Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (74)

Search Parameters:
Keywords = resonant switching power supply

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 5533 KiB  
Article
Design and Development of a New Long-Pulse-Width Power Supply
by Kangqiao Ma, Lifeng Zhang and Tianwei Zhang
Energies 2025, 18(12), 3150; https://doi.org/10.3390/en18123150 - 16 Jun 2025
Viewed by 349
Abstract
In order to achieve a long-pulse-width output, a new long-pulse-width modulator based on the charging power supply of LCC-type high-frequency resonant converters and the pulse-generating unit in series IGBT switching technology has been designed. The relationship between the resonant cavity gain and the [...] Read more.
In order to achieve a long-pulse-width output, a new long-pulse-width modulator based on the charging power supply of LCC-type high-frequency resonant converters and the pulse-generating unit in series IGBT switching technology has been designed. The relationship between the resonant cavity gain and the switching frequency has been derived. In the charging phase, the critical intermittent control mode is used to increase the charging speed, and in the voltage stabilization phase, the hysteresis burst control strategy is used to improve voltage accuracy. The simulation results show that the output pulse amplitude is 10 kV, the pulse width can reach 650 μs, and the top-drop is about 12%. Thus, a long pulse width modulator is developed. The output pulse voltage can reach 4 kV, and the output pulse width is 650 μs. The power supply reduces the capacity of the energy storage capacitor, which has industrial application value. Full article
(This article belongs to the Special Issue Pulsed Power Science and High Voltage Discharge)
Show Figures

Figure 1

22 pages, 12619 KiB  
Review
Optimizing the Efficiency of Series Resonant Half-Bridge Inverters for Induction Heating Applications
by Vicente Esteve, José Jordán and Juan L. Bellido
Electronics 2025, 14(6), 1200; https://doi.org/10.3390/electronics14061200 - 19 Mar 2025
Cited by 1 | Viewed by 854
Abstract
This paper reviews the current state of research on half-bridge (HB) inverters used in induction heating power supplies, emphasizing their topological structures, output power control methods, and switching strategies. The study explores various control techniques to regulate low power levels in a series [...] Read more.
This paper reviews the current state of research on half-bridge (HB) inverters used in induction heating power supplies, emphasizing their topological structures, output power control methods, and switching strategies. The study explores various control techniques to regulate low power levels in a series resonant inverter (SRI) configured with an HB structure for induction heating applications. Pulse frequency modulation (PFM) is commonly employed to regulate standard power levels by adjusting the operating frequency relative to the resonant frequency. As the operating frequency increases beyond resonance, the output power decreases. However, in certain scenarios, achieving low power levels necessitates high frequencies, which introduces significant control challenges. To address these issues, it is crucial to develop alternative approaches that ensure efficient power reduction, without compromising system performance. This work evaluates and compares multiple solutions tailored for a high-frequency induction heating system delivering 18 kW at an operating frequency of approximately 100 kHz. The study places particular emphasis on optimizing key component sizing and analyzing inverter losses to enhance overall system efficiency and reliability. Full article
Show Figures

Figure 1

19 pages, 5967 KiB  
Article
Design and Control of the Resonant Auxiliary Circuit for Voltage Regulator Module (VRM) with Fast Load Step Transient
by Yongjia Li, Jianlin Xia, Shen Xu, Encheng Zhu and Weifeng Sun
Electronics 2025, 14(5), 904; https://doi.org/10.3390/electronics14050904 - 25 Feb 2025
Viewed by 598
Abstract
This paper proposes a transient energy auxiliary supply circuit architecture based on resonant switched-capacitor principles, aimed at optimizing the system’s transient response to meet the growing power supply demands. This paper first introduces the relevant principles of resonant switched-capacitor converters. Based on this, [...] Read more.
This paper proposes a transient energy auxiliary supply circuit architecture based on resonant switched-capacitor principles, aimed at optimizing the system’s transient response to meet the growing power supply demands. This paper first introduces the relevant principles of resonant switched-capacitor converters. Based on this, a transient energy path topology based on resonant principles is designed to achieve bidirectional, fast, and low electromagnetic interference energy transmission. Corresponding system coordination control strategies and high-precision switch control based on delay lines are proposed for the designed circuit topology. A circuit model is built in SIMPLIS (V8.20a) software for system simulation, and a prototype is built based on FPGA to verify circuit functionality and performance. Experimental results demonstrate that the resonant energy auxiliary circuit can operate in conjunction with a six-phase Buck circuit prototype. Under test conditions of a 500 kHz operating frequency, 6.5 V input voltage, and 0.75 V output voltage, the overshoot voltage is reduced by more than 17% across the entire operating range. When the load steps from 200 A to 20 A, the overshoot voltage is reduced to only 85 mV, a decrease of 27.97%, while the recovery time is 28.8 µs, a reduction of 37.66%. These results confirm that the auxiliary circuit can significantly improve the system’s transient response under large load steps, meeting the design requirements. Full article
(This article belongs to the Special Issue Digital Control to Power Electronics, 2nd Edition)
Show Figures

