Molecular Mechanisms of Insect Resistance in Rice and Their Application in Sustainable Pest Management
Simple Summary
Abstract
1. Introduction
2. Insect-Resistant Rice Germplasm Resources
3. Mapping of Insect-Resistance Genes in Rice
3.1. Mapping of Nilaparvata lugens-Resistance Genes in Rice
3.2. Mapping of Genes Resistant to Rice Laodelphax striatellus
3.3. Sogatella Furcifera Resistance Genes
3.4. Mapping of Orseolia oryzae Resistance Genes
3.5. Mapping of Nephotettix cincticeps Resistance Genes in Rice
3.6. Mapping of Genes Resistant to Cnaphalocrocis medinalis
3.7. Rice Stem Borer Resistance Gene Mapping
4. Insect-Resistant Genes
4.1. Rice Recognition of Insect Feeding Signals
4.2. Transmission of Insect Resistance Signals in Rice
4.2.1. Calcium Signaling
4.2.2. Reactive Oxygen Species (ROS)
4.2.3. MAPK Cascade
4.2.4. Phytohormones
5. Physiological Mechanisms of Rice Insect Resistance
6. Cultivation of Insect-Resistant Rice
7. Future Directions
8. Summary
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wang, H.F.; Li, W.W. Disease and insect pests of rice crop in ancient China. Agric. Archaeol. 2005, 2005, 243–256. [Google Scholar]
- Grist, D.H.; Lever, R.J.A.W. Pests of Rice; Longmans Green and Company Ltd.: London, UK, 1969; 520p. [Google Scholar]
- Cramer, H.H. Plant Protection and World Crop Production; Farbenfabriken Bayer AG: Leverkusen, Germany, 1967; Volume 20, 524p. [Google Scholar]
- Pegalepo, E.; Bocco, R.; Onaga, G.; Nwilene, F.; Tamò, M.; Togola, A.; Katiyar, S.K. Sustainable insect pest management options for rice production in Sub-Saharan Africa. Insects 2025, 16, 1175. [Google Scholar] [CrossRef] [PubMed]
- Litsinger, J.A.; Libetario, E.M.; Barrion, A.T.; Apostol, R.P. Comparison of insect pest complexes in different Philippine dryland rice environments: Population densities, yield loss, and management. Int. J. Pest Manag. 2009, 55, 129–149. [Google Scholar] [CrossRef]
- Ullah, F.; Gul, H.; Chen, L.; Wang, J.; Zhang, Z.; Huang, J.; Li, X.; Lu, Y. Cyantraniliprole resistance in Tuta absoluta: Selection, comparative transcriptomes, and nanocarrier-mediated RNAi studies. Entomol. Gen. 2025, 45, 565–575. [Google Scholar] [CrossRef]
- Desneux, N.; Decourtye, A.; Delpuech, J.M. The sublethal effects of pesticides on beneficial arthropods. Annu. Rev. Entomol. 2007, 52, 81–106. [Google Scholar] [CrossRef]
- Guedes, R.N.C.; Berenbaum, M.R.; Biondi, A.; Desneux, N. The side effects of pesticides on nontarget arthropods. Annu. Rev. Entomol. 2026, 71, 381–403. [Google Scholar] [CrossRef]
- Painter, R.H. Insect Resistance in Crop Plants; Macmillan: New York, NY, USA, 1968; 520p. [Google Scholar]
- Zhang, Q. Strategies for developing green super rice. Proc. Natl. Acad. Sci. USA 2007, 104, 16402–16409. [Google Scholar] [CrossRef]
- Kartohardjono, A.; Heinrichs, E.A. Populations of the brown planthopper, Nilaparvata lugens (Stål) (Homoptera: Delphacidae), and its predators on rice varieties with different levels of resistance. Environ. Entomol. 1984, 13, 359–365. [Google Scholar] [CrossRef]
- Heinrichs, E.A. Genetic Evaluation for Insect Resistance in Rice; International Rice Research Institute: Manila, Philippines, 1985. [Google Scholar]
- Jin, G.-C.; Li, R. Recent advances in rice and brown planthopper molecular interaction. Chin. Bull. Life Sci. 2025, 37, 567–578. [Google Scholar]
- Wang, X.-C.; Zhang, J.; Guo, J.-P. Progress in isolation and breeding utilization of brown planthopper resistance genes of rice in China. Chin. Bull. Life Sci. 2025, 37, 579–588. [Google Scholar]
- Dai, Y.-S.; Liu, D.; Guo, W.; Liu, Z.-X.; Zhang, X.; Shi, L.-L.; Zhou, D.-M.; Wang, L.-N.; Kang, K.; Wang, F.-Z.; et al. Poaceae-specific β-1,3;1,4-D-glucans link jasmonate signalling to OsLecRK1-mediated defence response during rice–brown planthopper interactions. Plant Biotechnol. J. 2023, 21, 1286–1300. [Google Scholar] [CrossRef] [PubMed]
