Salad Vegetables as a Reservoir of Antimicrobial-Resistant Enterococcus: Exploring Diversity, Resistome, Virulence, and Plasmid Dynamics
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sources and Sample Selection
2.2. Enterococcus Isolation and Characterization
2.3. Evaluation of Phenotypic AMR
2.4. Whole-Genome Sequencing
2.5. Plasmid Mobility Evaluation
3. Results
3.1. Diversity of Enterococcus Species
3.2. Antimicrobial Susceptibility Profiles Across Enterococcus Species
3.3. Whole-Genome Analysis: Resistome Composition
3.4. Whole-Genome Analysis: Virulome Composition
3.5. Plasmid Architecture of Enterococcus Isolates
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Habib, I.; Khan, M.; Mohamed, M.I.; Ghazawi, A.; Abdalla, A.; Lakshmi, G.; Elbediwi, M.; Al Marzooqi, H.M.; Afifi, H.S.; Shehata, M.G.; et al. Assessing the Prevalence and Potential Risks of Salmonella Infection Associated with Fresh Salad Vegetable Consumption in the United Arab Emirates. Foods 2023, 12, 3060. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Xu, W.; Guo, S.; Xu, S.; Wang, J.; Zhang, S.; Kuang, Y.; Jin, P. Enterococci for Human Health: A Friend or Foe? Microb. Pathog. 2025, 201, 107381. [Google Scholar] [CrossRef] [PubMed]
- Almeida-Santos, A.C.; Novais, C.; Peixe, L.; Freitas, A.R. Vancomycin-Resistant Enterococcus faecium: A Current Perspective on Resilience, Adaptation, and the Urgent Need for Novel Strategies. J. Glob. Antimicrob. Resist. 2025, 41, 233–252. [Google Scholar] [CrossRef]
- Abd El-Hamid, M.I.; Abd El-Aziz, N.K.; Ammar, A.M.; Gharib, A.A.; Ibrahim, G.A.; Moawed, B.F.M.; Alshamy, H.; El-Malt, R.M.S. Emergence of Multi-Drug-Resistant, Vancomycin-Resistant, and Multi-Virulent Enterococcus Species from Chicken, Dairy, and Human Samples in Egypt. J. Appl. Microbiol. 2025, 136, lxaf001. [Google Scholar] [CrossRef]
- Torres, C.; Alonso, C.A.; Ruiz-Ripa, L.; León-Sampedro, R.; Del Campo, R.; Coque, T.M. Antimicrobial Resistance in Enterococcus spp. of Animal Origin. Microbiol. Spectr. 2018, 6, 41. [Google Scholar] [CrossRef]
- Kuroda, M.; Sekizuka, T.; Matsui, H.; Suzuki, K.; Seki, H.; Saito, M.; Hanaki, H. Complete Genome Sequence and Characterization of Linezolid-Resistant Enterococcus faecalis Clinical Isolate KUB3006 Carrying a cfr(B)-Transposon on its Chromosome and optrA-Plasmid. Front. Microbiol. 2018, 9, 2576. [Google Scholar] [CrossRef]
- da Costa, P.M.; Loureiro, L.; Matos, A.J. Transfer of Multidrug-Resistant Bacteria between Intermingled Ecological Niches: The Interface between Humans, Animals and the Environment. Int. J. Environ. Res. Public Health 2013, 10, 278–294. [Google Scholar] [CrossRef]
- Kim, M.C.; Cha, M.H.; Ryu, J.G.; Woo, G.J. Characterization of Vancomycin-Resistant Enterococcus faecalis and Enterococcus faecium Isolated from Fresh Produces and Human Fecal Samples. Foodborne Pathog. Dis. 2017, 14, 195–201. [Google Scholar] [CrossRef]
- Wang, Z.; Cao, Q.; Liu, Q.; Dufe, D.; Wouters, P.; Deng, L.; Pong, A. How Many Subjects Are Enough in a Veterinary Trial?—Literature Review and Insights from Industrial Statisticians. Res. Vet. Sci. 2025, 186, 105569. [Google Scholar] [CrossRef]