Figure 1

16 pages, 1856 KiB  
Article
Design of Resonant Inverters with Energy Dosing, Based on Optimization with Reference Curve
by Nikolay Madzharov, Bogdan Gilev and Nikolay Hinov
Electronics 2025, 14(2), 327; https://doi.org/10.3390/electronics14020327 - 15 Jan 2025
Viewed by 958
Abstract
This paper presents an optimization-based approach for the design of energy-dosing resonant inverters (RI) using a reference curve. RI are widely used in areas such as wireless charging, induction heating, and high-frequency power supplies due to their high efficiency and soft-switching capability. The [...] Read more.
This paper presents an optimization-based approach for the design of energy-dosing resonant inverters (RI) using a reference curve. RI are widely used in areas such as wireless charging, induction heating, and high-frequency power supplies due to their high efficiency and soft-switching capability. The proposed methodology uses a reference current curve in the alternating current (AC) circuit that describes the ideal behavior of the inverter during the start-up transient in order to operate in energy metering mode and minimize switching losses. This approach analyzes and optimizes the values of the circuit elements whose initial values are determined by applying a rational design methodology. The results of the study demonstrate increased dynamics of the power circuit and better stability compared to applying traditional design methods. The presented simulation results confirm the effectiveness of the proposed optimization and the improvement of the characteristics of the studied device. Full article
(This article belongs to the Special Issue Power Electronics and Its Applications in Power System)
Show Figures

Graphical abstract

20 pages, 10880 KiB  
Article
Gate Driver for High-Frequency Power Converter
by Liron Cohen, Joseph B. Bernstein and Ilan Aharon
Electronics 2025, 14(2), 224; https://doi.org/10.3390/electronics14020224 - 7 Jan 2025
Viewed by 1928
Abstract
This work explores the principle of utilizing gallium nitride devices as a gate driver for silicon carbide power devices. As silicon has long reached its performance limits, Wide Bandgap semiconductors such as gallium nitride and silicon carbide have emerged as promising alternatives due [...] Read more.
This work explores the principle of utilizing gallium nitride devices as a gate driver for silicon carbide power devices. As silicon has long reached its performance limits, Wide Bandgap semiconductors such as gallium nitride and silicon carbide have emerged as promising alternatives due to their superior characteristics. However, few publications suggest using a gallium nitride-based gate driver for silicon carbide, high-voltage power devices. Unlike standard voltage source gate drivers, this paper proposes a novel bi-polar current source resonant gate driver topology using gallium nitride transistors as a gate drive circuit for silicon carbide power switching. The driver receives a single input supply and pulsed width modulation signal, producing a high current bi-polar gate driving signal. The gate driver is validated by employing the proposed gate driver to a high-power silicon carbide transistor in a resonant boost converter. The experimental results show that the new gate driver recovers the gate charge wasted energy and provides high performances in varying high voltage loads at a 2.5 MHz switching frequency while reducing the gate losses by 26%. Full article
(This article belongs to the Special Issue New Trends in Power Electronics for Microgrids)
Show Figures