- Fu, J.; Zhao, Z.; Fang, J.; Ji, R. Salivary elicitor disulfide isomerase from Nilaparvata lugens targets host rice UDP-glucose epimerase 2 to induce plant defenses. Plant Stress 2025, 15, 100744. [Google Scholar] [CrossRef]
- Fu, J.; Li, S.; Li, J.; Zhao, Z.; Li, J.; Tan, X.; Ji, R. An insect effector mimics its host immune regulator to undermine plant immunity. Adv. Sci. 2025, 12, 2409186. [Google Scholar] [CrossRef] [PubMed]
- Zhang, A.-N.; Liu, Y.; Wang, F.-M.; Xie, Y.-W.; Kong, D.-Y.; Nie, Y.-Y.; Zhang, F.-Y.; Bi, J.-G.; Yu, X.-Q.; Liu, G.-L.; et al. Pyramiding and evaluation of brown planthopper resistance genes in water-saving and drought-resistance restorer line. Acta Agron. Sin. 2019, 45, 1764–1769. [Google Scholar] [CrossRef]
- Yu, J. China achieves major breakthrough in insect-resistant rice breeding through innovative molecular design breeding technology. People’s Daily, 23 December 2025; p. 7. [Google Scholar]
- Rajan, H.; Ganesan, K.N.; Manonmani, S.; Gopalakrishnan, C.; Senthilkumar, G.; Suresh, R. Unraveling the genetic potential of wild rice (Oryza rufipogon) for sustainable food security. Genet. Resour. Crop Evol. 2025, 72, 7639–7663. [Google Scholar] [CrossRef]
- Huang, Z.; He, G.; Shu, L.H.; Li, X.; Zhang, Q. Identification and mapping of two brown planthopper resistance genes in rice. Theor. Appl. Genet. 2001, 102, 929–934. [Google Scholar] [CrossRef]
- Ikeda, R.; Vaughan, D.A. The distribution of resistance genes to the brown planthopper in rice germplasm. Rice Genet. Newsl. 1991, 8, 1–3. [Google Scholar]
- Brar, D.S.; Khush, G.S. Cytogenetic manipulation and germplasm enhancement of rice (Oryza sativa L.). Genet. Resour. Chromosome Eng. Crop Improv. 2006, 2, 115–158. [Google Scholar]
- Athwal, D.S.; Pathak, M.D.; Bacalangco, E.H.; Pura, C.D. Genetics of resistance to brown planthoppers and green leafhoppers in Oryza sativa L. I. Crop Sci. 1971, 11, 747–750. [Google Scholar] [CrossRef]
- Yan, L.; Luo, T.; Huang, D.; Wei, M.; Ma, Z.; Liu, C.; Qin, Y.; Zhou, X.; Lu, Y.; Li, R.; et al. Recent Advances in Molecular Mechanism and Breeding Utilization of Brown Planthopper Resistance Genes in Rice: An Integrated Review. Int. J. Mol. Sci. 2023, 24, 12061. [Google Scholar] [CrossRef]
- Can-Xing, D.; Cheng, Z.; Cai-Lin, L.; Hu-Qu, Z.; Jian-Min, W. Analysis of QTLs for resistance to small brown planthopper in rice using an F2 population from a cross between Mudgo and Wuyujing 3. Acta Agron. Sin. 2009, 35, 388–394. [Google Scholar]
- Li, A.; Pan, C.; Wu, L.; Dai, Z.; Zuo, S.; Xiao, N.; Pan, X. Identification and fine mapping of qRBSDV-6MH, a major QTL for resistance to rice black-streaked dwarf virus. Mol. Breed. 2013, 32, 1–13. [Google Scholar] [CrossRef]
- Wang, Q.; Liu, Y.; Hu, J.; Zhang, Y.; Xie, K.; Wang, B.; Wan, J. Detection of QTLs for resistance to small brown planthopper and rice stripe virus using recombinant inbred lines. Int. J. Mol. Sci. 2013, 14, 8406–8421. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Dong, Y.; Yang, L.; Ma, B.; Ma, R.; Huang, F.; Chen, J. Small brown planthopper resistance loci in wild rice (Oryza officinalis). Mol. Genet. Genomics 2014, 289, 373–382. [Google Scholar] [CrossRef]
- Wang, Z.; Zhou, L.; Lan, Y.; Li, X.; Wang, J.; Dong, J.; Zhou, T. Aspartic protease 47 causes quantitative recessive resistance to RBSDV and SRBSDV. New Phytol. 2022, 233, 2520–2533. [Google Scholar] [CrossRef]
- Liu, Q.; Lan, G.; Zhu, Y.; Chen, K.; Shen, C.; Zhao, X.; Li, Z. Genome-wide association study for resistance to rice black-streaked dwarf disease. Plant Dis. 2021, 105, 607–615. [Google Scholar] [CrossRef]
- Liu, Z.Y.; Liu, G.J.; Sogawa, K.; Zhuang, J.Y.; Chen, S.G.; Shen, J.H.; Zheng, K.L. Mapping the gene Wbph2 for whitebacked planthopper resistance. Chin. J. Rice Sci. 2002, 16, 311. [Google Scholar]
- Li, X.; Zhai, H.; Wan, J.; Ma, L.; Zhuang, J.; Liu, G.; Yang, C. Mapping of a new gene Wbph6(t) conferring resistance to the whitebacked planthopper, Sogatella furcifera, in rice. Rice Sci. 2004, 11, 86–90. [Google Scholar]
