Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,413)

Search Parameters:
Keywords = resistant prostate cancer

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
28 pages, 845 KiB  
Review
Circulating Tumor DNA in Prostate Cancer: A Dual Perspective on Early Detection and Advanced Disease Management
by Stepan A. Kopytov, Guzel R. Sagitova, Dmitry Y. Guschin, Vera S. Egorova, Andrei V. Zvyagin and Alexey S. Rzhevskiy
Cancers 2025, 17(15), 2589; https://doi.org/10.3390/cancers17152589 - 6 Aug 2025
Abstract
Prostate cancer (PC) remains a leading cause of malignancy in men worldwide, with current diagnostic methods such as prostate-specific antigen (PSA) testing and tissue biopsies facing limitations in specificity, invasiveness, and ability to capture tumor heterogeneity. Liquid biopsy, especially analysis of circulating tumor [...] Read more.
Prostate cancer (PC) remains a leading cause of malignancy in men worldwide, with current diagnostic methods such as prostate-specific antigen (PSA) testing and tissue biopsies facing limitations in specificity, invasiveness, and ability to capture tumor heterogeneity. Liquid biopsy, especially analysis of circulating tumor DNA (ctDNA), has emerged as a transformative tool for non-invasive detection, real-time monitoring, and treatment selection for PC. This review examines the role of ctDNA in both localized and metastatic PCs, focusing on its utility in early detection, risk stratification, therapy selection, and post-treatment monitoring. In localized PC, ctDNA-based biomarkers, including ctDNA fraction, methylation patterns, fragmentation profiles, and mutations, demonstrate promise in improving diagnostic accuracy and predicting disease recurrence. For metastatic PC, ctDNA analysis provides insights into tumor burden, genomic alterations, and resistance mechanisms, enabling immediate assessment of treatment response and guiding therapeutic decisions. Despite challenges such as the low ctDNA abundance in early-stage disease and the need for standardized protocols, advances in sequencing technologies and multimodal approaches enhance the clinical applicability of ctDNA. Integrating ctDNA with imaging and traditional biomarkers offers a pathway to precision oncology, ultimately improving outcomes. This review underscores the potential of ctDNA to redefine PC management while addressing current limitations and future directions for research and clinical implementation. Full article
Show Figures

Graphical abstract

13 pages, 1159 KiB  
Case Report
Two Decades of Disease Evolution and Biomarker-Guided Clinical Decision Making in Metastatic Prostate Cancer
by Tatiana Erazo, Enrico Moiso, Omer Aras and Howard I. Scher
Int. J. Mol. Sci. 2025, 26(15), 7593; https://doi.org/10.3390/ijms26157593 - 6 Aug 2025
Abstract
Despite significant advances in prostate cancer treatment over the past two decades, metastatic castration-resistant prostate cancer (mCRPC) remains incurable. We present the case of a patient with aggressive prostate cancer diagnosed 20 years ago, underscoring the value of longitudinal genomic profiling and advanced [...] Read more.
Despite significant advances in prostate cancer treatment over the past two decades, metastatic castration-resistant prostate cancer (mCRPC) remains incurable. We present the case of a patient with aggressive prostate cancer diagnosed 20 years ago, underscoring the value of longitudinal genomic profiling and advanced imaging to guide clinical decisions. After multiple treatment failures, genomic analyses of tissue and liquid biopsies revealed dynamic changes in tumor biology and the emergence of resistance mechanisms, particularly AR amplification, identified with a liquid biopsy test and validated by [18F]-FDHT PET scan. This finding guided treatment with bipolar androgen therapy (BAT), which achieved a dramatic clinical response, reduced AR expression, improved symptoms, and restored sensitivity to enzalutamide. This case exemplifies the utility of serial liquid biopsies in uncovering mechanisms of tumor evolution and resistance, and the crucial role of cutting-edge diagnostics in personalized cancer treatment. Full article
(This article belongs to the Special Issue Prostate Cancer Research Update: Molecular Diagnostic Biomarkers)
Show Figures

