Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (32)

Search Parameters:
Keywords = resonant-tunneling diode

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
8 pages, 5916 KiB  
Article
RF Dielectric Permittivity Sensing of Molecular Spin State Switching Using a Tunnel Diode Oscillator
by Ion Soroceanu, Andrei Diaconu, Viorela-Gabriela Ciobanu, Lionel Salmon, Gábor Molnár and Aurelian Rotaru
J. Compos. Sci. 2025, 9(1), 49; https://doi.org/10.3390/jcs9010049 - 20 Jan 2025
Viewed by 844
Abstract
We introduce a novel approach to study the dielectric permittivity of spin crossover (SCO) molecular materials using a radio frequency (RF) resonant tunnel diode oscillator (TDO) circuit. By fabricating a parallel plate capacitor using SCO particles embedded into a polymer matrix as an [...] Read more.
We introduce a novel approach to study the dielectric permittivity of spin crossover (SCO) molecular materials using a radio frequency (RF) resonant tunnel diode oscillator (TDO) circuit. By fabricating a parallel plate capacitor using SCO particles embedded into a polymer matrix as an integral part of the inductor (L) capacitor (C) LC tank of the TDO, we were able to extract the temperature dependence of the dielectric permittivity of frequency measurements for a wide selection of resonance values, spanning from 100 kHz up to 50 MHz, with great precision (less than 2 ppm) and in a broad temperature range. By making use of this simple electronic circuit to explore the frequency and temperature-dependent dielectric permittivity of the compound Fe[(Htrz)2(trz)](BF4), we demonstrate the reliability and resolution of the technique and show how the results compare with those obtained using complex instrumentation. Full article
Show Figures

Figure 1

15 pages, 2626 KiB  
Article
Resonant Tunneling Nanostructures: Eliminating Current Saturation on Negative Differential Conductivity Region in Compact Dissipative Simulations
by Natalia Vetrova, Evgeny Kuimov, Sergey Meshkov, Vladimir Sinyakin, Mstislav Makeev and Vasiliy Shashurin
Nanomaterials 2025, 15(2), 100; https://doi.org/10.3390/nano15020100 - 10 Jan 2025
Viewed by 834
Abstract
A solution to the problem of resonant tunneling current saturation is proposed. This problem does not allow, within the traditional compact models, a correct qualitative and quantitative analysis to be carried out of the volt-ampere characteristics of double-barrier heterostructures. The reason for this [...] Read more.
A solution to the problem of resonant tunneling current saturation is proposed. This problem does not allow, within the traditional compact models, a correct qualitative and quantitative analysis to be carried out of the volt-ampere characteristics of double-barrier heterostructures. The reason for this problem is the asymptotic behavior of the function describing the structure transparency, so a non-saturating compact model was proposed to solve the problem of current transfer analysis in the region of negative differential conductivity. Validation of the proposed model confirmed its adequacy without losing the ability to analyze current transfer processes. This makes the developed compact model effective for simulating the operation of a wide range of devices with a resonant tunneling diode as a nonlinear element, regardless of the position of the operating point. Full article
Show Figures

