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Abstract: Flip-chip microbump (µ-bump) bonding technology between indium phosphide (InP) and
silicon carbide (SiC) substrates for a millimeter-wave (mmW) wireless communication application is
demonstrated. The proposed process of flip-chip µ-bump bonding to achieve high-yield performance
utilizes a SiO2-based dielectric passivation process, a sputtering-based pad metallization process,
an electroplating (EP) bump process enabling a flat-top µ-bump shape, a dicing process without
the peeling of the dielectric layer, and a SnAg-to-Au solder bonding process. By using the bonding
process, 10 mm long InP-to-SiC coplanar waveguide (CPW) lines with 10 daisy chains interconnected
with a hundred µ-bumps are fabricated. All twelve InP-to-SiC CPW lines placed on two samples, one
of which has an area of approximately 11 × 10 mm2, show uniform performance with insertion loss
deviation within ±10% along with an average insertion loss of 0.25 dB/mm, while achieving return
losses of more than 15 dB at a frequency of 30 GHz, which are comparable to insertion loss values of
previously reported conventional CPW lines. In addition, an InP-to-SiC resonant tunneling diode
device is fabricated for the first time and its DC and RF characteristics are investigated.

Keywords: InP; SiC; flip-chip bonding; millimeter wave; heterogeneous integration

1. Introduction

Because the InP substrate is lattice-matched with InGaAs materials featuring a high
electron mobility of more than 8000 cm2/vs, the InP-substrate-based low-noise amplifier
(LNA) and power amplifier (PA) monolithic integrated circuits (MICs) using InGaAs high-
electron-mobility transistor (HEMT) and heterojunction bipolar transistor (HBT) devices
have operated at high operating frequencies above the millimeter-wave (mmW) regime [1,2].
Because the SiC substrate enables the growth of gallium nitride (GaN) materials exhibiting
a high electric breakdown field of 3.3 × 106 V/cm, SiC-substrate-based mmW PA MICs
using GaN HEMTs have shown high RF power performance [3]. By placing the SiC
substrate as the first layer and the InP substrate as the second layer, an InP/GaN three-
dimensional (3D) integration structure can be implemented, leading to high-performance
mmW MICs and transceiver frontends [4,5]. The InP/GaN 3D structure can basically
achieve a higher chip density and lower interconnection resistance compared to those of
two-dimensional (2D) structures [4–6], and can enhance the current drivability of InGaAs
HEMT and HBT devices owing to the excellent thermal conductivity of the SiC substrate
(4.9 W/cmk) [7–10], resulting in an improved RF power and frequency performance of the
mmW MICs or transceiver frontends.

An appropriate bonding method should be selected to realize the mmW InP/GaN 3D
structure. Wire bonding, direct wafer bonding, and microbump (µ-bump) bonding for a
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heterogeneous integration have been utilized. Although wire bonding is easily accessible
to researchers, it causes severe system performance degradation due to significant signal
loss in the mmW band or higher, arising from the lengthening of interconnect lines [11].
Although direct wafer bonding makes it possible to achieve a high chip density in the
MIC and transceiver owing to the utilization of a sequential fabrication process after the
direct bonding followed by substrate removal, the substrate removal process for leaving
active thin-film layers requires a high degree of fabrication proficiency [7–10,12]. On the
other hand, µ-bump bonding consisting of electro-plated copper (Cu) pillar bumps and
solder bonding [13,14] is a mature process technology that has been used in commercial 3D
stacking memory products [14,15], and thereby it can be introduced to implement mmW
3D MICs and transceiver systems reproducibly. With the improvement of the alignment
accuracy of bonding equipment, it is possible to densely form µ-bumps with a diameter
(or width) of only a few to a few tens of micrometers [14,16]. Recently, heterogeneous
µ-bump bonding technologies concerning various substrates, such as InP-to-SiC [5], InP-to-
Si [17], and AlN/diamond-to-Si [18], have been reported for utilization in mmW wireless
communication applications. However, [5] did not disclose any measurement results
for bonded samples and [17] showed the RF measurement results for only a bonded
HBT device, which are presumed to be implemented by a few to a few tens of µ-bump
connections. The authors of [18] also measured only an interconnect line with four µ-
bumps. To apply bump bonding technology to mmW ICs and transceiver systems, the
process methodology and the implementation results of the µ-bump bonding technology
to implement a much larger number of µ-bumps should be presented.

