Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (120)

Search Parameters:
Keywords = resistome analysis

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 2742 KiB  
Article
Resistome and Phylogenomics of Escherichia coli Strains Obtained from Diverse Sources in Jimma, Ethiopia
by Mulatu Gashaw, Esayas Kebede Gudina, Guenter Froeschl, Ralph Matar, Solomon Ali, Liegl Gabriele, Amelie Hohensee, Thomas Seeholzer, Arne Kroidl and Andreas Wieser
Antibiotics 2025, 14(7), 706; https://doi.org/10.3390/antibiotics14070706 - 14 Jul 2025
Viewed by 332
Abstract
Introduction: In recent years, antimicrobial resistance (AMR) rates have increased significantly in bacterial pathogens, particularly extended beta-lactam resistance. This study aimed to investigate resistome and phylogenomics of Escherichia coli (E. coli) strains isolated from various sources in Jimma, Ethiopia. Methods [...] Read more.
Introduction: In recent years, antimicrobial resistance (AMR) rates have increased significantly in bacterial pathogens, particularly extended beta-lactam resistance. This study aimed to investigate resistome and phylogenomics of Escherichia coli (E. coli) strains isolated from various sources in Jimma, Ethiopia. Methods: Phenotypic antibiotic resistance patterns of E. coli isolates were determined using automated Kirby–Bauer disc diffusion and minimum inhibitory concentration (MIC). Isolates exhibiting phenotypic resistance to beta-lactam antibiotics were further analyzed with a DNA microarray to confirm the presence of resistance-encoding genes. Additionally, multilocus sequence typing (MLST) of seven housekeeping genes was conducted using PCR and Oxford Nanopore-Technology (ONT) to assess the phylogenetic relationships among the E. coli isolates. Results: A total of 611 E. coli isolates from human, animal, and environmental sources were analyzed. Of these, 41.6% (254) showed phenotypic resistance to at least one of the tested beta-lactams, 96.1% (244) thereof were confirmed genotypically. More than half of the isolates (53.3%) had two or more resistance genes present. The most frequent ESBL-encoding gene was CTX-M-15 (74.2%; 181), followed by TEM (59.4%; 145) and CTX-M-9 (4.1%; 10). The predominant carbapenemase gene was NDM-1, detected in 80% (12 out of 15) of carbapenem-resistant isolates. A phylogenetic analysis revealed clonality among the strains obtained from various sources, with international high-risk clones such as ST131, ST648, ST38, ST73, and ST405 identified across various niches. Conclusions: The high prevalence of CTX-M-15 and NDM-1 in multidrug-resistant E. coli isolates indicates the growing threat of AMR in Ethiopia. The discovery of these high-risk clones in various niches shows possible routes of transmission and highlights the necessity of a One Health approach to intervention and surveillance. Strengthening antimicrobial stewardship, infection prevention, and control measures are crucial to mitigate the spread of these resistant strains. Full article
Show Figures

Figure 1

21 pages, 3463 KiB  
Article
Hybrid Genome and Clinical Impact of Emerging Extensively Drug-Resistant Priority Bacterial Pathogen Acinetobacter baumannii in Saudi Arabia
by J. Francis Borgio
Life 2025, 15(7), 1094; https://doi.org/10.3390/life15071094 - 12 Jul 2025
Viewed by 383
Abstract
Acinetobacter baumannii is listed by the World Health Organization as an emerging bacterial priority pathogen, the prevalence and multidrug resistance of which have been increasing. This functional genomics study aimed to understand the drug-resistance mechanisms of an extensively drug-resistant (XDR) A. baumannii strain [...] Read more.
Acinetobacter baumannii is listed by the World Health Organization as an emerging bacterial priority pathogen, the prevalence and multidrug resistance of which have been increasing. This functional genomics study aimed to understand the drug-resistance mechanisms of an extensively drug-resistant (XDR) A. baumannii strain (IRMCBCU95U) isolated from a transtracheal aspirate sample from a female patient with end-stage renal disease in Saudi Arabia. The whole genome of IRMCBCU95U (4.3 Mbp) was sequenced using Oxford Nanopore long-read sequencing to identify and compare the antibiotic-resistance profile and genomic features of A. baumannii IRMCBCU95U. The antibiogram of A. baumannii IRMCBCU95U revealed resistance to multiple antibiotics, including cefepime, ceftazidime, ciprofloxacin, imipenem, meropenem and piperacillin/tazobactam. A comparative genomic analysis between IRMCBCU95U and A. baumannii K09-14 and ATCC 19606 identified significant genetic heterogeneity and mosaicism among the strains. This analysis also demonstrated the hybrid nature of the genome of IRMCBCU95U and indicates that horizontal gene transfer may have occurred between these strains. The IRMCBCU95U genome has a diverse range of genes associated with antimicrobial resistance and mobile genetic elements (ISAba1 and IS26) associated with the spread of multidrug resistance. The presence of virulence-associated genes that are linked to iron acquisition, motility and transcriptional regulation confirmed that IRMCBCU95U is a priority human pathogen. The plasmid fragment IncFIB(pNDM-Mar) observed in the strain is homologous to the plasmid in Klebsiella pneumoniae (439 bp; similarity: 99.09%), which supports its antimicrobial resistance. From these observations, it can be concluded that the clinical A. baumannii IRMCBCU95U isolate is an emerging extensively drug-resistant human pathogen with a novel combination of resistance genes and a plasmid fragment. The complex resistome of IRMCBCU95U highlights the urgent need for genomic surveillance in hospital settings in Saudi Arabia to fight against the spread of extensively drug-resistant A. baumannii. Full article
Show Figures