Figure 1

16 pages, 4129 KiB  
Article
Resonant Tunnelling and Intersubband Optical Properties of ZnO/ZnMgO Semiconductor Heterostructures: Impact of Doping and Layer Structure Variation
by Aleksandar Atić, Xizhe Wang, Nikola Vuković, Novak Stanojević, Aleksandar Demić, Dragan Indjin and Jelena Radovanović
Materials 2024, 17(4), 927; https://doi.org/10.3390/ma17040927 - 17 Feb 2024
Cited by 3 | Viewed by 1696
Abstract
ZnO-based heterostructures are up-and-coming candidates for terahertz (THz) optoelectronic devices, largely owing to their innate material attributes. The significant ZnO LO-phonon energy plays a pivotal role in mitigating thermally induced LO-phonon scattering, potentially significantly elevating the temperature performance of quantum cascade lasers (QCLs). [...] Read more.
ZnO-based heterostructures are up-and-coming candidates for terahertz (THz) optoelectronic devices, largely owing to their innate material attributes. The significant ZnO LO-phonon energy plays a pivotal role in mitigating thermally induced LO-phonon scattering, potentially significantly elevating the temperature performance of quantum cascade lasers (QCLs). In this work, we calculate the electronic structure and absorption of ZnO/ZnMgO multiple semiconductor quantum wells (MQWs) and the current density–voltage characteristics of nonpolar m-plane ZnO/ZnMgO double-barrier resonant tunnelling diodes (RTDs). Both MQWs and RTDs are considered here as two building blocks of a QCL. We show how the doping, Mg percentage and layer thickness affect the absorption of MQWs at room temperature. We confirm that in the high doping concentrations regime, a full quantum treatment that includes the depolarisation shift effect must be considered, as it shifts mid-infrared absorption peak energy for several tens of meV. Furthermore, we also focus on the performance of RTDs for various parameter changes and conclude that, to maximise the peak-to-valley ratio (PVR), the optimal doping density of the analysed ZnO/Zn88Mg12O double-barrier RTD should be approximately 1018 cm3, whilst the optimal barrier thickness should be 1.3 nm, with a Mg mole fraction of ~9%. Full article
(This article belongs to the Special Issue Special Edition on Semiconductor Materials and Optics)
Show Figures

Figure 1

17 pages, 8769 KiB  
Article
Size- and Voltage-Dependent Electron Transport of C2N-Rings-Based Molecular Chains
by Dian Song, Jie Li, Kun Liu, Junnan Guo, Hui Li and Artem Okulov
Molecules 2023, 28(24), 7994; https://doi.org/10.3390/molecules28247994 - 7 Dec 2023
Cited by 2 | Viewed by 1580
Abstract
C2N-ring-based molecular chains were designed at the molecular level and theoretically demonstrated to show distinctive and valuable electron transport properties that were superior to the parent carbonaceous system and other similar nanoribbon-based molecular chains. This new -type molecular chain presented an [...] Read more.
C2N-ring-based molecular chains were designed at the molecular level and theoretically demonstrated to show distinctive and valuable electron transport properties that were superior to the parent carbonaceous system and other similar nanoribbon-based molecular chains. This new -type molecular chain presented an exponential attenuation of the conductance and electron transmission with the length. Essentially, the molecular chain retained the electron-resonant tunneling within 7 nm and the dominant transport orbital was the LUMO. Shorter molecular chains with stronger conductance anomalously possessed a larger tunnel barrier energy, attributing to the compensation of a much smaller HOMO–LUMO gap, and these two internal factors codetermined the transport capacity. Some influencing factors were also studied. In contrast to the common O impurity with a tiny effect on electron transmission of the C2N rings chain, the common H impurity clearly improved it. When the temperature was less than 400 K, the electron transmission varied with temperature within a narrow range, and the structural disorder deriving from proper heating did not greatly modify the transmission possibility and the exponentially decreasing tendency with the length. In a non-equilibrium condition, the current increased overall with the bias but the growth rate varied with size. A valuable negative differential resistance (NDR) effect appeared in longer molecular chains with an even number of big carbon–nitrogen rings and strengthened with size. The emergence of such an effect originated from the reduction in transmission peaks. The conductance of longer molecular chains was enhanced with the voltage but the two shortest ones presented completely different trends. Applying the bias was demonstrated to be an effective way for C2N-ring-based molecular chains to slow down the conductance decay constant and affect the transport regime. C2N-ring-based molecular chains show a perfect application in tunneling diodes and controllable molecular devices. Full article
(This article belongs to the Special Issue Advances in Molecular Modeling in Chemistry)
Show Figures