- Habib, I.; Ghazawi, A.; Lakshmi, G.B.; Mohamed, M.I.; Li, D.; Khan, M.; Sahibzada, S. Emergence and Genomic Characterization of the First Reported optrA-Carrying Linezolid-Resistant Enterococci Isolated from Retail Broiler Meat in the United Arab Emirates. Foods 2022, 11, 3190. [Google Scholar] [CrossRef]
- CLSI. Performance Standards for Antimicrobial Susceptibility Testing, 33rd ed.; CLSI Supplement M100; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2023. [Google Scholar]
- Magiorakos, A.-P.; Srinivasan, A.; Carey, R.B.; Carmeli, Y.; Falagas, M.E.; Giske, C.G.; Harbarth, S.; Hindler, J.F.; Kahlmeter, G.; Olsson-Liljequist, B.; et al. Multidrug-Resistant, Extensively Drug-Resistant and Pandrug-Resistant Bacteria: An International Expert Proposal for Interim Standard Definitions for Acquired Resistance. Clin. Microbiol. Infect. 2012, 18, 268–281. [Google Scholar] [CrossRef] [PubMed]
- Saratto, T.; Visuri, K.; Lehtinen, J.; Ortega-Sanz, I.; Steenwyk, J.L.; Sihvonen, S. Solu: A Cloud Platform for Real-Time Genomic Pathogen Surveillance. BMC Bioinform. 2025, 26, 12. [Google Scholar] [CrossRef]
- Roberts, L.W.; Forde, B.M.; Hurst, T.; Ling, W.; Nimmo, G.R.; Bergh, H.; George, N.; Hajkowicz, K.; McNamara, J.F.; Lipman, J.; et al. Genomic Surveillance, Characterization and Intervention of a Polymicrobial Multidrug-Resistant Outbreak in Critical Care. Microb. Genom. 2021, 7, mgen000530. [Google Scholar] [CrossRef]
- Robertson, J.; Nash, J.H.E. MOB-Suite: Software Tools for Clustering, Reconstruction and Typing of Plasmids from Draft Assemblies. Microb. Genom. 2018, 4, e000206. [Google Scholar] [CrossRef] [PubMed]
- Garcillán-Barcia, M.P.; Francia, M.V.; de la Cruz, F. The Diversity of Conjugative Relaxases and Its Application in Plasmid Classification. FEMS Microbiol. Rev. 2009, 33, 657–687. [Google Scholar] [CrossRef]
- Habib, I.; Lakshmi, G.B.; Mohamed, M.I.; Ghazawi, A.; Khan, M.; Li, D. Enumeration, Antimicrobial Resistance, and Virulence Genes Screening of Enterococcus spp. Isolated from Retail Chicken Carcasses in the United Arab Emirates. Foodborne Pathog. Dis. 2022, 19, 590–597. [Google Scholar] [CrossRef] [PubMed]
- Al-Kharousi, Z.S.; Guizani, N.; Al-Sadi, A.M.; Al-Bulushi, I.M. Antimicrobial Susceptibility of Fresh Produce-Associated Enterobacteriaceae and Enterococci in Oman. Foods 2021, 11, 3085. [Google Scholar] [CrossRef]
- Tango, C.N.; Wei, S.; Khan, I.; Hussain, M.S.; Kounkeu, P.N.; Park, J.H.; Kim, S.H.; Oh, D.H. Microbiological Quality and Safety of Fresh Fruits and Vegetables at Retail Levels in Korea. J. Food Sci. 2018, 83, 386–392. [Google Scholar] [CrossRef]
- Chajęcka-Wierzchowska, W.; Zarzecka, U.; Zadernowska, A. Enterococci Isolated from Plant-Derived Food—Analysis of Antibiotic Resistance and the Occurrence of Resistance Genes. LWT 2021, 139, 110549. [Google Scholar] [CrossRef]
- Mullally, C.A.; Fahriani, M.; Mowlaboccus, S.; Coombs, G.W. Non-faecium Non-faecalis Enterococci: A Review of Clinical Manifestations, Virulence Factors, and Antimicrobial Resistance. Clin. Microbiol. Rev. 2024, 37, e0012123. [Google Scholar] [CrossRef]