Figure 1

25 pages, 6816 KiB  
Article
Online High Frequency Impedance Identification Method of Inverter-Fed Electrical Machines for Stator Health Monitoring
by Jérémy Creux, Najla Haje Obeid, Thierry Boileau and Farid Meibody-Tabar
Appl. Sci. 2024, 14(23), 10911; https://doi.org/10.3390/app142310911 - 25 Nov 2024
Cited by 3 | Viewed by 1127
Abstract
In electric powertrain traction applications, the adopted trend to improve the performance and efficiency of electromechanical power conversion systems is to increase supply voltages and inverter switching frequencies. As a result, electrical machine conductors are subjected to ever-increasing electrical stresses, leading to premature [...] Read more.
In electric powertrain traction applications, the adopted trend to improve the performance and efficiency of electromechanical power conversion systems is to increase supply voltages and inverter switching frequencies. As a result, electrical machine conductors are subjected to ever-increasing electrical stresses, leading to premature insulation degradation and eventual short-circuits. Winding condition monitoring is crucial to prevent such critical failures. Based on the scientific literature, several methods can be used for early identification of aging. A first solution is to monitor partial discharges. This method requires the use of a specific measurement device and an undisturbed test environment. A second solution is to monitor the inter-turn winding capacitance, which is directly related to the condition of the insulation and can cause a change in the stator impedance behavior. Several approaches can be used to estimate or characterize this impedance behavior. They must be performed on a machine at standstill, which limits their application. In this paper, a new characterization method is proposed to monitor the high-frequency stator impedance evolution of voltage source inverter-fed machines. This method can be applied at any time without removing the machine from its operating environment. The range and accuracy of the proposed frequency characterization depend in particular on the supply voltage level and the bandwidth of the measurement probes. The effects of parameters such as temperature, switching frequency, and DC voltage amplitude on the impedance characteristic were also studied and will be presented. Tests carried out on an automotive traction machine have shown that the first two series and parallel resonances of the high-frequency impedance can be accurately identified using the proposed technique. Therefore, by monitoring these resonances, it is possible to predict the aging rate of the conductor. Full article
Show Figures

Figure 1

15 pages, 12753 KiB  
Article
An Integrated Double-Sided LCC Compensation Based Dual-Frequency Compatible WPT System with Constant-Current Output and ZVS Operation
by Yafei Chen, Yijia Liu, Zhiliang Yang, Pengfei Gao and Jie Wu
Electronics 2024, 13(18), 3714; https://doi.org/10.3390/electronics13183714 - 19 Sep 2024
Viewed by 1204
Abstract
This article presents an integrated double-sided inductance and double capacitances (DS-LCC) compensation based dual-frequency compatible wireless power transfer (WPT) system. A cascaded single-phase multi-frequency inverter (CSMI) is constructed to generate the independent dual-frequency power transfer signals. In order to achieve the [...] Read more.
This article presents an integrated double-sided inductance and double capacitances (DS-LCC) compensation based dual-frequency compatible wireless power transfer (WPT) system. A cascaded single-phase multi-frequency inverter (CSMI) is constructed to generate the independent dual-frequency power transfer signals. In order to achieve the load-independent constant-current output (CCO) at two frequencies, an integrated DS-LCC compensated topology is reconstructed. By configuring the frequency-selective resonating compensation (FSRC) network in the primary side, the power transfer signals at two frequencies can be superimposed into a single transmitting coil, reducing the cost and volume of the system. Furthermore, to implement zero-voltage switching (ZVS) of the CSMI throughout the entire power range, a general parameter design method of the proposed system is also introduced. A 1.5-kW experimental prototype is built to validate the practicability of the presented dual-frequency compatible WPT System. The system can supply power to different loads at two frequencies simultaneously with CCO and ZVS properties. The peak efficiency reaches 91.75% at a 1.2-kW output power. Full article
Show Figures

Figure 1

16 pages, 5297 KiB  
Article
Isolated Gate Driver for Medium Voltage Applications Using a Single Structure
by Dante Miraglia, Carlos Aguilar and Jaime Arau
Electronics 2024, 13(17), 3368; https://doi.org/10.3390/electronics13173368 - 24 Aug 2024
Viewed by 1435
Abstract
According to the International Electrotechnical Commission, medium voltage ranges from 1 kV to 36 kV. In this voltage range, the field of power electronics has been focusing on developing power converters with high efficiency. Converters for such applications include solid-state transformers, energy storage [...] Read more.
According to the International Electrotechnical Commission, medium voltage ranges from 1 kV to 36 kV. In this voltage range, the field of power electronics has been focusing on developing power converters with high efficiency. Converters for such applications include solid-state transformers, energy storage systems for vehicle charging, electric aircraft, etc. Power ranges could reach tens to hundreds of kilowatts at relatively high frequency (10–50 kHz). Currently, there are no high-frequency power semiconductors capable of switching these voltage levels. Instead of using a single power switch, a string of power switches is used. The upper switches in the string require special attention because they need the highest isolation capabilities and a floating control signal and power supply for the gate driver. Many techniques have been proposed to accomplish this, but they commonly use separate circuits for the control signal and the power supply, increasing the cost, size, and complexity of the gate driver. This paper presents a gate driver for medium voltage with high-voltage isolation capabilities in a single structure for the control signal and the power supply. The proposed gate driver uses a resonant converter that transmits power within the gate driver information. A demodulator separates the gate driver information from the power signal, obtaining the power supply and the control signal for the switch. The paper includes simulation and experimental results that demonstrate the viability of the proposal. The experimental results show the principal features of the gate driver, achieving improvements in complexity, isolation capabilities, and both rise and fall times for large input capacitances of power semiconductor switches. The proposed gate driver presents a rise time of 44 ns and a fall time of 46 ns for the gate input capacitance of currently available SiC MOSFETs. The isolation barrier uses a 25 mm air gap, achieving an isolation capability of approximately 68.2 kV, which exceeds the requirements for MV applications. Full article
(This article belongs to the Special Issue New Horizons and Recent Advances of Power Electronics)
Show Figures