Graphical abstract

13 pages, 2628 KiB  
Article
Bistability of AlGaAs/GaAs Resonant-Tunneling Diodes Heterostructural Channel
by Natalia Vetrova, Evgeny Kuimov, Vladimir Sinyakin, Sergey Meshkov, Mstislav Makeev and Vasiliy Shashurin
Sensors 2023, 23(18), 7977; https://doi.org/10.3390/s23187977 - 19 Sep 2023
Cited by 3 | Viewed by 1599
Abstract
This paper presents an effective compact model of current transfer for the estimation of hysteresis parameters on the volt-ampere characteristics of resonant-tunneling diodes. In the framework of the compact model, the appearance of hysteresis is explained as a manifestation of internal bistability due [...] Read more.
This paper presents an effective compact model of current transfer for the estimation of hysteresis parameters on the volt-ampere characteristics of resonant-tunneling diodes. In the framework of the compact model, the appearance of hysteresis is explained as a manifestation of internal bistability due to interelectronic interaction in the channel of the resonant-tunneling structure. Unlike the models based on the method of equivalent circuits, the interelectronic interaction in the compact model is taken into account using the concentration parameter. Model validation allowed us to confirm the high accuracy of the model not only at the initial section of the volt-ampere characteristics, but also at the hysteresis parameters traditionally predicted with low accuracy, namely the loop width (∆ < 0.5%) and contrast (∆ < 7%). Thus, it is concluded that the models are promising for integration into systems for synthesizing the electrical characteristics of resonant-tunneling diodes. Full article
(This article belongs to the Special Issue Internet of Mobile Things and Wireless Sensor Networks)
Show Figures

Figure 1

52 pages, 27214 KiB  
Article
Physical and Mathematical Models of Quantum Dielectric Relaxation in Electrical and Optoelectric Elements Based on Hydrogen-Bonded Crystals
by Valeriy Kalytka, Ali Mekhtiyev, Yelena Neshina, Aliya Alkina, Raushan Aimagambetova, Gabit Mukhambetov, Aleksandr Bashirov, Dmitriy Afanasyev, Arkadiy Bilichenko, Dinara Zhumagulova, Zukhra Ismailova and Yelena Senina
Crystals 2023, 13(9), 1353; https://doi.org/10.3390/cryst13091353 - 6 Sep 2023
Cited by 2 | Viewed by 1522
Abstract
The quantum statistical properties of the proton subsystem in hydrogen-bonded crystals (HBC) are investigated. Based on the non-stationary Liouville operator equation (taking into account a number of assumptions established in the experiment), a quantum kinetic equation is constructed for the ensemble of non-interacting [...] Read more.
The quantum statistical properties of the proton subsystem in hydrogen-bonded crystals (HBC) are investigated. Based on the non-stationary Liouville operator equation (taking into account a number of assumptions established in the experiment), a quantum kinetic equation is constructed for the ensemble of non-interacting protons (an ideal proton gas) moving in the crystal potential image perturbed by the external electric field. The balanced density matrix for the unperturbed proton subsystem is constructed using the quantum canonical Gibbs distribution, and the non-balanced density matrix is calculated from the solutions of the nonlinear quantum kinetic equation by methods in linear approximation of perturbation theory for the blocking electrode model. Full quantum mechanical averaging of the polarization operator makes it possible to study the theoretical frequency-temperature spectra of the complex dielectric permittivity (CDP) calculated using quantum relaxation parameters that differ significantly from their semiclassical counterparts. A scheme is presented for an analytical study of the dielectric loss tangent in the region of quantum nonlinear relaxation in HBC. The results obtained in the given paper are of scientific interest in developing the theoretical foundations of proton conduction processes in energy-independent memory elements (with anomalously high residual polarization) based on thin films of ferroelectric materials in the ultralow temperature range (1–10 K). The theoretical results obtained have a direct application to the study of the tunneling mechanisms of spontaneous polarization in ferroelectric HBC with a rectangular hysteresis loop, in particular in crystals of potassium dideutrophosphate (KDP), widely used in nonlinear optics and laser technology. The quantum properties of proton relaxation in HBC can be applied in the future to the study of solid-state electrolytes with high proton conductivity for hydrogen energy, capacitor technology (superionics, varicodes), and elements of MIS and MSM structures in the development of resonant tunnel diodes for microelectronics and computer technology. Full article
(This article belongs to the Special Issue Theoretical Investigation on Non-covalent Interactions)
Show Figures

