Clonal Dissemination of NDM-Producing Proteus mirabilis in a Teaching Hospital in Sousse, Tunisia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Clinical Isolates
2.2. Bacterial Reidentification, Susceptibility Testing, MIC Determination and Carbapenemase Detection
2.3. Plasmid Identification and Transfer of β-Lactam Resistance Determinants
2.4. Whole-Genome Sequencing and Bioinformatics Analysis
3. Results
3.1. Demographic, Clinical, and Microbiological Data
3.2. Antimicrobial Susceptibility Testings
3.3. Resistome and Genetic Relatedness
3.4. Transfer of Carbapenem Resistance
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Alanis, A.J. Resistance to Antibiotics: Are We in the Post-Antibiotic Era? Arch. Med. Res. 2005, 36, 697–705. [Google Scholar] [PubMed]
- Abban, M.K.; Ayerakwa, E.A.; Mosi, L.; Isawumi, A. The burden of hospital acquired infections and antimicrobial resistance. Heliyon 2023, 9, e20561. [Google Scholar] [PubMed]
- Lim, C.; Takahashi, E.; Hongsuwan, M.; Wuthiekanun, V.; Thamlikitkul, V.; Hinjoy, S.; Day, N.P.; Peacock, S.J.; Limmathurotsakul, D. Epidemiology and burden of multidrug-resistant bacterial infection in a developing country. eLife 2016, 5, e18082. [Google Scholar]
- Murray, C.J.; Ikuta, K.S.; Sharara, F.; Swetschinski, L.; Aguilar, G.R.; Gray, A.; Han, C.; Bisignano, C.; Rao, P.; Wool, E.; et al. Global burden of bacterial antimicrobial resistance in 2019: A systematic analysis. Lancet 2022, 399, 629–655. [Google Scholar]
- Jamil, R.T.; Foris, L.A.; Snowden, J. Proteus mirabilis Infections. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2023. Available online: https://www.ncbi.nlm.nih.gov/books/NBK442017/ (accessed on 10 October 2023).
- Griffith, D.P.; Musher, D.M.; Itin, C. Urease. The primary cause of infection-induced urinary stones. Investig. Urol. 1976, 13, 346–350. [Google Scholar]
- Foxman, B.; Brown, P. Epidemiology of urinary tract infections: Transmission and risk factors, incidence, and costs. Infect. Dis. Clin. N. Am. 2003, 17, 227–241. [Google Scholar]
- Li, X.; Zhao, H.; Lockatell, C.V.; Drachenberg, C.B.; Johnson, D.E.; Mobley, H.L.T. Visualization of Proteus mirabilis within the Matrix of Urease-Induced Bladder Stones during Experimental Urinary Tract Infection. Infect. Immun. 2002, 70, 389–394. [Google Scholar] [PubMed]
- Norsworthy, A.N.; Pearson, M.M. From Catheter to Kidney Stone: The Uropathogenic Lifestyle of Proteus mirabilis. Trends Microbiol. 2017, 25, 304–315. [Google Scholar]
- Pearson, M.M.; Rasko, D.A.; Smith, S.N.; Mobley, H.L.T. Transcriptome of Swarming Proteus mirabilis. Infect. Immun. 2010, 78, 2834–2845. [Google Scholar]
- Schaffer, J.N.; Pearson, M.M. Proteus mirabilis and Urinary Tract Infections. Microbiol. Spectr. 2015, 3, 10.1128/microbiolspec.UTI-0017-2013. [Google Scholar] [CrossRef]
- Ullah, S.; Saadaat, R.; Hamidi, H.; Haidary, A.M. Proteus mirabilis: A rare cause of pneumonia, radiologically mimicking malignancy of the lung. Clin. Case Rep. 2023, 11, e7937. [Google Scholar] [CrossRef] [PubMed]
- Kim, B.N.; Kim, N.J.; Kim, M.N.; Kim, Y.S.; Woo, J.H.; Ryu, J. Bacteraemia due to tribe Proteeae: A review of 132 cases during a decade (1991–2000). Scand. J. Infect. Dis. 2003, 35, 98–103. [Google Scholar] [CrossRef] [PubMed]
- Endimiani, A.; Luzzaro, F.; Brigante, G.; Perilli, M.; Lombardi, G.; Amicosante, G.; Rossolini, G.M.; Toniolo, A. Proteus mirabilis bloodstream infections: Risk factors and treatment outcome related to the expression of extended-spectrum beta-lactamases. Antimicrob. Agents Chemother. 2005, 49, 2598–2605. [Google Scholar] [CrossRef]