Figure 1

18 pages, 546 KiB  
Article
Outbreak of NDM-5-Producing Proteus mirabilis During the COVID-19 Pandemic in an Argentine Hospital
by Barbara Ghiglione, Ana Paula Rodriguez, María Sol Haim, Laura Esther Friedman, Nilton Lincopan, María Eugenia Ochiuzzi and José Alejandro Di Conza
Antibiotics 2025, 14(6), 557; https://doi.org/10.3390/antibiotics14060557 - 29 May 2025
Viewed by 631
Abstract
Background: During the COVID-19 pandemic, the emergence of multidrug-resistant (MDR) pathogens, driven by heightened antibiotic usage and device-associated infections, has posed significant challenges to healthcare. This study reports an outbreak of Proteus mirabilis producing NDM-5 and CTX-M-15 β-lactamases in a hospital in Buenos [...] Read more.
Background: During the COVID-19 pandemic, the emergence of multidrug-resistant (MDR) pathogens, driven by heightened antibiotic usage and device-associated infections, has posed significant challenges to healthcare. This study reports an outbreak of Proteus mirabilis producing NDM-5 and CTX-M-15 β-lactamases in a hospital in Buenos Aires, Argentina, from October 2020 to April 2021. To our knowledge, this represents the first documented outbreak of NDM-5-producing P. mirabilis in the country. Methods: A total of 82 isolates were recovered from 40 patients, with 41.5% from blood cultures and 18.3% from respiratory and urinary samples, among others. Antimicrobial susceptibility testing, PCR-based methods, and MALDI-TOF MS cluster analysis were conducted. Whole genome sequencing (WGS) was performed to characterize the MLST, resistome and plasmid content. Biofilm formation assays and in vitro rifampicin susceptibility tests were also conducted. Result: Most isolates exhibited resistance to carbapenems, cephalosporins, aminoglycosides, and fluoroquinolones, while retaining susceptibility to aztreonam. Genetic analysis confirmed the co-presence of the blaNDM-5 and blaCTX-M-15 genes. Clonal relationships was supported by PCR-based typing and MALDI-TOF MS cluster analysis. WGS revealed a resistome comprising 25 resistance genes, including rmtB and both β-lactamases, as well as the presence of an incomplete IncQ1 replicon associated with multiple resistance determinants. MLST classified this clone as belonging to ST135. Despite the biofilm-forming capacity observed across strains, rifampicin demonstrated potential for disrupting established biofilms at concentrations ≥32 µg/mL in vitro. The MDR profile of the outbreak strain significantly limited therapeutic options. Conclusions: This study highlights the growing threat of NDM-producing P. mirabilis in Argentina. The absence of surveillance cultures from the index case limits insights into the outbreak’s origin. These findings underscore the importance of integrating genomic surveillance into infection control protocols to mitigate the spread of MDR pathogens. Full article
(This article belongs to the Special Issue Multidrug-Resistance Patterns in Infectious Pathogens)
Show Figures