- Tan, G.X.; Weng, Q.M.; Ren, X.; Huang, Z.; Zhu, L.L.; He, G.C. Two whitebacked planthopper resistance genes share loci with brown planthopper resistance genes. Heredity 2004, 92, 212–217. [Google Scholar] [CrossRef]
- Yamasaki, M.; Yoshimura, A.; Yasui, H. Genetic basis of ovicidal response to whitebacked planthopper. Mol. Breed. 2003, 12, 133–143. [Google Scholar] [CrossRef]
- Chen, J.; Huang, D.R.; Wang, L.; Liu, G.J.; Zhuang, J.Y. QTLs for resistance to whitebacked planthopper from Oryza rufipogon. Breed. Sci. 2010, 60, 153–159. [Google Scholar] [CrossRef]
- Nandana, S.D.; Jeyarani, S.; Gopalakrishnan, C.; Arul, L.; Venugopal, S.; Ramalingam, J. Molecular, genetic and biochemical strategies against rice gall midge. Mol. Biol. Rep. 2025, 52, 1019. [Google Scholar] [CrossRef] [PubMed]
- Nair, S.; Kumar, A.; Srivastava, M.N.; Mohan, M. PCR-based markers linked to gall midge resistance gene Gm4t. Theor. Appl. Genet. 1996, 92, 660–665. [Google Scholar] [CrossRef] [PubMed]
- Kumar, K.; Sarao, P.S.; Bhatia, D.; Neelam, K.; Kaur, A.; Mangat, G.S.; Brar, D.S.; Singh, K. High-resolution mapping of Bph34 resistance locus. Theor. Appl. Genet. 2018, 131, 1163–1171. [Google Scholar] [CrossRef]
- Kumar, V.; Jain, P.; Venkadesan, S.; Karkute, S.G.; Bhati, J.; Abdin, M.Z.; Solanke, A.U. Time-course transcriptomics of rice—Magnaporthe oryzae panicle blast infection. Genes 2021, 12, 301. [Google Scholar] [CrossRef]
- Horgan, F.G. Virulence Adaptation by Rice Planthoppers and Leafhoppers to Resistance Genes and Loci: A Review. Insects 2024, 15, 652. [Google Scholar] [CrossRef]
- Brar, D.S.; Virk, P.S.; Jena, K.K.; Khush, G.S. Breeding for Resistance to Planthoppers in Rice. In Planthoppers: New Threats to Sustainability of Asian Rice Systems; International Rice Research Institute: Los Baños, Philippines, 2009; pp. 401–409. [Google Scholar]
- Jairin, J.; Sansen, K.; Wongboon, W.; Kothcharerk, J. Detection of bph4 at the same chromosomal position as Bph3. Breed. Sci. 2010, 60, 71–75. [Google Scholar] [CrossRef]
- Horgan, F.G.; Almazan, M.L.P.; Vu, Q.; Ramal, A.F.; Bernal, C.C.; Yasui, H.; Fujita, D. Ecological costs and benefits of pyramiding leafhopper resistance loci. Crop Prot. 2019, 115, 47–58. [Google Scholar] [CrossRef]
- Rao, Y.; Dong, G.; Zeng, D.; Hu, J.; Zeng, L.; Gao, Z.; Qian, Q. Genetic analysis of leaf folder resistance. J. Genet. Genomics 2010, 37, 325–331. [Google Scholar] [CrossRef]
- Lei, Z.; Li, X.; Xu, H.; Zhang, H.; Zhu, Y.; Zhang, H. QTLs for resistance to rice stem borer using CSSLs. J. Zhejiang Agric. Sci. 2025, 37, 530–537. [Google Scholar]
- Gokulan, C.G.; Bangale, U.; Balija, V.; Ballichatla, S.; Potupureddi, G.; Rao, D.; Sonti, R.V. Multiomics-assisted characterization of rice–yellow stem borer interaction. Theor. Appl. Genet. 2024, 137, 122. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; Chen, Z.; Chen, H.; Wang, C.; Song, L.; Sun, Y.; Peng, X. Stacking multiple genes improves resistance to Chilo suppressalis, Magnaporthe oryzae, and Nilaparvata lugens. Genes 2023, 14, 1070. [Google Scholar] [CrossRef]
- Wani, S.H.; Choudhary, M.; Barmukh, R.; Bagaria, P.K.; Samantara, K.; Razzaq, A.; Varshney, R.K. Molecular mechanisms, genetic mapping, and genome editing for insect resistance. Theor. Appl. Genet. 2022, 135, 3875–3895. [Google Scholar] [CrossRef] [PubMed]
- Du, B.; Zhang, W.; Liu, B.; Hu, J.; Wei, Z.; Shi, Z.; He, R.; Zhu, L.; Chen, R.; Han, B.; et al. Identification and characterization of Bph14, a gene conferring resistance to brown planthopper in rice. Proc. Natl. Acad. Sci. USA 2009, 106, 22163–22168. [Google Scholar] [CrossRef] [PubMed]
- Tamura, Y.; Hattori, M.; Yoshioka, H.; Yoshioka, M.; Takahashi, A.; Wu, J.; Sentoku, N.; Yasui, H. Map-based cloning and characterization of a brown planthopper resistance gene Bph26 from Oryza sativa L. indica cultivar ADR52. Sci. Rep. 2014, 4, 5872. [Google Scholar] [CrossRef]