- Stock, I. Natural Antibiotic Susceptibility of Proteus spp., with Special Reference to P. mirabilis and P. penneri Strains. J. Chemother. 2003, 15, 12–26. [Google Scholar] [PubMed]
- Girlich, D.; Bonnin, R.A.; Dortet, L.; Naas, T. Genetics of Acquired Antibiotic Resistance Genes in Proteus spp. Front. Microbiol. 2020, 11, 256. [Google Scholar] [CrossRef]
- Ahmed, A.M.; Hussein, A.I.A.; Shimamoto, T. Proteus mirabilis clinical isolate harbouring a new variant of Salmonella genomic island 1 containing the multiple antibiotic resistance region. J. Antimicrob. Chemother. 2007, 59, 184–190. [Google Scholar] [CrossRef] [PubMed]
- Alabi, O.S.; Mendonça, N.; Adeleke, O.E.; Da Silva, G.J. Molecular screening of antibiotic-resistant determinants among multidrug-resistant clinical isolates of Proteus mirabilis from SouthWest Nigeria. Afr. Health Sci. 2017, 17, 356. [Google Scholar] [CrossRef]
- Albornoz, E.; Lucero, C.; Romero, G.; Rapoport, M.; Guerriero, L.; Andres, P.; Group, W.A.; Galas, M.; Corso, A.; Petroni, A. Analysis of plasmid-mediated quinolone resistance genes in clinical isolates of the tribe Proteeae from Argentina: First report of qnrD in the Americas. J. Glob. Antimicrob. Resist. 2014, 2, 322–326. [Google Scholar] [CrossRef]
- Armbruster, C.E.; Mobley, H.L.T.; Pearson, M.M. Pathogenesis of Proteus mirabilis Infection. EcoSal Plus 2018, 8, 10.1128/ecosalplus.ESP-0009-2017. [Google Scholar] [CrossRef]
- Arpin, C.; Dubois, V.; Coulange, L.; André, C.; Fischer, I.; Noury, P.; Grobost, F.; Brochet, J.P.; Jullin, J.; Dutilh, B.; et al. Extended-Spectrum β-Lactamase-Producing Enterobacteriaceae in Community and Private Health Care Centers. Antimicrob. Agents Chemother. 2003, 47, 3506. [Google Scholar] [CrossRef]
- Bonnin, R.A.; Girlich, D.; Jousset, A.B.; Gauthier, L.; Cuzon, G.; Bogaerts, P.; Haenni, M.; Madec, J.Y.; Couvé-Deacon, E.; Barraud, O.; et al. A single Proteus mirabilis lineage from human and animal sources: A hidden reservoir of OXA-23 or OXA-58 carbapenemases in Enterobacterales. Sci. Rep. 2020, 10, 9160. [Google Scholar]
- Usman Qamar, M.; SLopes, B.; Hassan, B.; Khurshid, M.; Shafique, M.; Atif Nisar, M.; Mohsin, M.; Nawaz, Z.; Muzammil, S.; Aslam, B.; et al. The present danger of New Delhi metallo-β-lactamase: A threat to public health. Future Microbiol. 2020, 15, 1759–1778. [Google Scholar]
- Beltrão, E.M.B.; Oliveira ÉM de Scavuzzi, A.M.L.; Firmo, E.F.; Lopes, A.C.d.S. Virulence factors of Proteus mirabilis clinical isolates carrying blaKPC-2 and blaNDM-1 and first report blaOXA-10 in Brazil. J. Infect. Chemother. Off. J. Jpn. Soc. Chemother. 2022, 28, 363–372. [Google Scholar]
- de Oliveira, W.D.; Barboza, M.G.; Faustino, G.; Inagaki, W.T.; Sanches, M.S.; Kobayashi, R.K.; Vespero, E.C.; Rocha, S.P. Virulence, resistance and clonality of Proteus mirabilis isolated from patients with community-acquired urinary tract infection (CA-UTI) in Brazil. Microb. Pathog. 2021, 152, 104642. [Google Scholar]
- Li, Y.; Yin, M.; Fang, C.; Fu, Y.; Dai, X.; Zeng, W.; Zhang, L. Genetic analysis of resistance and virulence characteristics of clinical multidrug-resistant Proteus mirabilis isolates. Front. Cell Infect. Microbiol. 2023, 13, 1229194. [Google Scholar]
- Seng, P.; Drancourt, M.; Gouriet, F.; La Scola, B.; Fournier, P.E.; Rolain, J.M.; Raoult, D. Ongoing Revolution in Bacteriology: Routine Identification of Bacteria by Matrix-Assisted Laser Desorption Ionization Time-of-Flight Mass Spectrometry. Clin. Infect. Dis. 2009, 49, 543–551. [Google Scholar]
- EUCAST. Clinical Breakpoints and Dosing of Antibiotics. Available online: https://www.eucast.org/clinical_breakpoints (accessed on 16 October 2023).