Figure 1

23 pages, 1791 KiB  
Article
Prediction of Antibiotic Resistance Genes in Cyanobacterial Strains by Whole Genome Sequencing
by Duarte Balata, Tânia Rosado, Francisco Pina-Martins, Vera Manageiro, Carina Menezes, Eugénia Ferreira, Octávio S. Paulo, Manuela Caniça and Elsa Dias
Microorganisms 2025, 13(6), 1252; https://doi.org/10.3390/microorganisms13061252 - 28 May 2025
Viewed by 469
Abstract
Cyanobacteria are ubiquitous in freshwater environments, but their role in aquatic resistome remains unclear. In this work, we performed whole genome sequencing on 43 cyanobacterial strains isolated from Portuguese fresh/wastewaters. From 43 available non-axenic unicyanoabacterial cultures (containing only one cyanobacterial strain and their [...] Read more.
Cyanobacteria are ubiquitous in freshwater environments, but their role in aquatic resistome remains unclear. In this work, we performed whole genome sequencing on 43 cyanobacterial strains isolated from Portuguese fresh/wastewaters. From 43 available non-axenic unicyanoabacterial cultures (containing only one cyanobacterial strain and their co-occurring bacteria), it was possible to recover 41 cyanobacterial genomes from the genomic assemblies using a genome binning software, 26 of which were classified as high-quality based on completeness, contamination, N50 and contig number thresholds. By using the comprehensive antibiotic resistance database (CARD) on the assembled samples, we detected four antibiotic resistance gene (ARG) variants, conferring resistance in pathogenic bacteria to tetracyclines, fluoroquinolones (adeF-type) and macrolides (ermF-type, mefC-type and mphG-type). Among these, adeF-type was the most prevalent gene, found across 11 cyanobacterial genomes from the Nostocales order. Planktothrix presented the highest variety of close ARG matches, with hits for the macrolide resistance genes ermF-type, mefC-type and mphG-type. An analysis of the genomic assemblies also revealed an additional 12 ARGs in bacteria from the phyla Firmicutes, Proteobacteria and Bacteroidetes, present in the cyanobacterial cultures, foreseeing the horizontal gene transfer of ARGs with cyanobacteria. Additionally, more than 200 partial ARGs were detected on each recovered cyanobacterial genome, allowing for future studies of antibiotic resistance genotype/phenotype in cyanobacteria. These findings highlight the importance of further efforts to understand the role of cyanobacteria on the aquatic resistome from a One Health perspective. Full article
(This article belongs to the Special Issue New Insights into the Antibiotic Resistance of Aquatic Microorganisms)
Show Figures

Figure 1

39 pages, 6950 KiB  
Review
Emerging Trends in Antimicrobial Resistance in Polar Aquatic Ecosystems
by Melissa Bisaccia, Francesca Berini, Flavia Marinelli and Elisa Binda
Antibiotics 2025, 14(4), 394; https://doi.org/10.3390/antibiotics14040394 - 10 Apr 2025
Viewed by 1459
Abstract
The global spread of antimicrobial resistance (AMR) threatens to plummet society back to the pre-antibiotic era through a resurgence of common everyday infections’ morbidity. Thus, studies investigating antibiotic resistance genes (ARGs) and antibiotic-resistant bacteria (ARB) in urban, agricultural, and clinical settings, as well [...] Read more.
The global spread of antimicrobial resistance (AMR) threatens to plummet society back to the pre-antibiotic era through a resurgence of common everyday infections’ morbidity. Thus, studies investigating antibiotic resistance genes (ARGs) and antibiotic-resistant bacteria (ARB) in urban, agricultural, and clinical settings, as well as in extreme environments, have become increasingly relevant in the One Health perspective. Since the Antarctic and Arctic regions are considered amongst the few remaining pristine environments on Earth, the characterization of their native resistome appears to be of the utmost importance to understand whether and how it is evolving as a result of anthropogenic activities and climate change. In the present review, we report on the phenotypic (e.g., disk diffusion test) and genotypic (e.g., PCR, metagenomics) approaches used to study AMR in the aquatic environment of polar regions, as water represents one of AMR main dissemination routes in nature. Their advantages and limits are described, and the emerging trends resulting from the analysis of ARB and ARGs diffusion in polar waters discussed. The resistome detected in these extreme environments appears to be mostly comparable to those from more anthropized areas, with the predominance of tetracycline, β-lactam, and sulfonamide resistance (and related ARGs). Indeed, AMR is, in all cases, more consistently highlighted in sites impacted by human and wildlife activities with respect to more pristine ones. Surprisingly, aminoglycoside and fluroquinolone determinants seem to have an even higher incidence in the Antarctic and Arctic aquatic environment compared to that from other areas of the world, corroborating the need for a more thorough AMR surveillance in these regions. Full article
(This article belongs to the Special Issue Antibiotic Resistance: The Role of Aquatic Environments)
Show Figures

