatic. Our attention in this review was driven by the participation of small RNA molecules—miRNAs and piRNAs—as potential epigenetic modulators of genes that play a pivotal role in placental functioning. In this study, we analyze the influence of these epigenetic factors on the mechanisms of the development of preeclampsia. The molecular approach for understanding placental disorders may help new diagnostic and therapeutic solutions to be found. Full article
(This article belongs to the Collection Feature Papers in Epigenomes)
Show Figures

Figure 1

19 pages, 5005 KB  
Article
Analysis of Heat and Moisture Transfer Characteristics on the Air Side of a Refrigerated Air Dryer Evaporator
by Yuzheng Wu, Zinan Ye, Dapeng Ye and Bing Fang
Appl. Sci. 2026, 16(2), 991; https://doi.org/10.3390/app16020991 (registering DOI) - 19 Jan 2026
Abstract
The demand for efficient dehumidification in evaporators has become one of the key technical challenges restricting the high-quality development of the refrigerated air dryer industry. To investigate the effects of fin structure on the air-side heat transfer and dehumidification performance of finned-tube evaporators [...] Read more.
The demand for efficient dehumidification in evaporators has become one of the key technical challenges restricting the high-quality development of the refrigerated air dryer industry. To investigate the effects of fin structure on the air-side heat transfer and dehumidification performance of finned-tube evaporators applied in refrigerated air dryers under the operating conditions of 50 °C, RH = 85%, numerical heat and mass transfer models for the air side of evaporators with plain fins and wavy fins were established based on the Ansys Fluent software 2022R1. The study found that wavy fins possess superior heat transfer and moisture removal capabilities. Key performance indicators, including the air-side heat transfer rate (Q), moisture removal amount (Δm), friction factor (f), and the nusselt number (Nu), were all higher for wavy fins compared to plain fins. Building upon this, three types of vortex generators (VGs) were introduced to further optimize the performance of the wavy fins, aiming to balance heat transfer enhancement and flow resistance control. At an attack angle of 30°, the comprehensive performance factor (JF) showed the highest improvement, reaching 43% with the Delta Winglet vortex generators. The 15° configuration also showed improvement, while 45° led to the worst performance due to increased flow resistance. The results indicate that for typical high-temperature and high-humidity environments, the wavy fin is recommended as the preferred choice due to its superior overall performance and simple structure. For applications requiring higher dehumidification capacity, wavy fins equipped with vortex generators can be selected to achieve the most efficient dehumidification. This study provides valuable insights for the design and application of finned-tube evaporators in dehumidification systems under high-temperature, high-humidity conditions for refrigerated air dryers. Full article
Show Figures

Figure 1

Back to TopTop