Figure 1

11 pages, 581 KiB  
Article
Electrothermal Monte Carlo Simulation of a GaAs Resonant Tunneling Diode
by Orazio Muscato
Axioms 2023, 12(2), 216; https://doi.org/10.3390/axioms12020216 - 19 Feb 2023
Viewed by 1727
Abstract
This paper deals with the electron transport and heat generation in a Resonant Tunneling Diode semiconductor device. A new electrothermal Monte Carlo method is introduced. The method couples a Monte Carlo solver of the Boltzmann–Wigner transport equation with a steady-state solution of the [...] Read more.
This paper deals with the electron transport and heat generation in a Resonant Tunneling Diode semiconductor device. A new electrothermal Monte Carlo method is introduced. The method couples a Monte Carlo solver of the Boltzmann–Wigner transport equation with a steady-state solution of the heat diffusion equation. This methodology provides an accurate microscopic description of the spatial distribution of self-heating and its effect on the detailed nonequilibrium carrier dynamics. Full article
(This article belongs to the Special Issue Mathematical Models and Simulations)
Show Figures

Figure 1

13 pages, 5125 KiB  
Article
Effects of Thermal Treatment on DC Voltage-Driven Color Conversion in Organic Light-Emitting Diode
by Tae Jun Ahn, Bum Ho Choi, Jae-Woong Yu, Young Baek Kim and Yun Seop Yu
Micromachines 2023, 14(1), 30; https://doi.org/10.3390/mi14010030 - 23 Dec 2022
Cited by 1 | Viewed by 2160
Abstract
A DC voltage-dependent color-tunable organic light-emitting diode (CTOLED) was proposed for lighting applications. The CTOLED consists of six consecutive organic layers: the hole injection layer, the hole transport layer (HTL), two emission layers (EMLs), a hole blocking layer (HBL), and an electron transport [...] Read more.
A DC voltage-dependent color-tunable organic light-emitting diode (CTOLED) was proposed for lighting applications. The CTOLED consists of six consecutive organic layers: the hole injection layer, the hole transport layer (HTL), two emission layers (EMLs), a hole blocking layer (HBL), and an electron transport layer (ETL). Only one metal-free phthalocyanine (H2Pc) layer with a thickness of 5 nm was employed as the EML in the CTOLED on a green organic light-emitting diode (OLED) structure using tris (8-hydroxyquinoline) aluminum (III) (Alq3). The current density-voltage-luminance characteristics of the CTOLEDs before and after thermal treatment were characterized and analyzed. Several Gaussian peaks were also extracted by multipeak fitting analysis of the electroluminescent spectra. In the CTOLED before thermal treatment, green emission was dominant in the entire voltage range from low to high voltages, and blue and infrared were emitted simultaneously and at relatively low intensities at low and high voltages, respectively. In the CTOLED after thermal treatment, the dominant color conversion from blue to green was observed as the applied voltage increased, and the infrared emission was relatively low over the entire voltage range. By simulating the CTOLED with and without traps at the H2Pc interface using a technology computer-aided design simulator, we observed the following: 1. After thermal treatment, the CTOLED emitted blue light by exciton generation at the H2Pc–HBL interface because of the small electron transport through the H2Pc thin film due to the dramatic reduction of traps in the low-voltage regime. 2. In the high-voltage regime, electrons reaching the HBL were transferred to Alq3 by resonant tunneling in two quantum wells; thus, green light was emitted by exciton generation at the HTL–Alq3 interface. Full article
(This article belongs to the Special Issue Organic Light Emitting Diodes (OLEDs))
Show Figures