Figure 1

16 pages, 4890 KiB  
Article
An Active Clamp Dual-Inductor Isolated Current Source to Current Source Converter with Wide Output Voltage Range
by Tiesheng Yan, Wenyuan Chen, Yu Zhou, Dong Lin, Jun Tian and Guohua Zhou
Electronics 2024, 13(15), 2925; https://doi.org/10.3390/electronics13152925 - 24 Jul 2024
Viewed by 933
Abstract
Human observation of the ocean has gradually evolved from the sea surface to systematic monitoring and sampling through seafloor observation networks, and constant current power supply has become the main power supply method for seafloor observation networks due to its high reliability. There [...] Read more.
Human observation of the ocean has gradually evolved from the sea surface to systematic monitoring and sampling through seafloor observation networks, and constant current power supply has become the main power supply method for seafloor observation networks due to its high reliability. There are some studies on current source to voltage source converters, but there are few studies on current source to current source (CS/CS) converters, which affects the expansion of power supply networks for seafloor observation networks. In this paper, by employing input current sharing and output voltage doubling circuits, an active clamp dual-inductor isolated CS/CS converter which uses a single-stage conversion circuit to realize constant current source conversion with a wide output voltage range is proposed. Active clamp technology at the primary side of the proposed circuit is employed to recover energy stored in leakage inductance, suppress voltage spikes of the primary side switches, and achieve zero-voltage switching of the primary side switches. The secondary side’s output voltage doubling circuit resonates with transformer leakage inductance to achieve zero-current switching of the secondary side diodes, which can reduce losses and enhance efficiency. The operating principles of the proposed circuit are analyzed in detail, and the characteristic and parameter design analysis, including current conversion ratio, transformer turn ratio, power inductors, and resonant capacitors and inductor, are presented. Finally, the experimental results based on a 100 W experimental prototype validate the feasibility of the proposed converter. Full article
(This article belongs to the Topic Power Electronics Converters)
Show Figures

Figure 1

16 pages, 7481 KiB  
Article
Research on the Control and Modulation Scheme for a Novel Five-Switch Current Source Inverter
by Tao Fu, Jihao Gao, Haiyan Liu and Bo Xia
Energies 2024, 17(15), 3640; https://doi.org/10.3390/en17153640 - 24 Jul 2024
Cited by 2 | Viewed by 975
Abstract
Different from the voltage source inverter (VSI), the current source inverter (CSI) can boost the voltage and eliminate the additional passive filter and dead time. However, the DC-side inductor current is not a real current source and is generated by a DC voltage [...] Read more.
Different from the voltage source inverter (VSI), the current source inverter (CSI) can boost the voltage and eliminate the additional passive filter and dead time. However, the DC-side inductor current is not a real current source and is generated by a DC voltage supply and an inductor. Under different switching states, the DC-side inductor will be charged or discharged, which leads to the DC-side inductor current being discontinuous or increasing. To solve the control problem of the DC-side inductor current of the CSI, a novel single-phase CSI topology with five switching tubes for grid-connected applications is proposed. Firstly, the reference calculation method and the hysteresis loop control scheme for the DC-side inductor current are proposed, and the adjustable and constant DC-side inductor current are obtained. Since the PWM signals cannot be directly implemented to the switching tubes, the modulation strategy for the single-phase CSI is proposed in this paper. Then, an active damping method based on the feedback capacitor voltage is presented to suppress the resonance peak caused by the LC filter on the grid side. Finally, the math model of the AC-side structure is established, and the optimal proportional-resonant controller parameters’ design method is explored by the amplitude–frequency characteristic curves. The simulation and experiment are implemented for the proposed CSI topology. The results show that a high-quality power with a good control performance can be obtained with the proposed CSI topology. Full article
Show Figures