Figure 1

23 pages, 4445 KiB  
Article
Fumiquinazolines F and G from the Fungus Penicillium thymicola Demonstrates Anticancer Efficacy Against Triple-Negative Breast Cancer MDA-MB-231 Cells by Inhibiting Epithelial–Mesenchymal Transition
by Gleb K. Rystsov, Tatiana V. Antipova, Zhanna V. Renfeld, Lidiya S. Pilguy, Michael G. Shlyapnikov, Mikhail B. Vainshtein, Igor E. Granovsky and Marina Y. Zemskova
Int. J. Mol. Sci. 2025, 26(15), 7582; https://doi.org/10.3390/ijms26157582 - 5 Aug 2025
Abstract
The secondary metabolites of the fungus Penicillium thymicola, fumiquinazolines F and G, have antibacterial and antifungal characteristics; however, their potential anti-tumor action against human cancer cells remains unknown. The goal of our study was to determine the biological efficacy of fumiquinazolines F [...] Read more.
The secondary metabolites of the fungus Penicillium thymicola, fumiquinazolines F and G, have antibacterial and antifungal characteristics; however, their potential anti-tumor action against human cancer cells remains unknown. The goal of our study was to determine the biological efficacy of fumiquinazolines F and G on breast and prostate cancer cells. Cancer cell proliferation and migration were monitored in real time using xCELLigence technology and flow cytometry. Alterations in mRNA and protein expression were assessed by RT-qPCR, ELISA, and Western blotting. Our data indicate that fumiquinazolines F and G are more effective in inhibiting breast cancer cell proliferation than prostate cancer cells. Fumiquinazoline F is active against both hormone-dependent epithelial MCF-7 (IC50 48 μM) and hormone-resistant triple-negative mesenchymal MDA-MB-231 breast cancer cells (IC50 54.1 μM). The metabolite has low cytotoxicity but slows cell cycle progression. In fumiquinazoline F-treated MDA-MB-231 cells, the levels of proteins implicated in epithelial–mesenchymal transition (EMT) (such as E-cadherin, vimentin, and CD44) fluctuate, resulting in a decrease in cell migratory rate and adhesion to a hyaluronic acid-coated substrate. Thus, fumiquinazolines F and G exhibit anticancer activity by inhibiting EMT, cell proliferation, and migration, hence reverting malignant cells to a less pathogenic phenotype. The compound’s multi-target anticancer profile underscores its potential for further exploration of novel EMT-regulating pathways. Full article
(This article belongs to the Special Issue Molecular Research in Natural Products)
Show Figures

Figure 1

14 pages, 917 KiB  
Article
Deep Learning Treatment Recommendations for Patients Diagnosed with Non-Metastatic Castration-Resistant Prostate Cancer Receiving Androgen Deprivation Treatment
by Chunyang Li, Julia Bohman, Vikas Patil, Richard Mcshinsky, Christina Yong, Zach Burningham, Matthew Samore and Ahmad S. Halwani
BioMedInformatics 2025, 5(3), 42; https://doi.org/10.3390/biomedinformatics5030042 - 4 Aug 2025
Viewed by 234
Abstract
Background: Prostate cancer (PC) is the second leading cause of cancer-related death in men in the United States. A subset of patients develops non-metastatic, castration-resistant PC (nmCRPC), for which management requires a personalized consideration for appropriate treatment. However, there is no consensus regarding [...] Read more.
Background: Prostate cancer (PC) is the second leading cause of cancer-related death in men in the United States. A subset of patients develops non-metastatic, castration-resistant PC (nmCRPC), for which management requires a personalized consideration for appropriate treatment. However, there is no consensus regarding when to switch from androgen deprivation therapy (ADT) to more aggressive treatments like abiraterone or enzalutamide. Methods: We analyzed 5037 nmCRPC patients and employed a Weibull Time to Event Recurrent Neural Network to identify patients who would benefit from switching from ADT to abiraterone/enzalutamide. We evaluated this model using differential treatment benefits measured by the Kaplan–Meier estimation and milestone probabilities. Results: The model achieved an area under the curve of 0.738 (standard deviation (SD): 0.057) for patients treated with abiraterone/enzalutamide and 0.693 (SD: 0.02) for patients exclusively treated with ADT at the 2-year milestone. The model recommended 14% of ADT patients switch to abiraterone/enzalutamide. Analysis showed a statistically significant absolute improvement using model-recommended treatments in progression-free survival (PFS) of 0.24 (95% confidence interval (CI): 0.23–0.24) at the 2-year milestone (PFS rate increasing from 0.50 to 0.74) with a hazard ratio of 0.44 (95% CI: 0.39–0.50). Conclusions: Our model successfully identified nmCRPC patients who would benefit from switching to abiraterone/enzalutamide, demonstrating potential outcome improvements. Full article
Show Figures