Figure 1

11 pages, 3128 KiB  
Article
Bowtie Nanoantenna Coupled Metal-Oxide-Silicon (p-Doped) Diode for 28.3 THz IR Rectification
by Nasim Al Islam and Sangjo Choi
Nanomaterials 2022, 12(22), 3940; https://doi.org/10.3390/nano12223940 - 9 Nov 2022
Cited by 3 | Viewed by 2501
Abstract
Low-temperature waste heat in the infrared (IR) wavelength region offers an opportunity to harvest power from waste energy and requires further investigation in order to find efficient conversion techniques. Although grating-coupled metal-oxide-semiconductor (MOS) diode devices offer efficient conversion from low and moderate-temperature thermal [...] Read more.
Low-temperature waste heat in the infrared (IR) wavelength region offers an opportunity to harvest power from waste energy and requires further investigation in order to find efficient conversion techniques. Although grating-coupled metal-oxide-semiconductor (MOS) diode devices offer efficient conversion from low and moderate-temperature thermal sources, the integration of such diodes with a nanoantenna structure has yet to be explored. We propose a bowtie nanoantenna coupled with a p-doped MOS diode for IR to direct current (DC) conversion without any bias voltage at 28.3 THz. The nanoantenna was designed and optimized to provide maximum field enhancement in a 4 nm-thick oxide layer at the resonant frequency. The device was fabricated following the complementary MOS (CMOS) fabrication process and measured in a custom DC and optical characterization setup using a 10.6 μm wavelength CO2 laser. The results reveal two different types of devices with linear and nonlinear I-V curves having kΩ and MΩ zero-bias resistance, respectively. The linear device generates a micron-level open-circuit voltage (Voc) with clear polarization dependence from the laser input, but the nonlinear case suffers from a weak noise-like signal. Finally, we analyze two types of devices using thermoelectric and tunneling effects and discuss the future direction of nanoantenna-integrated MOS devices for efficient IR harvesters. Full article
(This article belongs to the Special Issue Nanomaterials for Photonics: Advances and Applications)
Show Figures

Figure 1

17 pages, 4020 KiB  
Review
Single-Photon Counting with Semiconductor Resonant Tunneling Devices
by Andreas Pfenning, Sebastian Krüger, Fauzia Jabeen, Lukas Worschech, Fabian Hartmann and Sven Höfling
Nanomaterials 2022, 12(14), 2358; https://doi.org/10.3390/nano12142358 - 9 Jul 2022
Cited by 10 | Viewed by 3160
Abstract
Optical quantum information science and technologies require the capability to generate, control, and detect single or multiple quanta of light. The need to detect individual photons has motivated the development of a variety of novel and refined single-photon detectors (SPDs) with enhanced detector [...] Read more.
Optical quantum information science and technologies require the capability to generate, control, and detect single or multiple quanta of light. The need to detect individual photons has motivated the development of a variety of novel and refined single-photon detectors (SPDs) with enhanced detector performance. Superconducting nanowire single-photon detectors (SNSPDs) and single-photon avalanche diodes (SPADs) are the top-performer in this field, but alternative promising and innovative devices are emerging. In this review article, we discuss the current state-of-the-art of one such alternative device capable of single-photon counting: the resonant tunneling diode (RTD) single-photon detector. Due to their peculiar photodetection mechanism and current-voltage characteristic with a region of negative differential conductance, RTD single-photon detectors provide, theoretically, several advantages over conventional SPDs, such as an inherently deadtime-free photon-number resolution at elevated temperatures, while offering low dark counts, a low timing jitter, and multiple photon detection modes. This review article brings together our previous studies and current experimental results. We focus on the current limitations of RTD-SPDs and provide detailed design and parameter variations to be potentially employed in next-generation RTD-SPD to improve the figure of merits of these alternative single-photon counting devices. The single-photon detection capability of RTDs without quantum dots is shown. Full article
(This article belongs to the Special Issue Semiconductor and Nanophotonic Devices)
Show Figures