- Ben Said, L.; Klibi, N.; Dziri, R.; Borgo, F.; Boudabous, A.; Ben Slama, K.; Torres, C. Prevalence, Antimicrobial Resistance and Genetic Lineages of Enterococcus spp. from Vegetable Food, Soil and Irrigation Water in Farm Environments in Tunisia. J. Sci. Food Agric. 2016, 96, 1627–1633. [Google Scholar] [CrossRef] [PubMed]
- Arias, C.A.; Courvalin, P.; Reynolds, P.E. vanC Cluster of Vancomycin-Resistant Enterococcus gallinarum BM4174. Antimicrob. Agents Chemother. 2000, 44, 1660–1666. [Google Scholar] [CrossRef]
- Schwaiger, K.; Bauer, J.; Hörmansdorfer, S.; Mölle, G.; Preikschat, P.; Kämpf, P.; Bauer-Unkauf, I.; Bischoff, M.; Hölzel, C. Presence of the Resistance Genes vanC1 and pbp5 in Phenotypically Vancomycin- and Ampicillin-Susceptible Enterococcus faecalis. Microb. Drug Resist. 2012, 18, 434–439. [Google Scholar] [CrossRef]
- Hölzel, C.; Bauer, J.; Stegherr, E.M.; Schwaiger, K. Presence of the Vancomycin Resistance Gene Cluster vanC1, vanXYc, and vanT in Enterococcus casseliflavus. Microb. Drug Resist. 2014, 20, 177–180. [Google Scholar] [CrossRef] [PubMed]
- Pesavento, G.; Calonico, C.; Ducci, B.; Magnanini, A.; Lo Nostro, A. Prevalence and Antibiotic Resistance of Enterococcus spp. Isolated from Retail Cheese, Ready-to-Eat Salads, Ham, and Raw Meat. Food Microbiol. 2014, 41, 1–7. [Google Scholar] [CrossRef]
- Johnston, L.M.; Jaykus, L.A. Antimicrobial Resistance of Enterococcus Species Isolated from Produce. Appl. Environ. Microbiol. 2004, 70, 3133–3137. [Google Scholar] [CrossRef]
- Werner, G.; Hildebrandt, B.; Witte, W. The Newly Described msrC Gene Is Not Equally Distributed among All Isolates of Enterococcus faecium. Antimicrob. Agents Chemother. 2001, 45, 3672–3673. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.H.; Lin, S.Y.; Lin, Y.T.; Tseng, S.P.; Chang, C.C.; Yu, S.Y.; Hung, W.W.; Jao, Y.T.; Lin, C.Y.; Chen, Y.H.; et al. Emergence of aac(6′)-Ie-aph(2″)-Ia-Positive Enterococci with Non-High-Level Gentamicin Resistance Mediated by IS1216V: Adaptation to Decreased Aminoglycoside Usage in Taiwan. J. Antimicrob. Chemother. 2021, 76, 1689–1697. [Google Scholar] [CrossRef]
- Messele, Y.E.; Trott, D.J.; Hasoon, M.F.; Veltman, T.; McMeniman, J.P.; Kidd, S.P.; Petrovski, K.R.; Low, W.Y. Phylogeny, Virulence, and Antimicrobial Resistance Gene Profiles of Enterococcus faecium Isolated from Australian Feedlot Cattle and Their Significance to Public and Environmental Health. Antibiotics 2023, 12, 1122. [Google Scholar] [CrossRef]
- Shridhar, P.B.; Amachawadi, R.G.; Tokach, M.; Patel, I.; Gangiredla, J.; Mammel, M.; Nagaraja, T.G. Whole Genome Sequence Analyses-Based Assessment of Virulence Potential and Antimicrobial Susceptibilities and Resistance of Enterococcus faecium Strains Isolated from Commercial Swine and Cattle Probiotic Products. J. Anim. Sci. 2022, 100, skac030. [Google Scholar] [CrossRef]
- El Zowalaty, M.E.; Lamichhane, B.; Falgenhauer, L.; Mowlaboccus, S.; Zishiri, O.T.; Forsythe, S.; Helmy, Y.A. Antimicrobial Resistance and Whole Genome Sequencing of Novel Sequence Types of Enterococcus faecalis, Enterococcus faecium, and Enterococcus durans Isolated from Livestock. Sci. Rep. 2023, 13, 18609. [Google Scholar] [CrossRef]