In this work, we report a flip-chip µ-bump bonding technology between InP and SiC
substrates for mmW wireless communication applications. A process methodology for
InP-to-SiC flip-chip µ-bump bonding with high-yield characteristics while being easily
accessible to researchers is proposed. By utilizing the bonding process, 10 mm long InP-
to-SiC coplanar waveguide (CPW) lines interconnected with a hundred µ-bumps were
fabricated. The fabricated InP-to-SiC CPW lines showed uniformly good performance with
an insertion loss deviation within 10% and an average insertion loss of 0.25 dB/mm at a
frequency of 30 GHz, which are comparable to insertion loss values of previously reported
conventional CPW lines. In addition, an InP RTD device was flip-chip bonded with a SiC
substrate for the first time and its DC and RF performance was investigated through a
comparison with the corresponding measures of a conventional InP RTD device.

2. Structure Design and Fabrication
2.1. Structure Design of a Flip-Chip µ-Bump Bonding Technology between InP and SiC Substrates

The designed structure of a flip-chip µ-bump bonding technology for a CPW inter-
connection between InP and SiC substrates is shown in Figure 1. To minimize the signal
loss of the CPW line escaping from PAD metals (PAD_InP and PAD_SiC in Figure 1) to
the substrates, semi-insulating InP and SiC substrates were chosen. An InP substrate,
provided by JZ Nippon Mining & Metal Corporation, with a 3-inch diameter, a thickness of
approximately 610 µm, and a resistivity of more than 1 × 107 Ω·cm was used. A 4H-SiC
substrate with a 4-inch diameter, a thickness of approximately 510 µm, and a resistivity
over 1 × 107 Ω·cm, provided by Synlight Crystal Co., Ltd. Hebei, China, was used. A
dielectric layer of SiO2 or BCB (Cyclotene 3022-46 resin) with a thickness of 2 µm was in-
serted between the PAD metals and the substrates for device passivation and planarization,
considering the ultimate integration of transistors such as HEMTs and HBTs in the future,
as well as for the minimization of the signal loss from the PAD metals to substrates, as
shown in Figure 1b. A Ti/Au material was used as PAD metals with the thickness set to
0.8 µm, which corresponded to the maximum limit of the sputtering equipment used in this
work. The µ-bump metal consisted of Cu/Ni/SnAg and its height was set to 20 µm or more
to prevent any bonding failure caused by the fragile nature of the InP substrates. From an
S-parameter simulation for the flip-chip-bonded CPW line between InP and SiC substrates
using the advanced design system (ADS) momentum simulator, it was determined that
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the signal width (W) and the gap (G) of the CPW to have a characteristic impedance of
50 Ω in the mmW frequency range of more than 30 GHz were 60 and 40 µm, respectively.
The length of the µ-bump pad (‘a’ in Figure 1) was set as 60 µm, the same as W. The size
of the µ-bump (‘b’ in Figure 1) was set in the range of 25 to 40 µm by comprehensively
considering several phenomena such as the alignment accuracy of the flip-chip bonder
equipment, the SnAg overflow in the bonding process, and the increase in the insertion
loss that occurs when the bump size is quite small compared to the bump-pad length.
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Figure 1. The structure of flip-chip microbump bonding technology for coplanar waveguide (CPW)
interconnection between InP and SiC substrates: (a) a floor plan; (b) a cross-sectional view at point
A–A’ in Figure 1a.

2.2. Fabrication of a Flip-Chip µ-Bump Bonding Process between InP and SiC Substrates

Figure 2 shows a cross-sectional view of the process flow of the flip-chip µ-bump bond-
ing for the CPW interconnection between InP and SiC substrates, which entails a dielectric
layer deposition (Figure 2a), the formation of PAD metal (Figure 2b), formation of µ-bump
(Figure 2c), dicing (Figure 2d), and flip-chip SnAg-to-Au solder bonding (Figure 2e).