Figure 1

13 pages, 6466 KiB  
Article
Implementation of Flip-Chip Microbump Bonding between InP and SiC Substrates for Millimeter-Wave Applications
by Jongwon Lee, Jae Yong Lee, Jonghyun Song, Gapseop Sim, Hyoungho Ko and Seong Ho Kong
Micromachines 2022, 13(7), 1072; https://doi.org/10.3390/mi13071072 - 5 Jul 2022
Cited by 3 | Viewed by 6113
Abstract
Flip-chip microbump (μ-bump) bonding technology between indium phosphide (InP) and silicon carbide (SiC) substrates for a millimeter-wave (mmW) wireless communication application is demonstrated. The proposed process of flip-chip μ-bump bonding to achieve high-yield performance utilizes a SiO2-based dielectric passivation process, a [...] Read more.
Flip-chip microbump (μ-bump) bonding technology between indium phosphide (InP) and silicon carbide (SiC) substrates for a millimeter-wave (mmW) wireless communication application is demonstrated. The proposed process of flip-chip μ-bump bonding to achieve high-yield performance utilizes a SiO2-based dielectric passivation process, a sputtering-based pad metallization process, an electroplating (EP) bump process enabling a flat-top μ-bump shape, a dicing process without the peeling of the dielectric layer, and a SnAg-to-Au solder bonding process. By using the bonding process, 10 mm long InP-to-SiC coplanar waveguide (CPW) lines with 10 daisy chains interconnected with a hundred μ-bumps are fabricated. All twelve InP-to-SiC CPW lines placed on two samples, one of which has an area of approximately 11 × 10 mm2, show uniform performance with insertion loss deviation within ±10% along with an average insertion loss of 0.25 dB/mm, while achieving return losses of more than 15 dB at a frequency of 30 GHz, which are comparable to insertion loss values of previously reported conventional CPW lines. In addition, an InP-to-SiC resonant tunneling diode device is fabricated for the first time and its DC and RF characteristics are investigated. Full article
Show Figures

Figure 1

10 pages, 1929 KiB  
Article
Synthesis and Characterization of Nanostructured Multi-Layer Cr/SnO2/NiO/Cr Coatings Prepared via E-Beam Evaporation Technique for Metal-Insulator-Insulator-Metal Diodes
by Sana Abrar, Muhammad Bilal Hanif, Abdulaziz Salem Alghamdi, Abdul Khaliq, K. S. Abdel Halim, Tayyab Subhani, Martin Motola and Abdul Faheem Khan
Materials 2022, 15(11), 3906; https://doi.org/10.3390/ma15113906 - 31 May 2022
Cited by 4 | Viewed by 2766
Abstract
Enhanced non-linearity and asymmetric behavior of the Cr/metal oxide diode is reported, with the addition of two insulator layers of SnO2 and NiO to form the metal-insulator-insulator-metal (MIIM) configuration. Such an MIIM diode shows potential for various applications (rectifiers and electronic equipment) [...] Read more.
Enhanced non-linearity and asymmetric behavior of the Cr/metal oxide diode is reported, with the addition of two insulator layers of SnO2 and NiO to form the metal-insulator-insulator-metal (MIIM) configuration. Such an MIIM diode shows potential for various applications (rectifiers and electronic equipment) which enable the femtosecond fast intoxication in MIIM diodes. In this work, nanostructured multi-layer Cr/SnO2/NiO/Cr coatings were fabricated via e-beam evaporation with the following thicknesses: 150 nm/20 nm/10 nm/150 nm. Coatings were characterized via Rutherford backscattering (RBS), scanning electron microscopy (SEM), and two-probe conductivity testing. RBS confirmed the layered structure and optimal stoichiometry of the coatings. A non-linear and asymmetric behavior at <1.5 V applied bias with the non-linearity maximum of 2.6 V−1 and the maximum sensitivity of 9.0 V−1 at the DC bias point was observed. The promising performance of the coating is due to two insulating layers which enables resonant tunneling and/or step-tunneling. Based on the properties, the present multi-layer coatings can be employed for MIIM application. Full article
Show Figures