Figure 1

17 pages, 4870 KiB  
Article
Microbial Diversity and Heavy Metal Resistome in Slag-Contaminated Soils from an Abandoned Smelter in Chihuahua, Mexico
by Gustavo Montes-Montes, Zilia Y. Muñoz-Ramírez, Leonor Cortes-Palacios, Javier Carrillo-Campos, Obed Ramírez-Sánchez, Ismael Ortiz-Aguirre, Laila N. Muñoz-Castellanos and Román González-Escobedo
Soil Syst. 2025, 9(2), 30; https://doi.org/10.3390/soilsystems9020030 - 1 Apr 2025
Viewed by 831
Abstract
Heavy metal(loid) (HM) contamination in soils from smelting activities poses significant environmental and public health risks, as well as disruptions in microbial community dynamics and HM resistance gene profiles. This study investigates the microbial diversity, resistome, and physicochemical properties of soils from the [...] Read more.
Heavy metal(loid) (HM) contamination in soils from smelting activities poses significant environmental and public health risks, as well as disruptions in microbial community dynamics and HM resistance gene profiles. This study investigates the microbial diversity, resistome, and physicochemical properties of soils from the abandoned Avalos smelter in Chihuahua, Mexico. Through soil analyses, we identified elevated concentrations of certain HMs, which pose serious environmental and health hazards. The metagenomic analysis of the microbial community, composed of bacteria, archaea, and fungi, was dominated by genera such as Streptomyces, Bradyrhizobium, Halobaculum, Nitrosocosmicus, Fusarium, and Aspergillus in rhizospheric soil. Furthermore, a diverse array of metal resistance genes (MRGs) were detected, associated with copper, arsenic, iron, lead, cadmium, zinc, and other HMs. Additionally, metagenome-assembled genomes (MAGs) revealed the presence of functional genes linked to HM resistance, providing deeper insights into the ecological roles and metabolic capabilities of microbial taxa. These findings highlight the significant impact of smelting-derived contamination on microbial diversity and functional potential, offering valuable insights for the development of bioremediation strategies in HM-contaminated environments. Full article
(This article belongs to the Special Issue Microbial Community Structure and Function in Soils)
Show Figures

Figure 1

18 pages, 2939 KiB  
Article
Microbiome and Resistome in Poultry Litter-Fertilized and Unfertilized Agricultural Soils
by Eliene dos Santos Lopes, Larissa Coutinho Araujo de Souza, Karen Caroline Ferreira Santaren, Cláudio Ernesto Taveira Parente and Lucy Seldin
Antibiotics 2025, 14(4), 355; https://doi.org/10.3390/antibiotics14040355 - 31 Mar 2025
Viewed by 702
Abstract
Background: Poultry litter is the main waste of poultry farming and is widely used as an agricultural fertilizer. However, owing to the use of antimicrobials in animal production, it can accumulate antimicrobial residues, antimicrobial-resistant bacteria (ARB), and antimicrobial resistance genes (ARGs). This [...] Read more.
Background: Poultry litter is the main waste of poultry farming and is widely used as an agricultural fertilizer. However, owing to the use of antimicrobials in animal production, it can accumulate antimicrobial residues, antimicrobial-resistant bacteria (ARB), and antimicrobial resistance genes (ARGs). This study aimed to evaluate the impact of poultry litter use on the microbiome and resistome of agricultural soils. Methods: Soil samples from fertilized and unfertilized plots were collected from two horticultural farms that intensively use poultry litter. Microbiome composition was assessed using 16S rRNA sequencing. A culture-dependent method was used to isolate resistant strains on CHROMagar plates supplemented with sulfamethoxazole or ciprofloxacin. ARGs and integrase-encoding genes were identified by PCR. Results: Microbiome analysis revealed significant differences in structure and composition between poultry litter-fertilized and unfertilized soils. Fertilized soils exhibited greater alpha diversity and richness. Bacillota, commonly found in the avian gastrointestinal tract, were more abundant in fertilized soils. A total of 62 resistant strains were isolated, and 23 clinically relevant strains harbored ARGs, including fluoroquinolone (qnrA and qnrB) and β-lactam (blaGES, blaTEM, and blaSHV) resistance genes. Class 1 and 2 integron-associated genes (intI1 and intI2) were also detected. Notably, the rare blaGES gene was detected in Bacillus sp. from unfertilized soil. Similarly, qnrA co-occurred with blaSHV in a Bosea sp. strain from unfertilized soil. Conclusions: These findings highlight the potential for ARB dissemination in agricultural environments, where ARB and ARGs, once introduced into soils, may spread by weathering and other environmental factors, complicating negative control selection in in situ studies. Full article
Show Figures