- Liu, Y.; Wu, H.; Chen, H.; Liu, Y.; He, J.; Kang, H.; Sun, Z.; Pan, G.; Wang, Q.; Hu, J.; et al. A gene cluster encoding lectin receptor kinases confers broad-spectrum and durable insect resistance in rice. Nat. Biotechnol. 2015, 33, 301–305. [Google Scholar] [CrossRef]
- Wang, Y.; Cao, L.; Zhang, Y.; Cao, C.; Liu, F.; Huang, F.; Qiu, Y.; Li, R.; Lou, X. Map-based cloning and characterization of bph29, a B3 domain-containing recessive gene conferring brown planthopper resistance in rice. J. Exp. Bot. 2015, 66, 6035–6045. [Google Scholar] [CrossRef]
- Li, J.; Chen, Q.; Lin, Y.; Jiang, T.; Wu, G.; Hua, H. RNA interference in Nilaparvata lugens based on dsRNA ingestion. Pest Manag. Sci. 2011, 67, 852–859. [Google Scholar] [CrossRef]
- Jing, S.; Zhao, Y.; Du, B.; Chen, R.; Zhu, L.; He, G. Genomics of interaction between the brown planthopper and rice. Curr. Opin. Insect Sci. 2017, 19, 82–87. [Google Scholar] [CrossRef]
- Haider, K.; Abbas, D.; Galian, J.; Ghafar, M.A.; Kabir, K.; Ijaz, M.; Hussain, M.; Khan, K.A.; Ghramh, H.A.; Raza, A. The multifaceted roles of gut microbiota in insect physiology, metabolism, and environmental adaptation: Implications for pest management strategies. World J. Microbiol. Biotechnol. 2025, 41, 75. [Google Scholar] [CrossRef]
- Xiang, X.; Liu, S.; Li, H.; Danso Ofori, A.; Yi, X.; Zheng, A. Defense strategies of rice in response to the attack of the herbivorous insect Chilo suppressalis. Int. J. Mol. Sci. 2023, 24, 14361. [Google Scholar] [CrossRef] [PubMed]
- Jagodzik, P.; Tajdel-Zielińska, M.; Ciesla, A.; Marczak, M.; Ludwikow, A. Mitogen-activated protein kinase cascades in plant hormone signaling. Front. Plant Sci. 2018, 9, 1387. [Google Scholar] [CrossRef] [PubMed]
- Schulze-Lefert, P.; Panstruga, R. A molecular evolutionary concept connecting nonhost resistance, pathogen host range, and pathogen speciation. Trends Plant Sci. 2011, 16, 117–125. [Google Scholar] [CrossRef] [PubMed]
- Jones, A.C.; Felton, G.W.; Tumlinson, J.H. The dual function of elicitors and effectors from insects: Reviewing the ‘arms race’ against plant defenses. Plant Mol. Biol. 2022, 109, 427–445. [Google Scholar] [CrossRef]
- Alborn, H.T.; Hansen, T.V.; Jones, T.H.; Bennett, D.C.; Tumlinson, J.H.; Schmelz, E.A.; Teal, P.E. Disulfooxy fatty acids from the American bird grasshopper Schistocerca americana, elicitors of plant volatiles. Proc. Natl. Acad. Sci. USA 2007, 104, 12976–12981. [Google Scholar] [CrossRef]
- Swiegers, H.W. Elucidating Mechanisms That Underpin Aphid–Plant Interactions. Ph.D. Thesis, Stellenbosch University, Stellenbosch, South Africa, 2024. [Google Scholar]
- Aggarwal, R.; Subramanyam, S.; Zhao, C.; Chen, M.S.; Harris, M.O.; Stuart, J.J. Avirulence effector discovery in a plant-galling and plant-parasitic arthropod, the Hessian fly (Mayetiola destructor). PLoS ONE 2014, 9, e100958. [Google Scholar] [CrossRef]
- Huang, H.J.; Liu, C.W.; Cai, Y.F.; Zhang, M.Z.; Bao, Y.Y.; Zhang, C.X. A salivary sheath protein essential for the interaction of the brown planthopper with rice plants. Insect Biochem. Mol. Biol. 2015, 66, 77–87. [Google Scholar] [CrossRef]
- Ikram, M.; Mehran, M.; ur Rehman, H.; Ullah, S.; Bakhsh, M.Z.M.; Tahira, M.; Maqsood, M.F.K.; Rauf, A.; Ghafar, S.; Haider, K.; et al. Mechanistic Review of Melatonin Metabolism and Signaling Pathways in Plants: Biosynthesis, Regulation, and Roles under Abiotic Stress. Plant Stress 2024, 14, 100685. [Google Scholar] [CrossRef]
- Hu, L.; Ye, M.; Li, R.; Lou, Y. OsWRKY53, a versatile switch in regulating herbivore-induced defense responses in rice. Plant Signal. Behav. 2016, 11, e1169357. [Google Scholar] [CrossRef]
- Guo, J.; Wang, H.; Guan, W.; Guo, Q.; Wang, J.; Yang, J.; Peng, Y.; Shan, J.; Gao, M.; Shi, S.; et al. A tripartite rheostat controls self-regulated host plant resistance to insects. Nature 2023, 618, 799–807. [Google Scholar] [CrossRef]
- Wang, Y.; Jiang, W.; Liu, H.; Zeng, Y.; Du, B.; Zhu, L.; He, G.; Chen, R. Marker-assisted pyramiding of Bph6 and Bph9 into elite restorer line 93–11 and development of functional marker for Bph9. Rice 2017, 10, 51. [Google Scholar] [CrossRef]