The process for the deposition of the dielectric layer, seen in a conceptual diagram
of Figure 2a, was conducted. To find the appropriate material for the dielectric layer, two
kinds of materials with a low dielectric constant, SiO2 and BCB, were tested. A 2.5 µm thick
BCB was deposited on the InP substrate via spin-coating with spinner system equipment
and cured at 210 ◦C in vacuum oven equipment with a N2 atmosphere. Additionally, a
2 µm thick SiO2 layer was deposited on the InP substrate using plasma-enhanced chemical
vapor deposition (PECVD) at a temperature of 300 ◦C. After a 0.2 µm thick Ti/Au PAD
metal for the CPW line formation was deposited on both the BCB-based and SiO2-based InP
substrates, as shown in the inset in Figure 3a, an S-parameter measurement was conducted
at a frequency of 15 GHz. As a result, the insertion loss of the BCB-based and SiO2-based
CPW lines was 0.24 and 0.29 dB/mm at 15 GHz, respectively, as shown in Figure 3a. The
lower insertion loss of the BCB-based CPW was attributed to the dielectric constant of
the BCB (~2.5) being lower than that of the SiO2 (~3.8). Even though the BCB layer was
superior to the SiO2 layer in terms of mmW performance, a problem was found, where the
surface of the BCB layer was dirty enough to adversely affect the process yield, in contrast
to the clean surface condition of the SiO2 layer, as shown in Figure 3b. This yield issue
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of BCB was dependent on the size of the substrate, which occurred when the size of the
substrate was increased to 3 inches or larger. It was determined that the cause of the issue
was that the BCB solution sprayed through the dropper adhered to the wall of the spinner
equipment during the spinning process, and then fell off and adhered to the wafer again.
Consequently, to establish a high-yield process technology, the SiO2 layer with a thickness
of 2 µm was used as the dielectric layer. We noted that the yield issue of BCB may have
been limited by our facility at this time, and could be sufficiently improved through the
optimization of the spinner-based BCB process.
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The process for the formation of the PAD metal was conducted on both SiO2-deposited
InP and SiC substrates, as shown in Figure 2b. The process methodology of the evaporation
and lift-off was first applied and the detailed process flow was as follows: A cleaning
process was conducted using acetone/IPA/DI solutions. A photolithography process
with a critical dimension (CD) of 60 µm and an undercut slope was performed using an
NR93000PY negative photoresist (PR) and EVG640 contact aligner. The Ti/Au PAD metal
with a thickness of 400/8000 Å was evaporated using the KVET-C500200 evaporator. A
Ti/Au PAD metal pattern was formed by performing a lift-off process using an acetone
solution. This evaporation and lift-off process methodology resulted in an adhesion prob-
lem between the PAD metals and the substrates, as shown in Figure 4a. To solve the
problem, the process methodology of the sputtering and metal etching was finally applied,
and the detailed process flow was as follows: The cleaning process was conducted as
aforementioned. The Ti/Au PAD metal with a thickness of 400/8000 Å was then sputtered
using sputter equipment with a predeposition of 10 s, bias power of 700 W, and operating
pressure of 10−6 Torr. A photolithography process with the same CD of 60 µm was then
performed using a positive AZ601 PR and EVG640 contact aligner equipment. The Ti/Au
metal was then selectively wet-etched by immersing it in Ti and Au etchants for 50 and 30 s,
respectively. The positive PR was removed with acetone-IPA-DI solutions. The PAD metal
formed with the sputtering and metal etch process did not have any adhesion problems
with the underlying substrate, as shown in Figure 4b.
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The process for the formation of the µ-bump metal was performed on a SiC-substrate-
based sample, as seen in the conceptual diagram in Figure 2c. First, a 300/2000 Å thick
Ti/Au seed metal was deposited using the aforementioned sputtering equipment, and
then a photolithography process for electroplating (EP) was performed using a negative
JSR-126N PR, a contact aligner, and a hard-bake process (110 ◦C for 8 min), leading to a PR
thickness of 30 µm or more. An EP process was then conducted, wherein Cu, Ni, and SnAg
metals were sequentially deposited to form µ-bumps with a height of 20 µm or more. The
thickness of Ni and SnAg metals was set to be more than 2 µm and 6 µm, respectively. The
PR and seed metal were then removed by immersing in an STR2000 solution for 30 min at
40 ◦C and in Ti/Au etchants for a total of 80 s, respectively. It was paramount for the bump
to have a flat-top shape to achieve a high-yield performance of the flip-chip bonding. In
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the EP process of the Cu metal, a copper sulfate solution and additives are generally used.
According to our experimental results, when the additives were mixed with the copper
sulfate solution, the µ-bump had a convex top shape with a height difference from the top
center to the top edge of approximately 6 µm, as shown in Figure 5a, leading to bonding
failure. Accordingly, the additives were not used in the Cu EP process to obtain a flat-top
shape, as shown in Figure 5b. The copper sulfate solution was provided by ATOTECH.
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Figure 5. SEM images after formation of microbump (µ-bump) metal: (a) µ-bump metal that additives
were used in in the Cu electroplating (EP) process; (b) µ-bump metal that additives were not used in
in the Cu EP process.