Figure 1

13 pages, 1709 KiB  
Article
Salad Vegetables as a Reservoir of Antimicrobial-Resistant Enterococcus: Exploring Diversity, Resistome, Virulence, and Plasmid Dynamics
by Ihab Habib, Mushtaq Khan, Glindya Bhagya Lakshmi, Mohamed-Yousif Ibrahim Mohamed, Akela Ghazawi and Rami H. Al-Rifai
Foods 2025, 14(7), 1150; https://doi.org/10.3390/foods14071150 - 26 Mar 2025
Viewed by 754
Abstract
This study investigates the occurrence, antimicrobial resistance (AMR) profiles, virulence factors, and plasmid composition of Enterococcus species isolated from salad ingredients in the United Arab Emirates (UAE). Four hundred salad vegetable items collected from local markets, over ten months through 2023, were screened, [...] Read more.
This study investigates the occurrence, antimicrobial resistance (AMR) profiles, virulence factors, and plasmid composition of Enterococcus species isolated from salad ingredients in the United Arab Emirates (UAE). Four hundred salad vegetable items collected from local markets, over ten months through 2023, were screened, yielding an Enterococcus detection rate of 85.5% (342/400). E. casseliflavus was the most commonly identified species (50%), followed by E. faecium (20%) and E. faecalis (16%). Among 85 Enterococcus isolates tested for antimicrobial susceptibility, 55.3% displayed resistance to at least one agent, with 18.8% classified as multidrug-resistant (MDR). All isolates were not resistant to ampicillin, linezolid, teicoplanin, tigecycline, and high-level gentamicin. Intrinsic phenotypic resistance to vancomycin was found in E. gallinarum and E. casseliflavus, while low-level (<5%) ciprofloxacin and erythromycin resistance was sporadically detected in E. faecium and E. faecalis. Whole-genome sequencing (WGS) of 14 isolates (nine E. faecium, four E. faecalis, and one E. casseliflavus) unveiled a complex resistome. We report the first detection in salad vegetables of vancomycin resistance genes (vanC, vanXY-C2) in a vancomycin-susceptible E. faecalis isolate. Identifying tetM, ermB, and optrA genes in the studied isolates further underscored emerging resistance to tetracyclines, macrolides, and oxazolidinones. Concurrently, virulence gene analysis revealed 74 putative virulence factors, with E. faecalis harboring a higher diversity of biofilm-related and exoenzyme-encoding genes. One E. faecalis strain carried the cytolysin cluster (cylI, cylS, cylM), highlighting its pathogenic potential. Plasmid profiling identified 19 distinct plasmids, ranging from 3845 bp to 133,159 bp. Among the genome-sequenced isolates, mobilizable plasmids (47.3%) commonly carried AMR genes, especially tet(L) and tet(M), whereas conjugative plasmids (10.5%) did not harbor resistance determinants. These findings highlight that salad vegetables can still harbor and potentially transmit Enterococcus strains with clinically relevant resistance determinants and virulence traits. Enhancing foodborne AMR surveillance with WGS and targeted interventions is key to controlling its spread in the food. Full article
Show Figures

Figure 1

20 pages, 18295 KiB  
Article
Metagenomic Insights into the Diverse Antibiotic Resistome of Non-Migratory Corvidae Species on the Qinghai–Tibetan Plateau
by You Wang, Quanchao Cui, Yuliang Hou, Shunfu He, Wenxin Zhao, Zhuoma Lancuo, Kirill Sharshov and Wen Wang
Vet. Sci. 2025, 12(4), 297; https://doi.org/10.3390/vetsci12040297 - 23 Mar 2025
Viewed by 1015
Abstract
Antibiotic resistance represents a global health crisis with far-reaching implications, impacting multiple domains concurrently, including human health, animal health, and the natural environment. Wild birds were identified as carriers and disseminators of antibiotic-resistant bacteria (ARB) and their associated antibiotic resistance genes (ARGs). A [...] Read more.
Antibiotic resistance represents a global health crisis with far-reaching implications, impacting multiple domains concurrently, including human health, animal health, and the natural environment. Wild birds were identified as carriers and disseminators of antibiotic-resistant bacteria (ARB) and their associated antibiotic resistance genes (ARGs). A majority of studies in this area have concentrated on migratory birds as carriers for the spread of antibiotic resistance over long distances. However, there has been scant research on the resistome of non-migratory Corvidae species that heavily overlap with human activities, which limits our understanding of antibiotic resistance in these birds and hinders the development of effective management strategies. This study employed a metagenomics approach to examine the characteristics of ARGs and mobile genetic elements (MGEs) in five common Corvidae species inhabiting the Qinghai–Tibetan Plateau. The ARGs were classified into 20 major types and 567 subtypes. Notably, ARGs associated with multidrug resistance, including to macrolide–lincosamide–streptogramins, tetracyclines, beta-lactam, and bacitracin, were particularly abundant, with the subtypes acrB, bacA, macB, class C beta-lactamase, and tetA being especially prevalent. A total of 5 types of MGEs (166 subtypes) were identified across five groups of crows, and transposase genes, which indicated the presence of transposons, were identified as the most abundant type of MGEs. Moreover, some common opportunistic pathogens were identified as potential hosts for these ARGs and MGEs. Procrustes analysis and co-occurrence network analysis showed that the composition of the gut microbiota shaped the ARGs and MGEs, indicating a substantial association between these factors. The primary resistance mechanisms of ARGs in crows were identified as multidrug efflux pumps, alteration of antibiotic targets, and enzymatic inactivation. High-risk ARGs which were found to potentially pose significant risks to public health were also analyzed and resulted in the identification of 81 Rank I and 47 Rank II ARGs. Overall, our study offers a comprehensive characterization of the resistome in wild Corvidae species, enhancing our understanding of the potential public health risks associated with these birds. Full article
Show Figures