- Shinya, T.; Yasuda, S.; Hyodo, K.; Tani, R.; Hojo, Y.; Fujiwara, Y. Integration of danger peptide signals with herbivore-associated molecular pattern signaling amplifies anti-herbivore defense responses in rice. Plant J. 2018, 94, 626–637. [Google Scholar] [CrossRef] [PubMed]
- Danso Ofori, A.; Su, W.; Zheng, T.; Datsomor, O.; Titriku, J.K.; Xiang, X.; Kandhro, A.G.; Ahmed, M.I.; Mawuli, E.W.; Awuah, R.T.; et al. Jasmonic acid (JA) signaling pathway in rice defense against Chilo suppressalis infestation. Rice 2025, 18, 7. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Wang, J.; Xia, X.; Zhang, Z.; He, J.; Nong, B.; Luo, T.; Feng, R.; Wu, Y.; Pan, Y.; et al. OsTTG1, a WD40 repeat gene, regulates anthocyanin biosynthesis in rice. Plant J. 2021, 107, 198–214. [Google Scholar] [CrossRef] [PubMed]
- Zhou, C.; Zhang, Q.; Chen, Y.; Huang, J.; Guo, Q.; Li, Y.; Wang, W.; Qiu, Y.; Guan, W.; Zhang, J.; et al. Balancing selection and wild gene pool contribute to resistance in global rice germplasm against planthopper. J. Integr. Plant Biol. 2021, 63, 1695–1711. [Google Scholar] [CrossRef]
- Ye, M.; Glauser, G.; Lou, Y.; Erb, M.; Hu, L. Molecular dissection of early defense signaling underlying volatile-mediated defense regulation and herbivore resistance in rice. Plant Cell 2019, 31, 687–698. [Google Scholar] [CrossRef]
- Vo, K.T.X.; Yi, Q.; Jeon, J.S. Engineering effector-triggered immunity in rice: Obstacles and perspectives. Plant Cell Environ. 2023, 46, 1143–1156. [Google Scholar] [CrossRef]
- Hu, J.; Zhou, J.; Peng, X.; Xu, H.; Liu, C.; Du, B.; Yuan, H.; Zhu, L.; He, G. The Bphi008a gene interacts with the ethylene pathway and transcriptionally regulates MAPK genes in the response of rice to brown planthopper feeding. Plant Physiol. 2011, 156, 856–872. [Google Scholar] [CrossRef]
- Qiu, Y.; Guo, J.; Jing, S.; Zhu, L.; He, G. High-resolution mapping of the brown planthopper resistance gene Bph6 in rice and characterization of its resistance in the 9311 and Nipponbare near-isogenic backgrounds. Theor. Appl. Genet. 2010, 121, 1601–1611. [Google Scholar] [CrossRef]
- Mohanty, S.K.; Panda, R.S.; Mohapatra, S.L.; Nanda, A.; Behera, L.; Jena, M.; Sahu, R.K.; Sahu, S.C.; Mohapatra, T. Identification of novel quantitative trait loci associated with brown planthopper resistance in rice landrace Salkathi. Euphytica 2017, 213, 38. [Google Scholar] [CrossRef]
- Wu, S.F.; Zeng, B.; Zheng, C.; Mu, X.C.; Zhang, Y.; Hu, J.; Zhang, S.; Gao, C.F.; Shen, J.L. The evolution of insecticide resistance in the brown planthopper (Nilaparvata lugens) in China during 2012–2016. Sci. Rep. 2018, 8, 4586. [Google Scholar] [CrossRef] [PubMed]
- Lv, W.; Du, B.; Shangguan, X.; Zhao, Y.; Pan, Y.; Zhu, L.; He, Y.; He, G. BAC and RNA sequencing reveal the brown planthopper resistance gene Bph15 in a recombination cold spot that mediates a unique defense mechanism. BMC Genom. 2014, 15, 674. [Google Scholar] [CrossRef] [PubMed]
- Hu, L.; Wu, Y.; Wu, D.; Rao, W.; Guo, J.; Ma, Y.; Wang, Z.; Shangguan, X.; Wang, H.; Xu, C.; et al. The CC-NB domains of brown planthopper resistance gene Bph14 function in signaling and resistance in rice. Plant Cell 2018, 29, 3157–3185. [Google Scholar] [CrossRef] [PubMed]
- Tyagi, S.; Shah, A.; Karthik, K.; Rathinam, M.; Rai, V.; Chaudhary, N.; Sreevathsa, R. Reactive oxygen species in plants: A central player in biotic stress mitigation. Appl. Microbiol. Biotechnol. 2022, 106, 5945–5955. [Google Scholar]
- Pannak, S.; Wanchana, S.; Aesomnuk, W.; Pitaloka, M.K.; Jamboonsri, W.; Siangliw, M.; Meyers, B.C.; Toojinda, T.; Arikit, S. Functional Bph14 from Rathu Heenati promotes resistance to BPH at the early seedling stage of rice (Oryza sativa L.) as revealed by QTL-seq. Theor. Appl. Genet. 2023, 136, 25. [Google Scholar] [CrossRef]