- Nordmann, P.; Poirel, L.; Dortet, L. Rapid Detection of Carbapenemase-producing Enterobacteriaceae. Emerg. Infect. Dis. 2012, 18, 1503–1507. [Google Scholar]
- Carba 5 Test—Carbapenemase Resistance Detection. Available online: https://www.ngbiotech.com/ng-test-carba-5/ (accessed on 24 October 2023).
- Boutal, H.; Vogel, A.; Bernabeu, S.; Devilliers, K.; Creton, E.; Cotellon, G.; Plaisance, M.; Oueslati, S.; Dortet, L.; Jousset, A.; et al. A multiplex lateral flow immunoassay for the rapid identification of NDM-, KPC-, IMP- and VIM-type and OXA-48-like carbapenemase-producing Enterobacteriaceae. J. Antimicrob. Chemother. 2018, 73, 909–915. [Google Scholar]
- Kieser, T. Factors affecting the isolation of CCC DNA from Streptomyces lividans and Escherichia coli. Plasmid 1984, 12, 19–36. [Google Scholar]
- Center for Genomic Epidemiology. Available online: http://genepi.food.dtu.dk/resfinder (accessed on 24 October 2023).
- Valentin, T.; Feierl, G.; Masoud-Landgraf, L.; Kohek, P.; Luxner, J.; Zarfel, G. Proteus mirabilis harboring carbapenemase NDM-5 and ESBL VEB-6 detected in Austria. Diagn. Microbiol. Infect. Dis. 2018, 91, 284–286. [Google Scholar]
- Zong, Z.; Partridge, S.R.; Iredell, J.R. RmtC 16S rRNA Methyltransferase in Australia. Antimicrob. Agents Chemother. 2008, 52, 794–795. [Google Scholar]
- Siebor, E.; De Curraize, C.; Neuwirth, C. Genomic context of resistance genes within a French clinical MDR Proteus mirabilis: Identification of the novel genomic resistance island GIPmi1. J. Antimicrob. Chemother. 2018, 73, 1808–1811. [Google Scholar] [PubMed]
- Botelho, J.; Schulenburg, H. The Role of Integrative and Conjugative Elements in Antibiotic Resistance Evolution. Trends Microbiol. 2021, 29, 8–18. [Google Scholar] [PubMed]
- Wozniak, R.A.F.; Waldor, M.K. Integrative and conjugative elements: Mosaic mobile genetic elements enabling dynamic lateral gene flow. Nat. Rev. Microbiol. 2010, 8, 552–563. [Google Scholar] [PubMed]
- Tansirichaiya, S.; Goodman, R.N.; Guo, X.; Bulgasim, I.; Samuelsen, Ø.; Al-Haroni, M.; Roberts, A.P. Intracellular Transposition and Capture of Mobile Genetic Elements following Intercellular Conjugation of Multidrug Resistance Conjugative Plasmids from Clinical Enterobacteriaceae Isolates. Microbiol. Spectr. 2022, 10, e0214021. [Google Scholar]
- Brown-Jaque, M.; Calero-Cáceres, W.; Muniesa, M. Transfer of antibiotic-resistance genes via phage-related mobile elements. Plasmid 2015, 79, 1–7. [Google Scholar]
- Horner, C.S.; Abberley, N.; Denton, M.; Wilcox, M.H. Surveillance of antibiotic susceptibility of Enterobacteriaceae isolated from urine samples collected from community patients in a large metropolitan area, 2010–2012. Epidemiol. Infect. 2014, 142, 399–403. [Google Scholar]