Figure 1

18 pages, 5386 KiB  
Article
Composition, Distribution and Mobility Potential of the Antibiotic Resistome in Sediments from the East China Sea Revealed by Metagenomic Analysis
by Xiaozhong Chen, Long Gao, Yanxue Kou, Xiaoxuan Wang, Xintong Li, Hui He and Min Wang
Microorganisms 2025, 13(3), 697; https://doi.org/10.3390/microorganisms13030697 - 20 Mar 2025
Viewed by 629
Abstract
Marine sediments are recognized as crucial reservoirs of antibiotic resistance genes (ARGs). However, the antibiotic resistome in sediments of the East China Sea, an area heavily impacted by human activities, has not been thoroughly studied. Here, we conducted a systematic investigation into the [...] Read more.
Marine sediments are recognized as crucial reservoirs of antibiotic resistance genes (ARGs). However, the antibiotic resistome in sediments of the East China Sea, an area heavily impacted by human activities, has not been thoroughly studied. Here, we conducted a systematic investigation into the antibiotic resistome in these sediments using metagenomic analysis. Overall, we detected eighty ARG subtypes and nineteen ARG types. Beta-lactams were the dominant ARG type, and Gammaproteobacteria was the main ARG host in this study. Mobile genetic elements (MGEs) were not major drivers of ARG profiles. Although the ARG host communities significantly differed between the spring and autumn (p < 0.05), the antibiotic resistome remained stable across the two seasons. The assembly of ARGs and their hosts was governed by stochastic processes, and a high ratio of stochastic processes implied its crucial role in the assembly and stabilization of the antibiotic resistome. Co-occurrence network analysis revealed an important role of Deltaproteobacteria in the stabilization of ARG profiles across seasons. Environmental parameters (e.g., temperature and density) played certain roles in the stabilization of the antibiotic resistome between spring and autumn. Moreover, nine human pathogen bacteria (HPB) were detected in this study. We also found that the health risks caused by ARGs were relatively higher in the spring. Our results will provide a strong foundation for the development of targeted management strategies to mitigate the further dissemination and spread of ARGs in marine sediments. Full article
(This article belongs to the Section Microbiomes)
Show Figures

Figure 1

13 pages, 792 KiB  
Article
Clonal Dissemination of NDM-Producing Proteus mirabilis in a Teaching Hospital in Sousse, Tunisia
by Nadia Jaidane, Lamia Tilouche, Saoussen Oueslati, Delphine Girlich, Sana Azaiez, Aymeric Jacquemin, Laurent Dortet, Walid Naija, Abdelhalim Trabelsi, Thierry Naas, Wejdene Mansour and Rémy A. Bonnin
Pathogens 2025, 14(3), 298; https://doi.org/10.3390/pathogens14030298 - 20 Mar 2025
Cited by 1 | Viewed by 835
Abstract
Proteus mirabilis (P. mirabilis) is an opportunistic pathogen involved in urinary tract infections as well as various nosocomial infections. Emerging resistances to beta-lactams in this species complicates potential treatment since it is intrinsically resistant to colistin. Eleven isolates of carbapenem-non-susceptible P. [...] Read more.
Proteus mirabilis (P. mirabilis) is an opportunistic pathogen involved in urinary tract infections as well as various nosocomial infections. Emerging resistances to beta-lactams in this species complicates potential treatment since it is intrinsically resistant to colistin. Eleven isolates of carbapenem-non-susceptible P. mirabilis were identified in Sousse Hospital, Tunisia, from January 2018 to December 2022. MICs were determined and isolates were sequenced to determine their resistomes, sequence types, virulence factors, and their clonal relationships. Susceptibility testing showed that all isolates were resistant to carbapenems, aminoglycosides, fluoroquinolones, chloramphenicol, and the trimethoprim/sulfamethoxazole combination. They remained susceptible to the aztreonam/avibactam combination. All isolates produced NDM-1 carbapenemase and ArmA 16S rRNA methylase. In addition, one isolate co-produced the blaVEB-6 gene. All isolates belonged to ST135, and phylogenetic analysis revealed that they were closely related. This study described the first outbreak of NDM-1-producing P. mirabilis in Tunisia. Full article
(This article belongs to the Section Bacterial Pathogens)
Show Figures