Figure 1

19 pages, 1718 KiB  
Article
Study of Electronic and Transport Properties in Double-Barrier Resonant Tunneling Systems
by John A. Gil-Corrales, Juan A. Vinasco, Miguel E. Mora-Ramos, Alvaro L. Morales and Carlos A. Duque
Nanomaterials 2022, 12(10), 1714; https://doi.org/10.3390/nano12101714 - 17 May 2022
Cited by 11 | Viewed by 3000
Abstract
Resonant tunneling devices are still under study today due to their multiple applications in optoelectronics or logic circuits. In this work, we review an out-of-equilibrium GaAs/AlGaAs double-barrier resonant tunneling diode system, including the effect of donor density and external potentials in a self-consistent [...] Read more.
Resonant tunneling devices are still under study today due to their multiple applications in optoelectronics or logic circuits. In this work, we review an out-of-equilibrium GaAs/AlGaAs double-barrier resonant tunneling diode system, including the effect of donor density and external potentials in a self-consistent way. The calculation method uses the finite-element approach and the Landauer formalism. Quasi-stationary states, transmission probability, current density, cut-off frequency, and conductance are discussed considering variations in the donor density and the width of the central well. For all arrangements, the appearance of negative differential resistance (NDR) is evident, which is a fundamental characteristic of practical applications in devices. Finally, a comparison of the simulation with an experimental double-barrier system based on InGaAs with AlAs barriers reported in the literature has been obtained, evidencing the position and magnitude of the resonance peak in the current correctly. Full article
(This article belongs to the Topic Optoelectronic Materials)
Show Figures

Figure 1

11 pages, 2735 KiB  
Review
An Overview of Terahertz Imaging with Resonant Tunneling Diodes
by Jue Wang, Mira Naftaly and Edward Wasige
Appl. Sci. 2022, 12(8), 3822; https://doi.org/10.3390/app12083822 - 10 Apr 2022
Cited by 23 | Viewed by 6217
Abstract
Terahertz (THz) imaging is a rapidly growing application motivated by industrial demands including harmless (non-ionizing) security imaging, multilayer paint quality control within the automotive industry, insulating foam non-invasive testing in aerospace, and biomedical diagnostics. One of the key components in the imaging system [...] Read more.
Terahertz (THz) imaging is a rapidly growing application motivated by industrial demands including harmless (non-ionizing) security imaging, multilayer paint quality control within the automotive industry, insulating foam non-invasive testing in aerospace, and biomedical diagnostics. One of the key components in the imaging system is the source and detector. This paper gives a brief overview of room temperature THz transceiver technology for imaging applications based on the emerging resonant tunneling diode (RTD) devices. The reported results demonstrate that RTD technology is a very promising candidate to realize compact, low-cost THz imaging systems. Full article
(This article belongs to the Special Issue Terahertz Applications for Nondestructive Testing)
Show Figures

Figure 1

16 pages, 5088 KiB  
Article
Resonant Tunneling Diodes: Mid-Infrared Sensing at Room Temperature
by Florian Rothmayr, Edgar David Guarin Castro, Fabian Hartmann, Georg Knebl, Anne Schade, Sven Höfling, Johannes Koeth, Andreas Pfenning, Lukas Worschech and Victor Lopez-Richard
Nanomaterials 2022, 12(6), 1024; https://doi.org/10.3390/nano12061024 - 21 Mar 2022
Cited by 8 | Viewed by 3817
Abstract
Resonant tunneling diode photodetectors appear to be promising architectures with a simple design for mid-infrared sensing operations at room temperature. We fabricated resonant tunneling devices with GaInAsSb absorbers that allow operation in the 24 μm range with significant electrical responsivity of [...] Read more.
Resonant tunneling diode photodetectors appear to be promising architectures with a simple design for mid-infrared sensing operations at room temperature. We fabricated resonant tunneling devices with GaInAsSb absorbers that allow operation in the 24 μm range with significant electrical responsivity of 0.97 A/W at 2004 nm to optical readout. This paper characterizes the photosensor response contrasting different operational regimes and offering a comprehensive theoretical analysis of the main physical ingredients that rule the sensor functionalities and affect its performance. We demonstrate how the drift, accumulation, and escape efficiencies of photogenerated carriers influence the electrostatic modulation of the sensor’s electrical response and how they allow controlling the device’s sensing abilities. Full article
(This article belongs to the Special Issue Semiconductor and Nanophotonic Devices)
Show Figures

Graphical abstract

Back to TopTop