Figure 1

14 pages, 548 KiB  
Review
Carboxypeptidase A4: A Biomarker for Cancer Aggressiveness and Drug Resistance
by Adeoluwa A. Adeluola, Md. Sameer Hossain and A. R. M. Ruhul Amin
Cancers 2025, 17(15), 2566; https://doi.org/10.3390/cancers17152566 - 4 Aug 2025
Viewed by 119
Abstract
Carboxypeptidase A4 (CPA4) is an exopeptidase that cleaves peptide bonds at the C-terminal domain within peptides and proteins. It preferentially cleaves peptides with terminal aromatic or branched chain amino acid residues such as phenylalanine, tryptophan, or leucine. CPA4 was first discovered in prostate [...] Read more.
Carboxypeptidase A4 (CPA4) is an exopeptidase that cleaves peptide bonds at the C-terminal domain within peptides and proteins. It preferentially cleaves peptides with terminal aromatic or branched chain amino acid residues such as phenylalanine, tryptophan, or leucine. CPA4 was first discovered in prostate cancer cells, but it is now known to be expressed in various tissues throughout the body. Its physiologic expression is governed by latexin, a noncompetitive endogenous inhibitor of CPA4. Nevertheless, the overexpression of CPA4 has been associated with the progression and aggressiveness of many malignancies, including prostate, pancreatic, breast and lung cancer, to name a few. CPA4’s role in cancer has been attributed to its disruption of many cellular signaling pathways, e.g., PI3K-AKT-mTOR, STAT3-ERK, AKT-cMyc, GPCR, and estrogen signaling. The dysregulation of these pathways by CPA4 could be responsible for inducing epithelial--mesenchymal transition (EMT), tumor invasion and drug resistance. Although CPA4 has been found to regulate cancer aggressiveness and poor prognosis, no comprehensive review summarizing the role of CPA4 in cancer is available so far. In this review, we provide a brief description of peptidases, their classification, history of CPA4, mechanism of action of CPA4 as a peptidase, its expression in various tissues, including cancers, its role in various tumor types, the associated molecular pathways and cellular processes. We further discuss the limitations of current literature linking CPA4 to cancers and challenges that prevent using CPA4 as a biomarker for cancer aggressiveness and predicting drug response and highlight a number of future strategies that can help to overcome the limitations. Full article
(This article belongs to the Special Issue Insights from the Editorial Board Member)
Show Figures

Figure 1

39 pages, 2336 KiB  
Review
Omics-Mediated Treatment for Advanced Prostate Cancer: Moving Towards Precision Oncology
by Yasra Fatima, Kirubel Nigusu Jobre, Enrique Gomez-Gomez, Bartosz Małkiewicz, Antonia Vlahou, Marika Mokou, Harald Mischak, Maria Frantzi and Vera Jankowski
Int. J. Mol. Sci. 2025, 26(15), 7475; https://doi.org/10.3390/ijms26157475 - 2 Aug 2025
Viewed by 334
Abstract
Prostate cancer accounts for approximately 1.5 million new diagnoses and 400,000 deaths every year worldwide, and demographic projections indicate a near-doubling of both figures by 2040. Despite existing treatments, 10–20% of patients eventually progress to metastatic castration-resistant disease (mCRPC). The median overall survival [...] Read more.
Prostate cancer accounts for approximately 1.5 million new diagnoses and 400,000 deaths every year worldwide, and demographic projections indicate a near-doubling of both figures by 2040. Despite existing treatments, 10–20% of patients eventually progress to metastatic castration-resistant disease (mCRPC). The median overall survival (OS) after progression to mCPRC drops to 24 months, and efficacy drops severely after each additional line of treatment. Omics platforms have reached advanced levels and enable the acquisition of high-resolution large datasets that can provide insights into the molecular mechanisms underlying PCa pathology. Genomics, especially DDR (DNA damage response) gene alterations, detected via tissue and/or circulating tumor DNA, efficiently guides therapy in advanced prostate cancer. Given recent developments, we have performed a comprehensive literature search to cover recent research and clinical trial reports (over the last five years) that integrate omics along three converging trajectories in therapeutic development: (i) predicting response to approved agents with demonstrated survival benefits, (ii) stratifying patients to receive therapies in clinical trials, (iii) guiding drug development as part of drug repurposing frameworks. Collectively, this review is intended to serve as a comprehensive resource of recent advancements in omics-guided therapies for advanced prostate cancer, a clinical setting with existing clinical needs and poor outcomes. Full article
(This article belongs to the Special Issue Molecular Research on Prostate Cancer)
Show Figures