- Miró, E.; Agüero, J.; Larrosa, M.N.; Fernández, A.; Conejo, M.C.; Bou, G.; González-López, J.J.; Lara, N.; Martínez-Martínez, L.; Oliver, A.; et al. Prevalence and molecular epidemiology of acquired AmpC β-lactamases and carbapenemases in Enterobacteriaceae isolates from 35 hospitals in Spain. Eur. J. Clin. Microbiol. Infect. Dis. Off. Publ. Eur. Soc. Clin. Microbiol. 2013, 32, 253–259. [Google Scholar]
- Sheng, W.H.; Badal, R.E.; Hsueh, P.R. Distribution of Extended-Spectrum β-Lactamases, AmpC β-Lactamases, and Carbapenemases among Enterobacteriaceae Isolates Causing Intra-Abdominal Infections in the Asia-Pacific Region: Results of the Study for Monitoring Antimicrobial Resistance Trends (SMART). Antimicrob. Agents Chemother. 2013, 57, 2981–2988. [Google Scholar]
- Beltrão, E.M.B.; Oliveira, É.M.D.; Lopes, A.C.D.S. First report of bla GES-1 in Proteus mirabilis clinical isolates. Rev. Soc. Bras. Med. Trop. 2021, 54, e0864-2020. [Google Scholar]
- Hamprecht, A.; Sattler, J.; Noster, J.; Stelzer, Y.; Fuchs, F.; Dorth, V.; Gatermann, S.G.; Göttig, S. Proteus mirabilis—Analysis of a concealed source of carbapenemases and development of a diagnostic algorithm for detection. Clin. Microbiol. Infect. 2023, 29, 1198.e1–1198.e6. [Google Scholar] [PubMed]
- Korytny, A.; Riesenberg, K.; Saidel-Odes, L.; Schlaeffer, F.; Borer, A. Bloodstream infections caused by multi-drug resistant Proteus mirabilis: Epidemiology, risk factors and impact of multi-drug resistance. Infect. Dis. 2016, 48, 428–431. [Google Scholar]
- Lei, C.W.; Chen, Y.P.; Kang, Z.Z.; Kong, L.H.; Wang, H.N. Characterization of a Novel SXT/R391 Integrative and Conjugative Element Carrying cfr, bla CTX-M-65, fosA3, and aac(6′)-Ib-cr in Proteus mirabilis. Antimicrob. Agents Chemother. 2018, 62, e00849-18. [Google Scholar]
- Shaaban, M.; Elshaer, S.L.; Abd El-Rahman, O.A. Prevalence of extended-spectrum β-lactamases, AmpC, and carbapenemases in Proteus mirabilis clinical isolates. BMC Microbiol. 2022, 22, 247. [Google Scholar]
- Kanzari, L.; Ferjani, S.; Saidani, M.; Hamzaoui, Z.; Jendoubi, A.; Harbaoui, S.; Ferjani, A.; Rehaiem, A.; Boubaker, I.B.; Slim, A. First report of extensively-drug-resistant Proteus mirabilis isolate carrying plasmid-mediated blaNDM-1 in a Tunisian intensive care unit. Int. J. Antimicrob. Agents 2018, 52, 906–909. [Google Scholar]
- Miethke, M.; Pieroni, M.; Weber, T.; Brönstrup, M.; Hammann, P.; Halby, L.; Arimondo, P.B.; Glaser, P.; Aigle, B.; Bode, H.B. Towards the sustainable discovery and development of new antibiotics. Nat. Rev. Chem. 2021, 5, 726–749. [Google Scholar]
- McCreary, E.K.; Heil, E.L.; Tamma, P.D. New Perspectives on Antimicrobial Agents: Cefiderocol. Antimicrob. Agents Chemother. 2021, 65, e0217120. [Google Scholar]
- Alamuri, P.; Eaton, K.A.; Himpsl, S.D.; Smith, S.N.; Mobley, H.L.T. Vaccination with Proteus Toxic Agglutinin, a Hemolysin-Independent Cytotoxin In Vivo, Protects against Proteus mirabilis Urinary Tract Infection. Infect. Immun. 2009, 77, 632–641. [Google Scholar]