A dicing process was conducted for the prefabricated InP-substrate-based and SiC-
substrate-based samples, as seen in a conceptual diagram of Figure 2d. First, the two
samples were protected with a AZ601 PR coating and soft-baking at 100◦ at 60 s to prevent
wafer contamination by particles generated during the dicing process. Second, using the
DISCO DFD640 dicing equipment and a KH5-1840 blade, an InP-substrate-based sample
with a full size of 3 inches and a SiC-substrate-based sample with a full size of 4 inches were
diced to a size of 1 × 1 cm2 and 1.1 × 1.1 cm2, respectively. Third, the PR was removed
and the samples were cleaned using Acetone-IPA-DI solutions. As a result of the process,
a peeling problem was found, where the SiO2 dielectric layer was peeled off around the
dicing lines on the InP substrate, as shown in Figure 6a. The peeling problem was solved
by adding a dielectric removal process before the aforementioned dicing process, which
selectively removed the dielectric layer around the dicing lines. The dielectric removal
process was carried out in the order of a photolithography process using an S700 positive
PR and an EVG contact aligner, a hard-baking process for 15 min at 150◦, a wet-etching
process for 90 min in BOE solution, and a PR removal process using Acetone-IPA-DI.
Figure 6b shows an SEM image of the dicing process with the inclusion of the dielectric
removal process.
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Figure 6. Microscope images after dicing process: (a) dicing process where a dielectric removal
process was not included; (b) dicing process where a dielectric removal process was included.

A flip-chip SnAg-to-Au solder bonding process, as seen in the conceptual diagram of
Figure 2e, was established by assembling the diced InP-substrate-based and SiC-substrate-
based samples. The bonding process was conducted using the DFC-2000C flip-chip bonder
equipment with conditions of a bonding pressure of 10 N and a total bonding time of 16.1 s.
The bonding temperature was set to 300◦, as the overflow phenomenon of SnAg material
occurred above 350◦, as shown in Figure 7. The alignment error of the flip-chip bonding
was within 2 µm.
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Figure 7. Microscope images of a flip-chip-bonded InP-to-SiC sample with different bonding temper-
atures of 350 and 300◦.

3. Results and Discussion
3.1. Performance of Flip-Chip-Bonded InP-to-SiC CPW Lines Consisting of 10 Daisy Chains
Interconnected by a Hundred µ-Bumps

By utilizing the flip-chip µ-bump bonding technology, InP-to-SiC CPW lines where
both PAD metals on the InP and SiC substrates were interconnected through µ-bumps were
implemented. To pursue the scale-up of the bonding technology for mmW application,
an InP-to-SiC CPW line consisted of ten daisy chains interconnected by a hundred µ-
bumps, and its length was as high as 10 mm, as shown in Figure 8a. Ten InP-to-SiC
CPW lines were arranged in a flip-chip-bonded sample with an area of 11 × 10 mm2,
as shown in Figure 8b. Among ten CPW lines, the upper two lines and the lower two
lines served as dummy patterns for achieving high-yield performance. Two identically
designed flip-chip-bonded samples were fabricated. S-parameter data for all real CPW
lines arranged in the two samples were measured using the N5225B PNA network analyzer
(NA). Figure 9a,b show the measured results for the insertion and return losses of the CPW
lines, respectively. The return loss was more than 15 dB over the frequency of 30 GHz from
DC. The insertion loss was in the range of 2.24 to 2.71 dB at 30 GHz, and its average value
was 0.25 dB/mm, which was comparable to the insertion loss values of previously reported
conventional mmW CPW lines without any bonding technologies [19–21]. The deviation
of the insertion loss for the twelve CPW lines was within ±10%, which verified that the
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flip-chip-bonded µ-bump process between the InP-to-SiC substrates was well established,
exhibiting good uniformity.