Figure 1

18 pages, 929 KiB  
Review
From Hypoxia to Bone: Reprogramming the Prostate Cancer Metastatic Cascade
by Melissa Santos, Sarah Koushyar, Dafydd Alwyn Dart and Pinar Uysal-Onganer
Int. J. Mol. Sci. 2025, 26(15), 7452; https://doi.org/10.3390/ijms26157452 - 1 Aug 2025
Viewed by 354
Abstract
Bone is the most frequent site of distant metastasis in advanced prostate cancer (PCa), contributing substantially to patient morbidity and mortality. Hypoxia, a defining feature of the solid tumour microenvironment, plays a pivotal role in driving bone-tropic progression by promoting epithelial-to-mesenchymal transition (EMT), [...] Read more.
Bone is the most frequent site of distant metastasis in advanced prostate cancer (PCa), contributing substantially to patient morbidity and mortality. Hypoxia, a defining feature of the solid tumour microenvironment, plays a pivotal role in driving bone-tropic progression by promoting epithelial-to-mesenchymal transition (EMT), cancer stemness, extracellular matrix (ECM) remodelling, and activation of key signalling pathways such as Wingless/Integrated (Wnt) Wnt/β-catenin and PI3K/Akt. Hypoxia also enhances the secretion of extracellular vesicles (EVs), enriched with pro-metastatic cargos, and upregulates bone-homing molecules including CXCR4, integrins, and PIM kinases, fostering pre-metastatic niche formation and skeletal colonisation. In this review, we analysed current evidence on how hypoxia orchestrates PCa dissemination to bone, focusing on the molecular crosstalk between HIF signalling, Wnt activation, EV-mediated communication, and cellular plasticity. We further explore therapeutic strategies targeting hypoxia-related pathways, such as HIF inhibitors, hypoxia-activated prodrugs, and Wnt antagonists, with an emphasis on overcoming therapy resistance in castration-resistant PCa (CRPC). By examining the mechanistic underpinnings of hypoxia-driven bone metastasis, we highlight promising translational avenues for improving patient outcomes in advanced PCa. Full article
(This article belongs to the Special Issue Hypoxia: Molecular Mechanism and Health Effects)
Show Figures

Graphical abstract

14 pages, 1399 KiB  
Article
GSTM5 as a Potential Biomarker for Treatment Resistance in Prostate Cancer
by Patricia Porras-Quesada, Lucía Chica-Redecillas, Beatriz Álvarez-González, Francisco Gutiérrez-Tejero, Miguel Arrabal-Martín, Rosa Rios-Pelegrina, Luis Javier Martínez-González, María Jesús Álvarez-Cubero and Fernando Vázquez-Alonso
Biomedicines 2025, 13(8), 1872; https://doi.org/10.3390/biomedicines13081872 - 1 Aug 2025
Viewed by 218
Abstract
Background/Objectives: Androgen deprivation therapy (ADT) is widely used to manage prostate cancer (PC), but the emergence of treatment resistance remains a major clinical challenge. Although the GST family has been implicated in drug resistance, the specific role of GSTM5 remains poorly understood. [...] Read more.
Background/Objectives: Androgen deprivation therapy (ADT) is widely used to manage prostate cancer (PC), but the emergence of treatment resistance remains a major clinical challenge. Although the GST family has been implicated in drug resistance, the specific role of GSTM5 remains poorly understood. This study investigates whether GSTM5, alone or in combination with clinical variables, can improve patient stratification based on the risk of early treatment resistance. Methods: In silico analyses were performed to examine GSTM5’s role in protein interactions, molecular pathways, and gene expression. The rs3768490 polymorphism was genotyped in 354 patients with PC, classified by ADT response. Descriptive analysis and logistic regression models were applied to evaluate associations between genotype, clinical variables, and ADT response. GSTM5 expression related to the rs3768490 genotype and ADT response was also analyzed in 129 prostate tissue samples. Results: The T/T genotype of rs3768490 was significantly associated with a lower likelihood of early ADT resistance in both individual (p = 0.0359, Odd Ratios (OR) = 0.18) and recessive models (p = 0.0491, OR = 0.21). High-risk classification according to D’Amico was strongly associated with early progression (p < 0.0004; OR > 5.4). Combining genotype and clinical risk improved predictive performance, highlighting their complementary value in stratifying patients by treatment response. Additionally, GSTM5 expression was slightly higher in T/T carriers, suggesting a potential protective role against ADT resistance. Conclusions: The T/T genotype of rs3768490 may protect against ADT resistance by modulating GSTM5 expression in PC. These preliminary findings highlight the potential of integrating genetic biomarkers into clinical models for personalized treatment strategies, although further studies are needed to validate these observations. Full article
(This article belongs to the Special Issue Molecular Biomarkers of Tumors: Advancing Genetic Studies)
Show Figures