- Zhou, G.; Ren, N.; Qi, J.; Lu, J.; Xiang, C.; Ju, H.; Cheng, J.; Lou, Y. The 9-lipoxygenase Osr9-LOX1 interacts with the 13-lipoxygenase pathway to regulate resistance to chewing and piercing-sucking herbivores in rice. Physiol. Plant. 2014, 152, 59–69. [Google Scholar] [CrossRef]
- Hõrak, H. Defense, fast and slow: Activation of different MAPK pathways in response to wounding. Plant Cell 2020, 32, 1788–1789. [Google Scholar] [CrossRef]
- Chen, L.; Cao, T.; Zhang, J.; Lou, Y. Overexpression of OsGID1 enhances the resistance of rice to the brown planthopper Nilaparvata lugens Stål. Int. J. Mol. Sci. 2018, 19, 2744. [Google Scholar] [CrossRef]
- Zhang, J.; Luo, T.; Wang, W.; Cao, T.; Lou, Y. Silencing OsSLR1 enhances the resistance of rice to the brown planthopper Nilaparvata lugens Stål. Plant Cell Environ. 2017, 40, 2147–2159. [Google Scholar] [CrossRef]
- Sun, T.; Zhang, Y. MAP kinase cascades in plant development and immune signaling. EMBO Rep. 2022, 23, e53817. [Google Scholar] [CrossRef]
- Zheng, X.; Zhu, L.; He, G. Genetic and molecular understanding of host rice resistance and Nilaparvata lugens Stål adaptation. Curr. Opin. Insect Sci. 2021, 45, 14–20. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, X.; Yuan, H.; Chen, R.; Zhu, L.; He, R.; He, G. Responses of two contrasting genotypes of rice to brown planthopper. Mol. Plant Microbe Interact. 2008, 21, 122–132. [Google Scholar] [CrossRef]
- De Vleesschauwer, D.; Xu, J.; Höfte, M. Making sense of hormone-mediated defense networking: From rice to Arabidopsis. Front. Plant Sci. 2014, 5, 611. [Google Scholar] [CrossRef] [PubMed]
- Ren, X.; Wang, X.; Yuan, H.; Weng, Q.; Zhu, L.; He, G. Mapping quantitative trait loci and expressed sequence tags related to brown planthopper resistance in rice. Plant Breed. 2004, 123, 342–348. [Google Scholar] [CrossRef]
- Huangfu, J.; Li, J.; Li, R.; Ye, M.; Kuai, P.; Zhang, T.; Lou, Y. The transcription factor OsWRKY45 negatively modulates the resistance of rice to the brown planthopper Nilaparvata lugens. Int. J. Mol. Sci. 2016, 17, 697. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Liu, D.; Gao, D.; Zhao, W.; Du, H.; Qiu, Z.; Huang, J.; Wen, P.; Wang, Y.; Li, Q.; et al. Cytokinin confers brown planthopper resistance by elevating the jasmonic acid pathway in rice. Int. J. Mol. Sci. 2022, 23, 5946. [Google Scholar] [CrossRef]
- Yu, S.; Gong, L.; Han, Y.C.; Yang, L.; Li, J.; Hoffmann, A.A.; Luo, G.; Yuan, G.; Fang, J.; Ji, R. Oral secretions from striped stem borer (Chilo suppressalis) induce defenses in rice. Pest Manag. Sci. 2024, 80, 6437–6449. [Google Scholar] [CrossRef]
- Inagaki, H.; Hayashi, K.; Takaoka, Y.; Ito, H.; Fukumoto, Y.; Yajima-Nakagawa, A.; Chen, X.; Shimosato-Nonaka, M.; Hassett, E.; Hatakeyama, K.; et al. Genome editing reveals crucial roles of OsCOI2 in jasmonate signaling and functional diversity of COI1 homologs in rice. Plant Cell Physiol. 2023, 64, 405–421. [Google Scholar] [CrossRef]
- Alam, S.N.; Cohen, M.B. Detection and analysis of QTLs for resistance to the brown planthopper, Nilaparvata lugens, in a doubled-haploid rice population. Theor. Appl. Genet. 1998, 97, 1370–1379. [Google Scholar] [CrossRef]
- Qiu, Y.; Guo, J.; Jing, S.; Zhu, L.; He, G. Development and characterization of japonica rice lines carrying the brown planthopper resistance genes Bph12 and Bph6. Theor. Appl. Genet. 2012, 124, 485–494. [Google Scholar] [CrossRef]
- Rao, P.R.M.; Rao, P.S. Gall midge outbreak on dry-season rice in West Godavari District, Andhra Pradesh, India. Int. Rice Res. Newsl. 1989, 14, 28. [Google Scholar]
- Woodhead, S.; Padgham, D.E. Effect of plant surface traits on resistance to the brown planthopper. Entomol. Exp. Appl. 1988, 47, 15–22. [Google Scholar] [CrossRef]
- Haider, K.; Abbas, D.; Ullah, F.; Ijaz, M.; Ikram, M.; Kabir, K.; Galian, J. Climate-driven insect pest outbreaks and food security risks: A review of adaptive strategies for resilient agriculture. J. Pest Sci. 2026, 99, 12. [Google Scholar] [CrossRef]