Figure 1

23 pages, 15440 KiB  
Article
Fault Handling and Localization Strategy Based on Waveform Characteristics Recognition with Coordination of Peterson Coil and Resistance Grounding Method
by Zhengyang Li, Yijia Cao, Chun Chen, Yansha Li and Jinglu Li
Energies 2024, 17(14), 3510; https://doi.org/10.3390/en17143510 - 17 Jul 2024
Cited by 3 | Viewed by 1056
Abstract
To address challenges in locating high-impedance grounding faults (HIGFs) and isolating fault areas in resonant grounding systems, this paper proposes a novel fault identification method based on coordinating a Peterson coil and a resistance grounding system. This method ensures power supply reliability by [...] Read more.
To address challenges in locating high-impedance grounding faults (HIGFs) and isolating fault areas in resonant grounding systems, this paper proposes a novel fault identification method based on coordinating a Peterson coil and a resistance grounding system. This method ensures power supply reliability by extinguishing the fault arc during transient faults with the Peterson coil. When a fault is determined to be permanent, the neutral point switches to a resistance grounding mode, ensuring regular distribution of zero-sequence currents in the network, thereby addressing the challenges of HIGF localization and fault area isolation. Fault calibration and nature determination rely on recognizing neutral point displacement voltage waveforms and dynamic characteristics, eliminating interference from asymmetric phase voltage variations. Fault area identification involves assessing the polarity of zero-sequence current waveforms attenuation during grounding mode switching, preventing misjudgments in grounding protection due to random initial fault angles and Peterson coil compensation states. Field experiments validate the feasibility of this fault location method and its control strategy. Full article
(This article belongs to the Special Issue Advances in Stability Analysis and Control of Power Systems)
Show Figures

Figure 1

24 pages, 6785 KiB  
Article
Hybrid PVP/Battery/Fuel Cell Wireless Charging Stations Using High-Frequency Optimized Inverter Technology for Electric Vehicles
by Gaith Baccouche, Mohamed Haikel Chehab, Chokri Ben Salah, Mehdi Tlija and Abdelhamid Rabhi
Energies 2024, 17(14), 3470; https://doi.org/10.3390/en17143470 - 15 Jul 2024
Cited by 2 | Viewed by 2212
Abstract
The design and integration of intelligent energy management systems in hybrid electric vehicle (EV) charging stations, leveraging industry 4.0 and renewable energy sources, is crucial for advancing sustainability, efficiency, and technological development. The innovative hybrid EV charging station described in this study uses [...] Read more.
The design and integration of intelligent energy management systems in hybrid electric vehicle (EV) charging stations, leveraging industry 4.0 and renewable energy sources, is crucial for advancing sustainability, efficiency, and technological development. The innovative hybrid EV charging station described in this study uses a combination of fuel cells, batteries, and solar panels that run at 14 amps a piece at 240 volts. The system consists of five essential components that work together to transfer power wirelessly: an EV battery bank, a boost converter, an HF inverter, transfer coils, and a power supply. Two crucial phases make up the optimization process. In phase 1, the boost converter’s maximum power point is tracked and optimized to generate the most power possible by varying the duty cycle between 10% and 90%. In phase 2, the HF uses a class ϕ2 inverter at 30 MHz to synchronize with the resonant frequency of wireless power transfer coils. Zero-voltage switching is used by a digital signal processor card to carry out control for effective operations. By utilizing hybrid sources to optimize power transmission, this design improves the sustainability of EV charging options. Full article
Show Figures