Figure 1

21 pages, 1133 KiB  
Review
Beyond Docetaxel: Targeting Resistance Pathways in Prostate Cancer Treatment
by Tayo Alex Adekiya
BioChem 2025, 5(3), 24; https://doi.org/10.3390/biochem5030024 - 1 Aug 2025
Viewed by 198
Abstract
Prostate cancer continues to be the most common cause of cancer-related disease and mortality among men worldwide, especially in the advanced stages, notably metastatic castration-resistant prostate cancer (mCRPC), which poses significant treatment challenges. Docetaxel, a widely used chemotherapeutic agent, has long served as [...] Read more.
Prostate cancer continues to be the most common cause of cancer-related disease and mortality among men worldwide, especially in the advanced stages, notably metastatic castration-resistant prostate cancer (mCRPC), which poses significant treatment challenges. Docetaxel, a widely used chemotherapeutic agent, has long served as the standard treatment, offering survival benefits and mitigation. However, its clinical impact is frequently undermined by the development of chemoresistance, which is a formidable challenge that leads to treatment failure and disease progression. The mechanisms driving docetaxel resistance are diverse and complex, encompassing modifications in androgen receptor signaling, drug efflux transporters, epithelial-mesenchymal transition (EMT), microtubule alterations, apoptotic pathway deregulation, and tumor microenvironmental influences. Recent evidence suggests that extracellular RNAs influence drug responses, further complicating the resistance landscape. This review offers a broad discussion on the mechanisms of resistance and explores novel therapeutic approaches to address them. These include next-generation taxanes, targeted molecular inhibitors, immunotherapies, and combination regimens that can be designed to counteract specific resistance pathways. By broadening our understanding of docetaxel resistance, this review highlights potential strategies to improve therapeutic efficacy and the potential to enhance outcomes in patients with advanced treatment-resistant prostate cancer. Full article
Show Figures

Figure 1

29 pages, 959 KiB  
Review
Machine Learning-Driven Insights in Cancer Metabolomics: From Subtyping to Biomarker Discovery and Prognostic Modeling
by Amr Elguoshy, Hend Zedan and Suguru Saito
Metabolites 2025, 15(8), 514; https://doi.org/10.3390/metabo15080514 - 1 Aug 2025
Viewed by 256
Abstract
Cancer metabolic reprogramming plays a critical role in tumor progression and therapeutic resistance, underscoring the need for advanced analytical strategies. Metabolomics, leveraging mass spectrometry and nuclear magnetic resonance (NMR) spectroscopy, offers a comprehensive and functional readout of tumor biochemistry. By enabling both targeted [...] Read more.
Cancer metabolic reprogramming plays a critical role in tumor progression and therapeutic resistance, underscoring the need for advanced analytical strategies. Metabolomics, leveraging mass spectrometry and nuclear magnetic resonance (NMR) spectroscopy, offers a comprehensive and functional readout of tumor biochemistry. By enabling both targeted metabolite quantification and untargeted profiling, metabolomics captures the dynamic metabolic alterations associated with cancer. The integration of metabolomics with machine learning (ML) approaches further enhances the interpretation of these complex, high-dimensional datasets, providing powerful insights into cancer biology from biomarker discovery to therapeutic targeting. This review systematically examines the transformative role of ML in cancer metabolomics. We discuss how various ML methodologies—including supervised algorithms (e.g., Support Vector Machine, Random Forest), unsupervised techniques (e.g., Principal Component Analysis, t-SNE), and deep learning frameworks—are advancing cancer research. Specifically, we highlight three major applications of ML–metabolomics integration: (1) cancer subtyping, exemplified by the use of Similarity Network Fusion (SNF) and LASSO regression to classify triple-negative breast cancer into subtypes with distinct survival outcomes; (2) biomarker discovery, where Random Forest and Partial Least Squares Discriminant Analysis (PLS-DA) models have achieved >90% accuracy in detecting breast and colorectal cancers through biofluid metabolomics; and (3) prognostic modeling, demonstrated by the identification of race-specific metabolic signatures in breast cancer and the prediction of clinical outcomes in lung and ovarian cancers. Beyond these areas, we explore applications across prostate, thyroid, and pancreatic cancers, where ML-driven metabolomics is contributing to earlier detection, improved risk stratification, and personalized treatment planning. We also address critical challenges, including issues of data quality (e.g., batch effects, missing values), model interpretability, and barriers to clinical translation. Emerging solutions, such as explainable artificial intelligence (XAI) approaches and standardized multi-omics integration pipelines, are discussed as pathways to overcome these hurdles. By synthesizing recent advances, this review illustrates how ML-enhanced metabolomics bridges the gap between fundamental cancer metabolism research and clinical application, offering new avenues for precision oncology through improved diagnosis, prognosis, and tailored therapeutic strategies. Full article
(This article belongs to the Special Issue Nutritional Metabolomics in Cancer)
Show Figures