Micromachines 2022, 13, x FOR PEER REVIEW 8 of 14 
 

 

 
Figure 7. Microscope images of a flip-chip-bonded InP-to-SiC sample with different bonding tem-
peratures of 350 and 300°. 

3. Results and Discussion 
3.1. Performance of Flip-Chip-Bonded InP-to-SiC CPW Lines Consisting of 10 Daisy Chains 
Interconnected by a Hundred μ-Bumps 

By utilizing the flip-chip μ-bump bonding technology, InP-to-SiC CPW lines where 
both PAD metals on the InP and SiC substrates were interconnected through μ-bumps 
were implemented. To pursue the scale-up of the bonding technology for mmW applica-
tion, an InP-to-SiC CPW line consisted of ten daisy chains interconnected by a hundred 
μ-bumps, and its length was as high as 10 mm, as shown in Figure 8a. Ten InP-to-SiC 
CPW lines were arranged in a flip-chip-bonded sample with an area of 11 × 10 mm2, as 
shown in Figure 8b. Among ten CPW lines, the upper two lines and the lower two lines 
served as dummy patterns for achieving high-yield performance. Two identically de-
signed flip-chip-bonded samples were fabricated. S-parameter data for all real CPW lines 
arranged in the two samples were measured using the N5225B PNA network analyzer 
(NA). Figure 9a,b show the measured results for the insertion and return losses of the 
CPW lines, respectively. The return loss was more than 15 dB over the frequency of 30 
GHz from DC. The insertion loss was in the range of 2.24 to 2.71 dB at 30 GHz, and its 
average value was 0.25 dB/mm, which was comparable to the insertion loss values of pre-
viously reported conventional mmW CPW lines without any bonding technologies [19–
21]. The deviation of the insertion loss for the twelve CPW lines was within ±10%, which 
verified that the flip-chip-bonded μ-bump process between the InP-to-SiC substrates was 
well established, exhibiting good uniformity. 

 
(a) 

 
(b) 

Figure 8. Implementation results of InP-to-SiC CPW lines with a hundred μ-bumps: (a) schematic 
diagram of a InP-to-SiC CPW line; (b) microscope images of a fabricated flip-chip-bonded sample 
with an area of 11 × 10 mm2 arranged with ten CPW lines (six real and four dummy lines). 

Overflow
of SnAg

60 μm

PAD_SiCPAD_InPPAD_SiC

Temperature of 350 ˚C Temperature of 300 ˚C

1 daisy chain

10 mm

PAD_SiC PAD_InP μ-bump

PAD_SiC PAD_InP

Dummy
CPWs

11 mm

10 mm

(back-side view)

Figure 8. Implementation results of InP-to-SiC CPW lines with a hundred µ-bumps: (a) schematic
diagram of a InP-to-SiC CPW line; (b) microscope images of a fabricated flip-chip-bonded sample
with an area of 11 × 10 mm2 arranged with ten CPW lines (six real and four dummy lines).
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The RF modeling of fabricated µ-bumps was essential to utilize the flip-chip bonding
technology for the mmW application. First, the RF pad region inserted for the RF measure-
ment of CPW lines, as described in Figure 1a, was de-embedded using fabricated open and
thru patterns. Figure 10a shows a modeled circuit diagram of a thru pattern with a length of
200 µm, which was drawn in the advanced design system (ADS) simulator. Shunt resistor
(RPP) and capacitor (CPP) devices were used for the proper RF modeling of the pad region.
Figure 10b shows measured and modeled results for the S-parameter of the thru pattern.
When RPP and CPP were 40 Ω and 12 fF, respectively, the modeled results were in good
agreement with the measured results. Next, the RF modeling of the fabricated µ-bump was
carried out using measured S-parameter results of the flip-chip-bonded InP-to-SiC CPW
line with 10 daisy chains. Figure 11a shows a circuit diagram used for the fabricated CPW
lines. As an equivalent circuit model of the fabricated µ-bump, a pi model was used, which
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consisted of a series resistance (RBS), a series inductance (LBS), and two shunt capacitors
(CBP) [22]. Figure 11b shows measured and modeled results of the S-parameter of the
fabricated CPW lines with 10 daisy chains. When RBS, LBS, and CBP were 0.35 Ω, 50 pH,
and 20 fF, respectively, the modeled results were well matched with the measured results.
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Figure 10. De-embedding for an RF pad region of CPW lines: (a) RF modelled circuit diagram of a
thru pattern; (b) measured and modeled results for S-parameter of the thru pattern.