Figure 1

23 pages, 5623 KiB  
Review
Non-Linear Phenomena in Voltage and Frequency Converters Supplying Non-Thermal Plasma Reactors
by Grzegorz Karol Komarzyniec, Henryka Danuta Stryczewska and Oleksandr Boiko
Energies 2024, 17(12), 2846; https://doi.org/10.3390/en17122846 - 9 Jun 2024
Viewed by 1602
Abstract
Atmospheric pressure cold plasmas have recently been the subject of intense research and applications for solving problems in the fields of energy, environmental engineering, and biomedicine. Non-thermal atmospheric pressure plasma sources, with dielectric barrier discharges, plasma jets, and arc discharges, are non-linear power [...] Read more.
Atmospheric pressure cold plasmas have recently been the subject of intense research and applications for solving problems in the fields of energy, environmental engineering, and biomedicine. Non-thermal atmospheric pressure plasma sources, with dielectric barrier discharges, plasma jets, and arc discharges, are non-linear power loads. They require special power systems, which are usually designed separately for each type of plasma reactor, depending on the requirements of the plasma-chemical process, the power of the receiver, the type of process gas, the current, voltage and frequency requirements, and the efficiency of the power source. This paper presents non-linear phenomena accompanying plasma generation in the power supply plasma reactor system, such as harmonic generation, resonance, and ferroresonance of currents and voltages, and the switching of overvoltages and pulse generation. When properly applied, this can support the operation of the above-mentioned reactors by providing improved discharge ignition depending on the working gas, thus increasing the efficiency of the plasma process and improving the cooperation of the plasma-generation system with the power supply. Full article
(This article belongs to the Special Issue Energy, Electrical and Power Engineering 2024)
Show Figures

Figure 1

15 pages, 3190 KiB  
Article
Novel Integrated Zeta Inverter for Standalone Applications
by Anderson Aparecido Dionizio, Guilherme Masquetti Pelz, Leonardo Poltronieri Sampaio and Sérgio Augusto Oliveira da Silva
Energies 2024, 17(11), 2748; https://doi.org/10.3390/en17112748 - 4 Jun 2024
Cited by 1 | Viewed by 1056
Abstract
In recent years, distributed generation systems based on renewable energy sources have gained increasing prominence. Thus, the DC/AC converters based on power electronics devices have become increasingly important. In this context, this article presents an integrated Zeta inverter for low-power conditions, which operates [...] Read more.
In recent years, distributed generation systems based on renewable energy sources have gained increasing prominence. Thus, the DC/AC converters based on power electronics devices have become increasingly important. In this context, this article presents an integrated Zeta inverter for low-power conditions, which operates in continuous conduction mode (CCM), achieving efficiency greater than 95%. The proposed topology is composed of four power switches, two operating at high frequency and two operating at low frequency, i.e., at the output frequency. Compared with the topologies in the literature, these configurations make it a competitive solution from the point of view of efficiency, number of elements, and, consequently, implementation cost. The proposed converter operates as a sinusoidal voltage source for local loads and is supplied by a DC source, such as batteries or a photovoltaic array. A multi-resonant voltage controller was used to guarantee the sinusoidal voltage provided to the non-linear load while dealing with the complex dynamics of the Zeta converter in the CCM. Experimental results from a 324 W prototype show the converter’s implementation feasibility and the high efficiency of the DC/AC conversion. Full article
(This article belongs to the Special Issue Power Electronic and Power Conversion Systems for Renewable Energy)
Show Figures

Figure 1

22 pages, 13961 KiB  
Article
Self-Frequency Tracking for Fixed-Ratio Switch-Capacitors in Data Center Application without Extra Sensors
by Yi Du, Jiaming Zheng, Dachuan Chen, Wucheng Ying, Fan Yue, Chaoqiang Jiang, Teng Long, Kefu Liu, Jian Qiu and Hui Zhao
Electronics 2024, 13(11), 2029; https://doi.org/10.3390/electronics13112029 - 23 May 2024
Viewed by 1127
Abstract
As research into data centers progresses, the importance of resonant switched-capacitor converters in power supply design becomes more evident. Practical applications reveal that the values of resonant capacitors and inductors may deviate from their nominal values due to various factors, leading to resonant [...] Read more.
As research into data centers progresses, the importance of resonant switched-capacitor converters in power supply design becomes more evident. Practical applications reveal that the values of resonant capacitors and inductors may deviate from their nominal values due to various factors, leading to resonant frequency instability. This instability poses a challenge to power electronics technology, affecting system reliability and performance. This paper analyzes the effect of frequency deviation on system functionality, identifies the relationship between output voltage and switching frequency, and proposes a self-tracking frequency strategy to address this issue. Through experimental validation, this approach shows that it maintains synchronization between switching and resonant frequencies, reducing losses associated with frequency misalignment. Simulation and experimental results validate the converter’s stable operation and its ability to achieve zero-voltage and zero-current switching. Full article
Show Figures

Figure 1

Back to TopTop