Figure 1

40 pages, 1378 KiB  
Systematic Review
Liquid Biopsy Biomarkers in Metastatic Castration-Resistant Prostate Cancer Treated with Second-Generation Antiandrogens: Ready for Clinical Practice? A Systematic Review
by Andrei-Vlad Badulescu, Razvan Rahota, Alon Vigdorovits and Ovidiu Laurean Pop
Cancers 2025, 17(15), 2482; https://doi.org/10.3390/cancers17152482 - 27 Jul 2025
Viewed by 439
Abstract
Background: Second-generation androgen receptor signaling inhibitors are one of the main treatment options in metastatic castration-resistant prostate cancer (mCRPC). Nonetheless, a considerable proportion show limited response to treatment, which indicates the need for convenient, easily accessible predictor biomarkers, a role suited for [...] Read more.
Background: Second-generation androgen receptor signaling inhibitors are one of the main treatment options in metastatic castration-resistant prostate cancer (mCRPC). Nonetheless, a considerable proportion show limited response to treatment, which indicates the need for convenient, easily accessible predictor biomarkers, a role suited for liquid biopsy. Methods: We conducted a PRISMA-compliant systematic review of four databases (Embase, Medline, Scopus, Web of Science) to identify all studies (observational studies and clinical trials) investigating cell-free DNA, circulating tumor cells, exosomes, and circulating RNAs as prognostic markers in metastatic castration-resistant patients starting androgen receptor signaling inhibitors. We excluded studies that evaluated combination therapies, rare histological subtypes or included nonmetastatic or castrate-sensitive disease. We also evaluated whether published papers followed reporting guidelines (REMARK, STROBE, or CONSORT for abstracts). Results: We identified a total of 123 reports, from which we identified only a few well-studied and consistent biomarkers: androgen receptor overexpression/copy number gain and splice variant 7, as well as disease burden markers (circulating tumor DNA fraction and circulating tumor cell concentration). Alterations or copy number loss in tumor suppressors PTEN, RB1, and TP53 were second in terms of quantity and consistency of evidence. However, a large majority of identified biomarkers were relatively understudied or inconsistent. We identified two potential vulnerabilities: inconsistent adherence to reporting guidelines and the under-inclusion of patients of non-Western European ancestry. Conclusions: A large number of biomarkers were linked to worse outcomes in prostate cancer; nonetheless, in most cases, the evidence is limited or inconsistent, or even contradictory. The main exceptions pertain to androgen receptor signaling and disease burden, and, to a smaller extent, to certain tumor suppressor genes. Further studies are needed to confirm their clinical utility, using clear and consistent methodologies and including patients from currently understudied populations. Full article
(This article belongs to the Special Issue Recent Advances in Liquid Biopsy Biomarkers of Cancer)
Show Figures

Figure 1

20 pages, 12298 KiB  
Article
Impact of Metastatic Microenvironment on Physiology and Metabolism of Small Cell Neuroendocrine Prostate Cancer Patient-Derived Xenografts
by Shubhangi Agarwal, Deepti Upadhyay, Jinny Sun, Emilie Decavel-Bueff, Robert A. Bok, Romelyn Delos Santos, Said Al Muzhahimi, Rosalie Nolley, Jason Crane, John Kurhanewicz, Donna M. Peehl and Renuka Sriram
Cancers 2025, 17(14), 2385; https://doi.org/10.3390/cancers17142385 - 18 Jul 2025
Viewed by 442
Abstract
Background: Potent androgen receptor pathway inhibitors induce small cell neuroendocrine prostate cancer (SCNC), a highly aggressive subtype of metastatic androgen deprivation-resistant prostate cancer (ARPC) with limited treatment options and poor survival rates. Patients with metastases in the liver have a poor prognosis relative [...] Read more.
Background: Potent androgen receptor pathway inhibitors induce small cell neuroendocrine prostate cancer (SCNC), a highly aggressive subtype of metastatic androgen deprivation-resistant prostate cancer (ARPC) with limited treatment options and poor survival rates. Patients with metastases in the liver have a poor prognosis relative to those with bone metastases alone. The mechanisms that underlie the different behavior of ARPC in bone vs. liver may involve factors intrinsic to the tumor cell, tumor microenvironment, and/or systemic factors, and identifying these factors is critical to improved diagnosis and treatment of SCNC. Metabolic reprogramming is a fundamental strategy of tumor cells to colonize and proliferate in microenvironments distinct from the primary site. Understanding the metabolic plasticity of cancer cells may reveal novel approaches to imaging and treating metastases more effectively. Methods: Using magnetic resonance (MR) imaging and spectroscopy, we interrogated the physiological and metabolic characteristics of SCNC patient-derived xenografts (PDXs) propagated in the bone and liver, and used correlative biochemical, immunohistochemical, and transcriptomic measures to understand the biological underpinnings of the observed imaging metrics. Results: We found that the influence of the microenvironment on physiologic measures using MRI was variable among PDXs. However, the MR measure of glycolytic capacity in the liver using hyperpolarized 13C pyruvic acid recapitulated the enzyme activity (lactate dehydrogenase), cofactor (nicotinamide adenine dinucleotide), and stable isotope measures of fractional enrichment of lactate. While in the bone, the congruence of the glycolytic components was lost and potentially weighted by the interaction of cancer cells with osteoclasts/osteoblasts. Conclusion: While there was little impact of microenvironmental factors on metabolism, the physiological measures (cellularity and perfusion) are highly variable and necessitate the use of combined hyperpolarized 13C MRI and multiparametric (anatomic, diffusion-, and perfusion- weighted) 1H MRI to better characterize pre-treatment tumor characteristics, which will be crucial to evaluate treatment response. Full article
(This article belongs to the Special Issue Magnetic Resonance in Cancer Research)
Show Figures