- Hao, P.; Liu, C.; Wang, Y.; Chen, R.; Tang, M.; Du, B.; Zhu, L.; He, G. Herbivore-induced callose deposition on sieve plates: A major resistance mechanism in rice. Plant Physiol. 2008, 146, 1810–1820. [Google Scholar] [CrossRef]
- Sõgawa, K.; Pathak, M.D. Mechanisms of brown planthopper resistance in Mudgo rice. Appl. Entomol. Zool. 1970, 5, 145–158. [Google Scholar] [CrossRef]
- Shigematsu, Y.; Murofushi, N.; Ito, K.; Kaneda, C.; Kawabe, S.; Takahashi, N. Sterols and asparagine in rice: Endogenous factors conferring resistance to the brown planthopper. Agric. Biol. Chem. 1982, 46, 2877–2879. [Google Scholar]
- Seino, Y.; Suzuki, Y.; Sogawa, K. An ovicidal substance produced by rice in response to oviposition by the whitebacked planthopper. Appl. Entomol. Zool. 1996, 31, 467–473. [Google Scholar] [CrossRef]
- Ullah, F.; Güncan, A.; Abbas, A.; Gul, H.; Guedes, R.N.C.; Zhang, Z.; Huang, J.; Khan, K.A.; Ghramh, H.A.; Chavarín-Gómez, L.E.; et al. Sublethal effects of neonicotinoids on insect pests. Entomol. Gen. 2024, 44, 1145–1160. [Google Scholar] [CrossRef]
- Zhou, G.; Wang, X.; Yan, F.; Wang, X.; Li, R.; Cheng, J.; Lou, Y. Genome-wide transcriptional and chemical defense responses of rice to Chilo suppressalis infestation. Physiol. Plant. 2011, 143, 21–40. [Google Scholar] [CrossRef]
- Zhong, H.; Zhang, J.; Li, F.; Yu, K.; Chen, J. Morphology and improved breeding efficiency of Chilo suppressalis larvae. Entomol. News 2025, 132, 253–265. [Google Scholar] [CrossRef]
- Qiao, L.; Zhuang, Z.; Wang, Y.; Xie, K.; Zhang, X.; Shen, Y.; Zhou, S. Nocturnin promotes NADH and ATP production for juvenile hormone biosynthesis in adult insects. Pest Manag. Sci. 2025, 81, 3103–3111. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.; Liu, Y.; He, J.; Liu, Y.; Jiang, L.; Liu, L.; Wang, C.; Cheng, X.; Wan, J. Fine mapping of brown planthopper (Nilaparvata lugens Stål) resistance gene Bph28(t) in rice (Oryza sativa L.). Mol. Breed. 2014, 33, 909–918. [Google Scholar] [CrossRef]
- Song, J.; Li, W.; Gao, L.; Yan, Q.; Zhang, X.; Liu, M.; Zhou, S. miR-276 and miR-182013-5p modulate insect metamorphosis and reproduction via dually regulating juvenile hormone acid methyltransferase. Commun. Biol. 2024, 7, 1604. [Google Scholar] [CrossRef] [PubMed]
- Khush, G.S. Breeding Rice for Multiple Disease and Insect Resistance. In Rice Improvement in China and Other Asian Countries; IRRI: Manila, Philippines, 1980; pp. 219–238. [Google Scholar]
- Abubakar, A.S.; Wu, Y.; Chen, F.; Zhu, A.; Chen, P.; Chen, K.; Qiu, X.; Huang, X.; Zhao, H.; Chen, J.; et al. Comprehensive analysis of WUSCHEL-related homeobox gene family in ramie (Boehmeria nivea) indicates its potential role in adventitious root development. Biology 2023, 12, 1475. [Google Scholar] [CrossRef]
- Brennan, J.P.; Malabayabas, A. Impacts of IRRI germplasm on the Philippines since 1985. In International Rice Research Institute’s Contribution to Rice Varietal Yield Improvement in South-East Asia; ACIAR Impact Assessment Series Report No. 74; Australian Centre for International Agricultural Research (ACIAR): Canberra, Australia, 2011; pp. 25–43. [Google Scholar]
- Wang, F.; Zhang, J.; Hu, J.; Wang, H.; Zeng, Y.; Wang, Y.; Chen, Z. Simultaneous suppression of As mobilization and N2O emission from NH4+/As-rich paddy soils by combined nitrate and birnessite amendment. J. Hazard. Mater. 2024, 465, 133451. [Google Scholar] [CrossRef]
- Wang, F.; Zhang, J.; Zeng, Y.; Wang, H.; Zhao, X.; Chen, Y.; Chen, Z. Arsenic mobilization and nitrous oxide emission modulation by different nitrogen management strategies in a flooded ammonia-enriched paddy soil. Pedosphere 2024, 34, 1051–1065. [Google Scholar] [CrossRef]
- Xiao, Y.; Wang, Q.; Erb, M.; Turlings, T.C.; Ge, L.; Hu, L.; Lou, Y. Herbivore-induced volatiles structure plant–insect community interactions. Ecol. Lett. 2012, 15, 1130–1139. [Google Scholar] [CrossRef]
- Khush, G.S. IR Varieties and Their Global Impact; International Rice Research Institute: Manila, Philippines, 2005. [Google Scholar]