3.2. Application to mmW Device of the Flip-Chip µ-Bump Bonding Technology

To demonstrate the mmW application capability of the flip-chip bonding technology,
an InP resonant tunneling diode (RTD), which is one of the semiconductor devices operating
at mmW and terahertz (THz) frequencies [23,24], was flip-chip-bonded for the first time
with the SiC substrate and its DC, and RF performance was investigated. Figure 12a shows
a fabricated InP-substrate-based sample consisting of an RTD, CPW PAD metals for the flip-
chip interconnection, and dummy PAD metals functioning as supporting pillars during the
bonding process. The inset shows an SEM image before the device passivation process of
the fabrication RTD. The epitaxial structure and process sequence of the RTD were described
elsewhere [25]. Figure 12b shows a fabricated SiC-substrate-based sample consisting of
CPW PAD and µ-bump metals for the flip-chip interconnection, and dummy PAD and µ-
bump metals functioning as supporting pillars. Figure 12c shows a microscope image after
the InP-substrate-based sample was flip-chip-bonded with the SiC-substrate-based sample.

A conventional InP RTD without a flip-chip bonding interconnection (C-RTD) and
an InP-to-SiC RTD with a flip-chip bonding interconnection (F-RTD) were measured by
being probed at measurement pads (seen in Figure 12a,b,) respectively, with respect to
the DC and RF characteristics. Figure 13a shows a DC I-V curve of the two RTD devices,
which was measured with the Keithley 4200-SCS/F semiconductor characterization system
and Summit 11862B probe station. The two RTDs exhibited nearly the same peak and
valley voltages of 0.3 and 0.75 V, respectively. The peak and valley currents of F-RTD were
3.21 and 0.24 mA, which were approximately 9 % higher than those (2.94 and 0.22 mA) of
C-RTD. This current difference was attributed to the wet-chemical etching variation in the
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mesa process of the two RTDs [25]. Figure 13b shows measured S-parameter data of the
two RTDs measured with the N5225B PNA network analyzer (NA) equipment. The RTDs
were biased at 0.2 V. It was observed that the S11 value of F-RTD increased compared with
that of C-RTD as the frequency increased. This S11 increase was mainly attributed to the
high CBP value of 20 fF. From the ADS simulation results, based on the aforementioned
equivalent model of the bump, the S11 graph of F-RTD was the same as that of C-RTD when
the CBP value decreased to less than 10 fF from 20 fF, as shown in Figure 13b. CBP was
generated from the bump-pad region, corresponding to the region of bump-pad length of
‘a’ in Figure 1. In this work, the bump-pad length for F-RTD was as large as 80 µm, while
the bump size for F-RTD (‘b’ in Figure 1) was 40 µm. Because the overflowed SnAg after
the flip-chip bonding was present within 5 µm from the edge of the µ-bump metals and the
alignment error of bonding equipment was within 2 µm, the bump-pad length for F-RTD
could be reduced to less than 60 µm, corresponding to a CBP of 10 fF.
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Figure 11. RF modeling of flip-chip-bonded InP-to-SiC CPW lines: (a) equivalent circuit diagram
for RF modeling of CPW lines; (b) measured and modeled S-parameter results for a CPW line with
10 daisy chains.
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4. Conclusions

A process methodology for flip-chip µ-bump bonding between InP and SiC substrates
for a mmW wireless communication application was proposed, consisting of a SiO2-based
dielectric passivation process, a sputtering-based pad metallization process, an EP bump
process enabling a flat-top µ-bump shape, a dicing process without the peeling of the
dielectric layer, and a SnAg-to-Au solder bonding process. By using the flip-chip bonding
process, 10 mm long InP-to-SiC CPW lines with 10 daisy chains interconnected with a
hundred µ-bumps were fabricated. All InP-to-SiC CPW lines placed on two samples, one
of which had an area of approximately 11 × 10 mm2, exhibited uniform performance with
insertion loss deviation within ±10% along with an average insertion loss of 0.25 dB/mm,
while achieving return losses of more than 15 dB at a frequency of 30 GHz, which were
comparable to the insertion loss values of conventional CPW lines. In addition, an InP-to-
SiC resonant tunneling diode device was fabricated for the first time and its DC and RF
characteristics were investigated.
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