Figure 1

15 pages, 2992 KiB  
Article
Radiotherapy Upregulates the Expression of Membrane-Bound Negative Complement Regulator Proteins on Tumor Cells and Limits Complement-Mediated Tumor Cell Lysis
by Yingying Liang, Lixin Mai, Jonathan M. Schneeweiss, Ramon Lopez Perez, Michael Kirschfink and Peter E. Huber
Cancers 2025, 17(14), 2383; https://doi.org/10.3390/cancers17142383 - 18 Jul 2025
Viewed by 414
Abstract
Background/Objectives: Radiotherapy (RT) is a mainstay of clinical cancer therapy that causes broad immune responses. The complement system is a pivotal effector mechanism in the innate immune response, but the impact of RT is less well understood. This study investigates the interaction [...] Read more.
Background/Objectives: Radiotherapy (RT) is a mainstay of clinical cancer therapy that causes broad immune responses. The complement system is a pivotal effector mechanism in the innate immune response, but the impact of RT is less well understood. This study investigates the interaction between RT and the complement system as a possible approach to improve immune responses in cancer treatment. Methods: Human solid cancer (lung, prostate, liver, breast cancer), lymphoma, and leukemia cells were irradiated using X-rays and treated with polyclonal antibodies or anti-CD20 monoclonal antibodies, respectively. Chromium release assay was applied to measure cell lysis after radiation with or without complement-activating antibody treatment. The expression of membrane-bound complement regulatory proteins (mCRPs; CD46, CD55, CD59), which confer resistance against complement activation, CD20 expression, apoptosis, and radiation-induced DNA double-strand breaks (γH2AX), was measured by flow cytometry. The radiosensitivity of tumor cells was assessed by colony-forming assay. Results: We demonstrate that RT profoundly impacts complement function by upregulating the expression of membrane-bound complement regulatory proteins (mCRPs) on tumor cells in a dose- and time-dependent manner. Impaired complement-mediated tumor cell lysis could thus potentially contribute to radiotherapeutic resistance. We also observed RT-induced upregulation of CD20 expression on lymphoma and leukemic cells. Notably, complement activation prior to RT proved more effective in inducing RT-dependent early apoptosis compared to post-irradiation treatment. While complement modulation does not significantly alter RT-induced DNA-damage repair mechanisms or intrinsic radiosensitivity in cancer cells, our results suggest that combining RT with complement-based anti-cancer therapy may enhance complement-dependent cytotoxicity (CDC) and apoptosis in tumor cells. Conclusions: This study sheds light on the complex interplay between RT and the complement system, offering insights into potential novel combinatorial therapeutic strategies and a potential sequential structure for certain tumor types. Full article
(This article belongs to the Special Issue Combination Immunotherapy for Cancer Treatment)
Show Figures