Figure 1

21 pages, 2472 KiB  
Article
Genome Analysis of 6222 Bacterial Isolates from Livestock and Food Environments in Spain to Decipher the Antibiotic Resistome
by Marta Hernández, Álvaro Falcó-Prieto, Maria Ugarte-Ruiz, Pedro Miguela-Villoldo, Alain Ocampo-Sosa, David Abad, Marta Pérez-Sancho, Julio Álvarez, Rafael Dorighello Cadamuro, Mariana Alves Elois, Gislaine Fongaro, Alberto Quesada, Bruno González-Zorn, Lucas Domínguez, José M. Eiros and David Rodríguez-Lázaro
Antibiotics 2025, 14(3), 281; https://doi.org/10.3390/antibiotics14030281 - 8 Mar 2025
Viewed by 1616
Abstract
Background/Objectives: Antimicrobial resistance (AMR) poses a significant threat to global health and the economy, with projected costs ranging from $300 billion to $1 trillion annually and an estimated 10 million deaths per year by 2050. The food chain, from primary production to retail, [...] Read more.
Background/Objectives: Antimicrobial resistance (AMR) poses a significant threat to global health and the economy, with projected costs ranging from $300 billion to $1 trillion annually and an estimated 10 million deaths per year by 2050. The food chain, from primary production to retail, represents a critical entry point for antimicrobial resistant bacteria into communities. This underscores the need for a coordinated “One Health” approach, integrating efforts in animal production, environmental health, and human healthcare to address this global concern. This study aimed to characterize the global resistome in Spanish primary production by sequencing 6222 bacterial genomes from animal origin. Methods and Results: Whole genome sequencing was performed on bacterial isolates collected from various farms and analyzed using a validated bioinformatic pipeline. The analysis revealed a diverse range of bacterial species, with Enterobacteriaceae being the most prevalent family. Escherichia coli was the most common species, followed by Salmonella enterica and Pseudomonas aeruginosa. This study identified 1072 antimicrobial resistance genes coding for 43 different classes of resistance, potentially conferring resistance to 81 antimicrobials. Additionally, 79 different plasmid types were detected, highlighting the potential for horizontal gene transfer. Conclusions: The resistome analysis revealed genes conferring resistance to various antibiotic classes, as well as antiseptics, disinfectants, and efflux pump-mediated resistance. This comprehensive characterization of AMR genes circulating in bacteria from primary production provides crucial insights into the ecology of AMR in Spanish livestock. Full article
Show Figures

Figure 1

14 pages, 2609 KiB  
Article
Monitoring Antibiotic Resistance in Wastewater: Findings from Three Treatment Plants in Sicily, Italy
by Roberta Magnano San Lio, Andrea Maugeri, Martina Barchitta, Giuliana Favara, Maria Clara La Rosa, Claudia La Mastra and Antonella Agodi
Int. J. Environ. Res. Public Health 2025, 22(3), 351; https://doi.org/10.3390/ijerph22030351 - 27 Feb 2025
Viewed by 689
Abstract
Antimicrobial resistance (AMR) poses a global public health threat. Wastewater analysis provides valuable insights into antimicrobial resistance genes (ARGs), identifying sources and trends and evaluating AMR control measures. Between February 2022 and March 2023, pre-treatment urban wastewater samples were collected weekly from treatment [...] Read more.
Antimicrobial resistance (AMR) poses a global public health threat. Wastewater analysis provides valuable insights into antimicrobial resistance genes (ARGs), identifying sources and trends and evaluating AMR control measures. Between February 2022 and March 2023, pre-treatment urban wastewater samples were collected weekly from treatment plants in Pantano D’Arci, Siracusa, and Giarre (Sicily, Italy). Monthly composite DNA extracts were prepared by combining weekly subsamples from each site, yielding 42 composite samples—14 from each treatment plant. Real-time PCR analysis targeted specific ARGs, including blaSHV, erm(A), erm(B), blaOXA, blaNDM, blaVIM, blaTEM, and blaCTX-M. The preliminary findings revealed that blaERM-B, blaOXA, blaTEM, and blaCTX-M were present in all samples, with erm(B) (median value: 8.51; range: 1.67–30.93), blaSHV (0.78; 0.00–6.36), and blaTEM (0.72; 0.34–4.30) showing the highest relative abundance. These results underscore the importance of integrating ARG data with broader research to understand the persistence and proliferation mechanisms of ARGs in wastewater environments. Future studies should employ metagenomic analyses to profile resistomes in urban, hospital, agricultural, and farm wastewater. Comparing these profiles will help identify contamination pathways and inform the development of targeted ARG surveillance programs. Monitoring shifts in ARG abundance could signal cross-sectoral contamination, enabling more effective AMR control strategies. Full article
Show Figures