- Hansen, L.S.; Laursen, S.F.; Bahrndorff, S.; Sørensen, J.G.; Sahana, G.; Kristensen, T.N.; Nielsen, H.M. The unpaved road towards efficient selective breeding in insects for food and feed. arXiv 2024, arXiv:2406.16364. [Google Scholar] [CrossRef]
- Li, J.; Chen, Q.; Wang, L.; Liu, J.; Shang, K.; Hua, H. Effects of Bph14 and Bph15 rice on brown planthopper biology. Pest Manag. Sci. 2011, 67, 528–534. [Google Scholar] [CrossRef]
- Li, R.; Li, L.; Wei, S.; Wei, Y.; Chen, Y.; Bai, D.; Wei, Y. Evaluation and utilization of new genes for brown planthopper resistance in common wild rice (Oryza rufipogon Griff.). Mol. Entomol. 2010, 1, 1. [Google Scholar]
- Hu, J.; Li, X.; Wu, C.; Yang, C.; Hua, H.; Gao, G.; He, Y. Pyramiding Bph14 and Bph15 in hybrid rice and evaluation of resistance. Mol. Breed. 2012, 29, 61–69. [Google Scholar] [CrossRef]
- Abbas, D.; Liaqat, U.; Ghafar, M.A.; Haider, K.; Akhtar, N.; Mulazim, M.; Sufian, M. Investigating the Potential of Climate-Smart Pest Management in Ssustainable Agriculture. In Soils and Sustainable Agriculture: Interplay of Soil, Plant, Water and Environmental Systems for Sustainable Agriculture; Springer Nature Switzerland: Cham, Switzerland, 2025; pp. 913–935. [Google Scholar]
- Zhu, Y. Fifty years of hybrid rice research. Sci. Bull. 2016, 61, 3740–3747. [Google Scholar] [CrossRef]
- Akhtar, N.; Abbas, D.; Idnan, M.; Nawaz, F. History, Diversity, and Community Dynamics of Biocontrol Agents. In Biocontrol Agents for Sustainable Agriculture: Diversity, Mechanisms and Applications; Springer Nature Singapore: Singapore, 2025; pp. 1–21. [Google Scholar]
- Nagadhara, D.; Ramesh, S.; Pasalu, I.C.; Rao, Y.K.; Sarma, N.P.; Reddy, V.D.; Rao, K.V. Snowdrop lectin gene (gna) enhances resistance to the whitebacked planthopper in transgenic rice. Theor. Appl. Genet. 2004, 109, 1399–1405. [Google Scholar] [CrossRef]
- Yang, J.; Tu, H.; Tian, B.; Zhao, Z.; Wang, Y.; Yang, Z.; Wu, J. Rational Design and Synthesis of Isoxazoline Derivatives with Low Bee-Toxicity Based on Bee GABA Receptors. J. Agric. Food Chem. 2025, 73, 9489–9498. [Google Scholar] [CrossRef]
- Ullah, F.; Güncan, A.; Gul, H.; Hafeez, M.; Zhou, S.; Wang, Y.; Zhang, Z.; Huang, J.; Ghramh, H.A.; Guo, W. Spinosad-induced intergenerational sublethal effects on Tuta absoluta: Biological traits and related gene expressions. Entomol. Gen. 2024, 44, 395–404. [Google Scholar] [CrossRef]
- Sohail, H.; Noor, I.; Hussain, H.; Zhang, L.; Xu, X.; Chen, X.; Yang, X. Genome editing in horticultural crops: Augmenting trait development and stress resilience. Hortic. Plant J. 2026, 12, 1–18. [Google Scholar] [CrossRef]
- Ullah, F.; Guru-Pirasanna-Pandi, G.; Murtaza, G.; Sarangi, S.; Gul, H.; Li, X.; Chavarín-Gómez, L.E.; Ramírez-Romero, R.; Guedes, R.N.C.; Desneux, N.; et al. Evolving strategies in agroecosystem pest control: Transitioning from chemical to green management. J. Pest Sci. 2025, 98, 2307–2324. [Google Scholar] [CrossRef]



Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Abbas, D.; Haider, K.; Ullah, F.; Liaqat, U.; Akhtar, N.; Li, Y.; Hou, M. Molecular Mechanisms of Insect Resistance in Rice and Their Application in Sustainable Pest Management. Insects 2026, 17, 111. https://doi.org/10.3390/insects17010111
Abbas D, Haider K, Ullah F, Liaqat U, Akhtar N, Li Y, Hou M. Molecular Mechanisms of Insect Resistance in Rice and Their Application in Sustainable Pest Management. Insects. 2026; 17(1):111. https://doi.org/10.3390/insects17010111
Chicago/Turabian StyleAbbas, Dilawar, Kamran Haider, Farman Ullah, Umer Liaqat, Naveed Akhtar, Yubin Li, and Maolin Hou. 2026. "Molecular Mechanisms of Insect Resistance in Rice and Their Application in Sustainable Pest Management" Insects 17, no. 1: 111. https://doi.org/10.3390/insects17010111
APA StyleAbbas, D., Haider, K., Ullah, F., Liaqat, U., Akhtar, N., Li, Y., & Hou, M. (2026). Molecular Mechanisms of Insect Resistance in Rice and Their Application in Sustainable Pest Management. Insects, 17(1), 111. https://doi.org/10.3390/insects17010111