Figure 1

16 pages, 810 KiB  
Review
Synergizing Liquid Biopsy and Hybrid PET Imaging for Prognostic Assessment in Prostate Cancer: A Focus Review
by Federica Stracuzzi, Sara Dall’ Armellina, Gayane Aghakhanyan, Salvatore C. Fanni, Giacomo Aringhieri, Lorenzo Faggioni, Emanuele Neri, Duccio Volterrani and Dania Cioni
Biomolecules 2025, 15(7), 1041; https://doi.org/10.3390/biom15071041 - 18 Jul 2025
Viewed by 380
Abstract
Positron emission tomography (PET) and liquid biopsy have independently transformed prostate cancer management. This review explores the complementary roles of PET imaging and liquid biopsy in prostate cancer, focusing on their combined diagnostic, monitoring, and prognostic potential. A systematic search of PubMed, Scopus, [...] Read more.
Positron emission tomography (PET) and liquid biopsy have independently transformed prostate cancer management. This review explores the complementary roles of PET imaging and liquid biopsy in prostate cancer, focusing on their combined diagnostic, monitoring, and prognostic potential. A systematic search of PubMed, Scopus, and Cochrane Library databases was conducted to identify human studies published in English up to January 2025. Seventeen studies met the inclusion criteria and were analyzed according to PRISMA guidelines. Across the included studies, PET-derived imaging metrics, such as metabolic activity and radiotracer uptake, correlated consistently with liquid biopsy biomarkers, including circulating tumor cells and cell-free DNA. Their joint application demonstrated added value in early detection, treatment monitoring, and outcome prediction, particularly in castration-resistant prostate cancer. Independent and synergistic prognostic value was noted for both modalities, including survival outcomes such as overall survival and progression-free survival. Combining PET imaging and liquid biopsy emerges as a promising, non-invasive strategy for improving prostate cancer diagnosis, monitoring, and therapeutic stratification. While preliminary findings are encouraging, large-scale prospective studies are essential to validate their integrated clinical utility. Full article
(This article belongs to the Special Issue Spotlight on Hot Cancer Biological Biomarkers)
Show Figures

Figure 1

16 pages, 769 KiB  
Article
[177Lu]Lu-PSMA-617 in Patients with Progressive PSMA+ mCRPC Treated With or Without Prior Taxane-Based Chemotherapy: A Phase 2, Open-Label, Single-Arm Trial in Japan
by Kouji Izumi, Ryuji Matsumoto, Yusuke Ito, Seiji Hoshi, Nobuaki Matsubara, Toshinari Yamasaki, Takashi Mizowaki, Atsushi Komaru, Satoshi Nomura, Toru Hattori, Hiroya Kambara, Shaheen Alanee, Makoto Hosono and Seigo Kinuya
Cancers 2025, 17(14), 2351; https://doi.org/10.3390/cancers17142351 - 15 Jul 2025
Viewed by 626
Abstract
Background: This Phase 2 trial evaluated the efficacy, tolerability, and safety of [177Lu]Lu-PSMA-617 (177Lu-PSMA-617) in patients with ≥1 measurable lesion and progressive prostate-specific membrane antigen-positive (PSMA+) metastatic castration-resistant prostate cancer (mCRPC) in Japan. Methods: This study comprises four parts; [...] Read more.
Background: This Phase 2 trial evaluated the efficacy, tolerability, and safety of [177Lu]Lu-PSMA-617 (177Lu-PSMA-617) in patients with ≥1 measurable lesion and progressive prostate-specific membrane antigen-positive (PSMA+) metastatic castration-resistant prostate cancer (mCRPC) in Japan. Methods: This study comprises four parts; data from three parts are presented here. Part 1 evaluated safety and tolerability; Parts 2 (post-taxane) and 3 (pre-taxane/taxane-naive) assessed the overall response rate (ORR; primary endpoint), overall survival (OS), radiographic progression-free survival (rPFS), disease control rate (DCR), PFS, and safety; and Part 4 is the expansion part. Patients received 7.4 GBq (±10%) 177Lu-PSMA-617 Q6W for up to six cycles. Results: Of the 35 patients who underwent a [68Ga]Ga-PSMA-11 (68Ga-PSMA-11) PET/CT scan, 30 received 177Lu-PSMA-617 (post-taxane, n = 12; pre-taxane, n = 18). No dose-limiting toxicity was noted in Part 1 (n = 3). Post- and pre-taxane patients had a median of three and five cycles, respectively. The primary endpoint, ORR, met the pre-specified threshold, with the lower limit of the 90% confidence interval (CI) above the threshold of 5% for post-taxane and 12% for pre-taxane. Post- and pre-taxane patients had an ORR of 25.0% (90% CI: 7.2–52.7) and 33.3% (90% CI: 15.6–55.4), respectively. In post- and pre-taxane patients, the DCR was 91.7% and 83.3%, the median rPFS was 3.71 and 12.25 months, and the median PFS was 3.71 and 5.59 months, respectively. The median OS was 14.42 and 12.94 months in post- and pre-taxane patients, respectively. The most common adverse events were constipation, decreased appetite, decreased platelet count, anemia, and nausea. Conclusions: The primary endpoint (ORR) was met. The safety profile of 177Lu-PSMA-617 was consistent with the VISION and PSMAfore studies, with no new safety signals in the Japanese patients with mCRPC. Full article
(This article belongs to the Section Cancer Therapy)
Show Figures

Figure 1

Back to TopTop