- Cestari, S.E.; Ludovico, M.S.; Martins, F.H.; da Rocha, S.P.D.; Elias, W.P.; Pelayo, J.S. Molecular detection of HpmA and HlyA hemolysin of uropathogenic Proteus mirabilis. Curr. Microbiol. 2013, 67, 703–707. [Google Scholar]
- Belas, R.; Suvanasuthi, R. The Ability of Proteus mirabilis To Sense Surfaces and Regulate Virulence Gene Expression Involves FliL, a Flagellar Basal Body Protein. J. Bacteriol. 2005, 187, 6789–6803. [Google Scholar]
- Belas, R.; Manos, J.; Suvanasuthi, R. Proteus mirabilis ZapA Metalloprotease Degrades a Broad Spectrum of Substrates, Including Antimicrobial Peptides. Infect. Immun. 2004, 72, 5159–5167. [Google Scholar] [PubMed]
- Mirzaei, A.; Habibi, M.; Bouzari, S.; Asadi Karam, M.R. Characterization of Antibiotic-Susceptibility Patterns, Virulence Factor Profiles and Clonal Relatedness in Proteus mirabilis Isolates from Patients with Urinary Tract Infection in Iran. Infect. Drug Resist. 2019, 12, 3967–3979. [Google Scholar] [PubMed]
- O’May, G.A.; Jacobsen, S.M.; Longwell, M.; Stoodley, P.; Mobley, H.L.T.; Shirtliff, M.E. The high-affinity phosphate transporter Pst in Proteus mirabilis HI4320 and its importance in biofilm formation. Microbiology 2009, 155, 1523–1535. [Google Scholar] [PubMed]
Date Isolation | Ward a | Specimen b | Age (Years) | Gender c | Date of Hospitalization | Invasive Procedure (Site of Insertion) d | Surgery | Treatment Prior to the Isolation of XDRPm e | Outcome f | |
---|---|---|---|---|---|---|---|---|---|---|
P1-109-A10 | 07.09.21 | POG-ICU | Urine | 51 | M | 21 July 21 | CVC (jugular) + UC | Tracheostomy–Gastrostomy | AMC + CST | Died on 27 November 2021 |
P2-109-B1 | 11.10.21 | A-ICU | BPBS | 64 | M | 28 August 21 | CVC + AC + UC | None | IMP + GM + CAZ + CIP + CST | Died on 03 November 2021 |
P3-109-B2 | 05.02.22 | POG-ICU | BPBS | 65 | M | 19 January 22 | CVC (jugular) + AC (radial) + UC | None | IMP + E + CST | Died on 07 February 2022 |
P4-109-B3 | 05.04.22 | A-ICU | VC | 64 | M | 05 March 22 | CVC (femoral) + AC (radial) + UC | Leg external fixator | IMP + CST | Discharged on 14 May 2022 |
P5-109-B4 | 07.04.22 | POG-ICU | BPBS | 51 | M | 24 March 22 | NA | None | IMP + TEC + CST | Died on 08 April 2022 |
P6-109-B5 | 05.05.22 | A-ICU | VC | 47 | F | 25 November 22 | CVC (femoral) + AC (radial) + UC | surgical evacuation of expansive frontal hematomas | N/A | Transferred to NS on 06 November 2022 |
P7-109-B6 | 13.05.22 | A-ICU | VC | 37 | M | 21 April 22 | CVC (jugular) + AC + UC | Tracheostomy - | IMP + AN + TEC + CST | Died on 16 October 2022 |
P8-109-B7 | 29.05.22 | Neurosurgery | Urine | 52 | F | 15 March 22 | CVC (jugular) + AC (radial) + UC | Tracheostomy–Gastrostomy | CAZ + IMP + VAN + MTZ + CST | Discharged on 01 June 2022 |