Species | Isolates | Source | No. of Plasmids | Size (bp) | MOB Cluster | Resistance Genes Harbored on Plasmid | Replicon Types | Mobility |
---|---|---|---|---|---|---|---|---|
Enterococcus faecium | ENT-31 | Parsley UAE | 1 | 26,145 | AB756 | tet(L), tet(M) | rep_cluster_1018, rep_cluster_185 | mobilizable |
ENT-30 | Parsley UAE | 3 | 52,765 | AC731 | None | rep_cluster_893 | non-mobilizable | |
27,735 | AB756 | ant(6)-Ia, lnu(B), lsa(E), spw, tet(L), tet(M) | rep_cluster_185 | mobilizable | ||||
5972 | AA894 | None | rep_cluster_1742 | mobilizable | ||||
ENT-29 | Arugula, UAE | 2 | 133,159 | AD908 | None | rep_cluster_893 | conjugative | |
44,140 | AB756 | ant(6)-Ia, aph(3′)-IIIa, erm(B), sat4, tet(L), tet(M) | rep_cluster_1018, rep_cluster_185 | mobilizable | ||||
ENT-27 | Arugula, UAE | 2 | 116,750 | AC727 | None | Inc18, rep_cluster_893 | non-mobilizable | |
19,166 | AB756 | tet(L), tet(M) | rep_cluster_1018, rep_cluster_185 | mobilizable | ||||
ENT-26 | Boston Green Lettuce, UAE | 3 | 81,412 | AC727 | None | rep_cluster_893 | non-mobilizable | |
30,390 | AD582 | tet(L), tet(M) | mobilizable | |||||
18,377 | AB918 | ant(6)-Ia, lnu(B), lsa(E), spw | non-mobilizable | |||||
ENT-25 | Roman Lettuce, UAE | 4 | 48,220 | AD582 | tet(L), tet(M) | mobilizable | ||
40,528 | AD907 | None | rep_cluster_893 | conjugative | ||||
10,144 | AB915 | erm(B) | non-mobilizable | |||||
51,220 | AC728 | None | mobilizable | |||||
Enterococcus faecalis | ENT-28 | Roman Lettuce, UAE | 1 | 3845 | AD569 | None | rep_cluster_1197 | non-mobilizable |
ENT-22 | Roman Lettuce, Jordan | 2 | 65,530 | AD582 | catA, dfrG, tet(L), tet(M) | rep_cluster_1118, rep_cluster_992 | mobilizable | |
6362 | AD265 | None | non-mobilizable | |||||
ENT-21 | Spinach, Italy | 1 | 5982 | AD058 | catA, erm(B) | rep_cluster_1118 | non-mobilizable |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Habib, I.; Khan, M.; Lakshmi, G.B.; Mohamed, M.-Y.I.; Ghazawi, A.; Al-Rifai, R.H. Salad Vegetables as a Reservoir of Antimicrobial-Resistant Enterococcus: Exploring Diversity, Resistome, Virulence, and Plasmid Dynamics. Foods 2025, 14, 1150. https://doi.org/10.3390/foods14071150
Habib I, Khan M, Lakshmi GB, Mohamed M-YI, Ghazawi A, Al-Rifai RH. Salad Vegetables as a Reservoir of Antimicrobial-Resistant Enterococcus: Exploring Diversity, Resistome, Virulence, and Plasmid Dynamics. Foods. 2025; 14(7):1150. https://doi.org/10.3390/foods14071150
Chicago/Turabian StyleHabib, Ihab, Mushtaq Khan, Glindya Bhagya Lakshmi, Mohamed-Yousif Ibrahim Mohamed, Akela Ghazawi, and Rami H. Al-Rifai. 2025. "Salad Vegetables as a Reservoir of Antimicrobial-Resistant Enterococcus: Exploring Diversity, Resistome, Virulence, and Plasmid Dynamics" Foods 14, no. 7: 1150. https://doi.org/10.3390/foods14071150
APA StyleHabib, I., Khan, M., Lakshmi, G. B., Mohamed, M.-Y. I., Ghazawi, A., & Al-Rifai, R. H. (2025). Salad Vegetables as a Reservoir of Antimicrobial-Resistant Enterococcus: Exploring Diversity, Resistome, Virulence, and Plasmid Dynamics. Foods, 14(7), 1150. https://doi.org/10.3390/foods14071150