Figure 1

20 pages, 2713 KiB  
Article
Bacterial Communities and Resistance and Virulence Genes in Hospital and Community Wastewater: Metagenomic Analysis
by Maria Elena Velazquez-Meza, Miguel Galarde-López, Patricia Cornejo-Juárez, Miriam Bobadilla-del-Valle, Ernestina Godoy-Lozano, Edgar Aguilar-Vera, Berta Alicia Carrillo-Quiroz, Alfredo Ponce de León-Garduño, Consuelo Velazquez Acosta and Celia Mercedes Alpuche-Aranda
Int. J. Mol. Sci. 2025, 26(5), 2051; https://doi.org/10.3390/ijms26052051 - 26 Feb 2025
Viewed by 1139
Abstract
Metagenomic studies have made it possible to deepen the analysis of the abundance of bacterial populations that carry resistance and virulence determinants in the wastewater environment. In this study, a longitudinal collection of samples of community and hospital wastewater from August 2021 to [...] Read more.
Metagenomic studies have made it possible to deepen the analysis of the abundance of bacterial populations that carry resistance and virulence determinants in the wastewater environment. In this study, a longitudinal collection of samples of community and hospital wastewater from August 2021 to September 2022 was obtained. Shotgun metagenomic sequencing and bioinformatic analysis were performed to characterize the bacterial abundance, antimicrobial resistance genes (ARGs), plasmids, and virulence factor genes (VFGs) contained in the wastewater. The microbial composition of the community and hospital wastewater showed that the most abundant bacterial phyla detected in all samples were: Proteobacteria, Bacteroides, Firmicutes, Campylobacterota, and Actinobacteria. Seasonal differences in the relative abundances of species, ARGs, plasmids, and VFGs were observed. In this study, a total of 270 ARGs were detected, and it was found that the absolute abundance of ARGs only showed a 39% reduction in the treated wastewater. Furthermore, the ARGs detected in this study were found to encode resistance to antibiotics of the last choice. Our results showed that plasmids carrying resistance genes were more abundant in raw wastewater, and 60% more abundant in hospital wastewater compared to community wastewater. Several of the VFGs detected in this study encode for adhesion, motility, and biofilm formation, which likely allows bacteria to remain and persist in the wastewater environment and survive WWTP treatment systems, thus managing to escape into the environment via treated wastewater. Full article
Show Figures

Figure 1

14 pages, 2122 KiB  
Article
Unveiling the Resistome Landscape in Peri-Implant Health and Disease
by Lucinda J. Bessa, Conceição Egas, João Botelho, Vanessa Machado, Gil Alcoforado, José João Mendes and Ricardo Alves
J. Clin. Med. 2025, 14(3), 931; https://doi.org/10.3390/jcm14030931 - 31 Jan 2025
Viewed by 1038
Abstract
Background: The human oral microbiome is a critical reservoir for antibiotic resistance; however, subgingival peri-implant biofilms remain underexplored in this context. We aimed to explore the prevalence and distribution of antibiotic resistance genes (ARGs) in metagenomes derived from saliva and subgingival peri-implant biofilms. [...] Read more.
Background: The human oral microbiome is a critical reservoir for antibiotic resistance; however, subgingival peri-implant biofilms remain underexplored in this context. We aimed to explore the prevalence and distribution of antibiotic resistance genes (ARGs) in metagenomes derived from saliva and subgingival peri-implant biofilms. Methods: A total of 100 metagenome datasets from 40 individuals were retrieved from the Sequence Read Archive (SRA) database. Of these, 20 individuals had exclusively healthy implants and 20 had both healthy and affected implants with peri-implantitis. ARGs and their taxonomic assignments were identified using the ABRicate tool, and plasmid detection was performed with PlasmidFinder. Results: Four plasmid replicons were identified in 72 metagenomes, and 55 distinct ARGs from 13 antibiotic classes were detected in 89 metagenomes. ARGs conferring resistance to macrolides–lincosamides–streptogramins, tetracyclines, beta-lactams, and fluoroquinolones were the most prevalent. The msr(D) and mef(A) genes showed the highest prevalence, except in saliva samples from individuals with healthy implants, where mef(A) ranked fourth. A pairwise PERMANOVA of principal coordinate analysis based on Jaccard distances revealed that saliva samples exhibited significantly greater ARG diversity than subgingival biofilm samples (p < 0.05). However, no significant differences were observed between healthy and peri-implantitis-affected subgingival biofilm groups (p > 0.05). The taxonomic origins of ARGs were also analyzed to understand their distribution and potential impact on oral microbial communities. Conclusions: Resistome profiles associated with both peri-implant health and disease showed no significant differences and higher salivary abundance of ARGs compared to subgingival biofilm samples. Full article
(This article belongs to the Section Dentistry, Oral Surgery and Oral Medicine)
Show Figures

Figure 1

Back to TopTop