P9-109-B8 | 08.08.22 | A-ICU | Urine | 60 | F | 04 July 22 | CVC (jugular) + AC (radial) + UC | none | TEC + CST | Died on 23 August 2022 |
P10-109-B9 | 27.09.22 | A-ICU | BPBS | 68 | M | 10 September 22 | CVC (femoral) + AC + UC | Tracheostomy–Gastrostomy | IMP + VAN + CST | Dead on 28 September 2022 |
P11-109-B10 | 04.10.22 | A-ICU | Blood | 37 | M | 21 April 22 | CVC (jugular) + AC (radial) | Tracheostomy–Gastrostomy | IMP + AN + TEC + CST | Died on 16 October 2022 |
Isolates ID | RESISTOME | Potential Virulence Factors | ST | |||
---|---|---|---|---|---|---|
Beta-Lactamases | Fluoroquinolone | Aminogycoside | Others | |||
P1-109-A10 | blaNDM-1 | qnrA1, parC (S84I) gyrA(S83I) | aph(6)-Id, aac(6′)-Ib, ant(3″)-Ia, aph(3′)-Ia, armA, aadA1,aadA2 | qacE sul1, sul2, dfrA1, dfrA32, ere(A), mph(E), msr(E), cat, floR, tet(C), tet(J) | aipA, pta, zapA, ireA, hpmA, hpmB, mrpA, pmfA, mrpH, pmpA, atfA, rcsD, ureC, ureG, flhA, FliA, fliC, fliF, fliG, fliL, fliP | ST135 |
P2-109-B1 | blaVEB-6, blaNDM-1 | qnrA1, parC (S84I) gyrA(S83I) | aph(6)-Id, aac(6′)-Ib, ant(3″)-Ia, aph(3′)-Ia, armA, aadA2 | qacE sul1, sul2, dfrA1, dfrA32, ere(A), mph(E), msr(E), cat, floR, tet(A), tet(C), tet(J) | aipA, pta, zapA, ireA, hpmA, hpmB, mrpA, pmfA, mrpH, pmpA, atfA, rcsD, ureC, ureG, flhA, FliA, fliC, fliF, fliG, fliL, fliP | ST135 |
P3-109-B2 | blaTEM-2,blaNDM-1 | qnrA1, parC (S84I) gyrA(S83I) | aph(6)-Id, aac(6′)-Ib, ant(3″)-Ia, aph(3′)-Ia, armA, aadA2 | qacE sul1, sul2, dfrA1, dfrA32, ere(A), mph(E), msr(E), cat, floR, tet(C), tet(J) | aipA, pta, zapA, ireA, hpmA, hpmB, mrpA, pmfA, mrpH, pmpA, atfA, rcsD, ureC, ureG, flhA, FliA, fliC, fliF, fliG, fliL, fliP | ST135 |
P4-109-B3 | blaTEM-2,blaNDM-1 | qnrA1, parC (S84I) gyrA(S83I) | aph(6)-Id, aac(6′)-Ib, ant(3″)-Ia, aph(3′)-Ia, armA, aadA2 | qacE sul1, sul2, dfrA1, dfrA32, ere(A), mph(E), msr(E), cat, floR, tet(C), tet(J) | aipA, pta, zapA, ireA, hpmA, hpmB, mrpA, pmfA, mrpH, pmpA, atfA, rcsD, ureC, ureG, flhA, FliA, fliC, fliF, fliG, fliL, fliP | ST135 |
P5-109-B4 | blaTEM-2,blaNDM-1 | qnrA1, parC (S84I) gyrA(S83I) | aph(6)-Id, aac(6′)-Ib, ant(3″)-Ia, aph(3′)-Ia, armA, aadA2 | qacE sul1, sul2, dfrA1, dfrA32, ere(A), mph(E), msr(E), cat, floR, tet(C), tet(J) | aipA, pta, zapA, ireA, hpmA, hpmB, mrpA, pmfA, mrpH, pmpA, atfA, rcsD, ureC, ureG, flhA, FliA, fliC, fliF, fliG, fliL, fliP | ST135 |
P6-109-B5 | blaTEM-2,blaNDM-1 | qnrA1, parC (S84I) gyrA(S83I) | aph(6)-Id, aac(6′)-Ib, ant(3″)-Ia, aph(3′)-Ia, armA, aadA2 | qacE sul1, sul2, dfrA1, dfrA32, ere(A), mph(E), msr(E), cat, floR, tet(C), tet(J) | aipA, pta, zapA, ireA, hpmA, hpmB, mrpA, pmfA, mrpH, pmpA, atfA, rcsD, ureC, ureG, flhA, FliA, fliC, fliF, fliG, fliL, fliP | ST135 |
P7-109-B6 | blaTEM-2,blaNDM-1 | qnrA1, parC (S84I) gyrA(S83I) | aph(6)-Id, aac(6′)-Ib, ant(3″)-Ia, aph(3′)-Ia, armA, aadA2 | qacE sul1, sul2, dfrA1, dfrA32, ere(A), mph(E), msr(E), cat, floR, tet(C), tet(J) | aipA, pta, zapA, ireA, hpmA, hpmB, mrpA, pmfA, mrpH, pmpA, atfA, rcsD, ureC, ureG, flhA, FliA, fliC, fliF, fliG, fliL, fliP | ST135 |
P8-109-B7 | blaTEM-2,blaNDM-1 | qnrA1, parC (S84I) gyrA(S83I) | aph(6)-Id, aac(6′)-Ib, ant(3″)-Ia, aph(3′)-Ia, armA, aadA2 | qacE sul1, sul2, dfrA1, dfrA32, ere(A), mph(E), msr(E), cat, floR, tet(C), tet(J) | aipA, pta, zapA, ireA, hpmA, hpmB, mrpA, pmfA, mrpH, pmpA, atfA, rcsD, ureC, ureG, flhA, FliA, fliC, fliF, fliG, fliL, fliP | ST135 |
P9-109-B8 | blaTEM-2,blaNDM-1 | qnrA1, parC (S84I) gyrA(S83I) | aph(6)-Id, aac(6′)-Ib, ant(3″)-Ia, aph(3′)-Ia, armA, aadA2 | qacE sul1, sul2, dfrA1, dfrA32, ere(A), mph(E), msr(E), cat, floR, tet(C), tet(J) | aipA, pta, zapA, ireA, hpmA, hpmB, mrpA, pmfA, mrpH, pmpA, atfA, rcsD, ureC, ureG, flhA, FliA, fliC, fliF, fliG, fliL, fliP | ST135 |
P10-109-B9 | blaTEM-2,blaNDM-1 | qnrA1, parC (S84I) gyrA(S83I) | aph(6)-Id, aac(6′)-Ib, ant(3″)-Ia, aph(3′)-Ia, armA, aadA2 | qacE sul1, sul2, dfrA1, dfrA32, ere(A), mph(E), msr(E), cat, floR, tet(C), tet(J) | aipA, pta, zapA, ireA, hpmA, hpmB, mrpA, pmfA, mrpH, pmpA, atfA, rcsD, ureC, ureG, flhA, FliA, fliC, fliF, fliG, fliL, fliP | ST135 |
P11-109-B10 | blaTEM-2,blaNDM-1 | qnrA1, parC (S84I) gyrA(S83I) | aph(6)-Id, aac(6′)-Ib, ant(3″)-Ia, aph(3′)-Ia, armA, aadA2 | qacE sul1, sul2, dfrA1, dfrA32, ere(A), mph(E), msr(E), cat, floR, tet(C), tet(J) | aipA, pta, zapA, ireA, hpmA, hpmB, mrpA, pmfA, mrpH, pmpA, atfA, rcsD, ureC, ureG, flhA, FliA, fliC, fliF, fliG, fliL, fliP | ST135 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jaidane, N.; Tilouche, L.; Oueslati, S.; Girlich, D.; Azaiez, S.; Jacquemin, A.; Dortet, L.; Naija, W.; Trabelsi, A.; Naas, T.; et al. Clonal Dissemination of NDM-Producing Proteus mirabilis in a Teaching Hospital in Sousse, Tunisia. Pathogens 2025, 14, 298. https://doi.org/10.3390/pathogens14030298
Jaidane N, Tilouche L, Oueslati S, Girlich D, Azaiez S, Jacquemin A, Dortet L, Naija W, Trabelsi A, Naas T, et al. Clonal Dissemination of NDM-Producing Proteus mirabilis in a Teaching Hospital in Sousse, Tunisia. Pathogens. 2025; 14(3):298. https://doi.org/10.3390/pathogens14030298
Chicago/Turabian StyleJaidane, Nadia, Lamia Tilouche, Saoussen Oueslati, Delphine Girlich, Sana Azaiez, Aymeric Jacquemin, Laurent Dortet, Walid Naija, Abdelhalim Trabelsi, Thierry Naas, and et al. 2025. "Clonal Dissemination of NDM-Producing Proteus mirabilis in a Teaching Hospital in Sousse, Tunisia" Pathogens 14, no. 3: 298. https://doi.org/10.3390/pathogens14030298
APA StyleJaidane, N., Tilouche, L., Oueslati, S., Girlich, D., Azaiez, S., Jacquemin, A., Dortet, L., Naija, W., Trabelsi, A., Naas, T., Mansour, W., & Bonnin, R. A. (2025). Clonal Dissemination of NDM-Producing Proteus mirabilis in a Teaching Hospital in Sousse, Tunisia. Pathogens, 14(3), 298. https://doi.org/10.3390/pathogens14030298