Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (24,356)

Search Parameters:
Keywords = resistance indices

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 547 KB  
Article
Digital Transformation and Supply Chain Resilience in Resource-Constrained Regions: Evidence from Central and Western China
by Yang Jiang and Jijing Hang
Sustainability 2026, 18(2), 802; https://doi.org/10.3390/su18020802 (registering DOI) - 13 Jan 2026
Abstract
In recent years, global supply chains have become increasingly vulnerable to geopolitical tensions, pandemics, and energy crises, particularly in resource-constrained regions characterized by weak infrastructure and high transaction costs. Using panel data on A-share listed firms in China’s central and western regions from [...] Read more.
In recent years, global supply chains have become increasingly vulnerable to geopolitical tensions, pandemics, and energy crises, particularly in resource-constrained regions characterized by weak infrastructure and high transaction costs. Using panel data on A-share listed firms in China’s central and western regions from 2010 to 2022, this study examines the effect of firm-level digital transformation on supply chain resilience. We construct a digital transformation index and employ an instrumental-variable approach based on the interaction between terrain ruggedness and lagged digital transformation to address endogeneity concerns. Empirical results show that the digital transformation of enterprises has significantly enhanced the resistance and recovery capabilities of the supply chain, verifying its effectiveness in resource-constrained environments. Mechanism analyses reveal that this effect operates through increased supply chain diversification—especially customer diversification—and improved supply–demand matching enabled by more accurate demand forecasting and inventory management. Heterogeneity tests indicate that the resilience-enhancing effects are more pronounced among non-state-owned firms, manufacturing enterprises, and firms in less technology-intensive industries. Overall, our findings provide empirical support for transaction cost economics, dynamic capability theory, and the resource-based view, highlighting the strategic role of digital investment in strengthening supply chain resilience in infrastructure-constrained settings and contributing to the aims of Sustainable Development Goal 9. Full article
18 pages, 10340 KB  
Article
Numerical Study on Thermal–Flow Characteristics of Liquid Metal Blankets in a Magnetic Field
by Shuaibing Chang, Feng Li and Jiewen Deng
Magnetochemistry 2026, 12(1), 10; https://doi.org/10.3390/magnetochemistry12010010 (registering DOI) - 13 Jan 2026
Abstract
The tokamak is a toroidal device that utilizes magnetic confinement to achieve controlled nuclear fusion. One of the major technical challenges hindering the development of this technology lies in effectively dissipating the generated heat. In this study, the inner blanket structure of a [...] Read more.
The tokamak is a toroidal device that utilizes magnetic confinement to achieve controlled nuclear fusion. One of the major technical challenges hindering the development of this technology lies in effectively dissipating the generated heat. In this study, the inner blanket structure of a tokamak is selected as the research object, and a multi–physics numerical model coupling magnetic field, temperature field, and flow field is established. The effects of background magnetic field strength, blanket channel width, and inlet velocity of the liquid metal coolant on the thermal–flow characteristics of the blanket were systematically investigated. The results indicate that compared with the L-shaped channel, the U-shaped channel reduces flow resistance in the turning region by 6%, exhibits a more uniform temperature distribution, and decreases the outlet–inlet temperature difference by 4%, thereby significantly enhancing the heat transfer efficiency. An increase in background magnetic field strength suppresses coolant flow but has only a limited impact on the temperature field. When the background magnetic field reaches a certain strength, the magnetic field has a certain hindering effect on the flow of the working fluid. Increasing the thickness of the blankets appropriately can alleviate the hindering effect of the magnetic field on the flow and improve the velocity distribution in the outlet area. Full article
Show Figures

Figure 1

32 pages, 1950 KB  
Article
Association of Circulating Irisin with Insulin Resistance and Metabolic Risk Markers in Prediabetic and Newly Diagnosed Type 2 Diabetes Patients
by Daniela Denisa Mitroi Sakizlian, Lidia Boldeanu, Diana Clenciu, Adina Mitrea, Ionela Mihaela Vladu, Alina Elena Ciobanu Plasiciuc, Mohamed-Zakaria Assani and Daniela Ciobanu
Int. J. Mol. Sci. 2026, 27(2), 787; https://doi.org/10.3390/ijms27020787 (registering DOI) - 13 Jan 2026
Abstract
Circulating irisin, a myokine implicated in energy expenditure and adipose tissue regulation, has been increasingly studied as a potential biomarker of metabolic dysfunction. This study evaluated the relationship between serum irisin and metabolic indices, including the atherogenic index of plasma (AIP), the lipid [...] Read more.
Circulating irisin, a myokine implicated in energy expenditure and adipose tissue regulation, has been increasingly studied as a potential biomarker of metabolic dysfunction. This study evaluated the relationship between serum irisin and metabolic indices, including the atherogenic index of plasma (AIP), the lipid accumulation product (LAP), and hypertriglyceridemic-waist (HTGW) phenotype in individuals with prediabetes (PreDM) and newly diagnosed type 2 diabetes mellitus (T2DM). A total of 138 participants (48 PreDM, 90 T2DM) were assessed for anthropometric, glycemic, and lipid parameters. Serum irisin levels were measured by enzyme-linked immunosorbent assay (ELISA) and correlated with insulin resistance indices (Homeostatic Model Assessment of Insulin Resistance (HOMA-IR), Quantitative Insulin Sensitivity Check Index (QUICKI)), glycemic control (glycosylated hemoglobin A1c (HbA1c)), and composite lipid markers (total triglycerides-to-high-density lipoprotein cholesterol (TG/HDL-C)). Group differences were evaluated using non-parametric tests; two-way ANOVA assessed interactions between phenotypes and markers; multiple linear regression (MLR) and logistic regression models explored independent associations with metabolic indices and HTGW; receiver operating characteristic (ROC) analyses compared global and stratified model performance. Serum irisin was significantly lower in T2DM than in PreDM (median 140.4 vs. 230.7 ng/mL, p < 0.0001). Irisin levels remained comparable between males and females in both groups. Post hoc analysis shows that lipid indices and irisin primarily distinguish HTGW phenotypes, especially in T2DM. In both groups, irisin correlated inversely with HOMA-IR, AIP, and TG/HDL-C, and positively with QUICKI, indicating a possible compensatory role in early insulin resistance. MLR analyses revealed no independent relationship between irisin and either AIP or LAP in PreDM, while in T2DM, waist circumference remained the strongest negative predictor of irisin. Logistic regression identified age, male sex, and HbA1c as independent predictors of the HTGW phenotype, while irisin contributed modestly to overall model discrimination. ROC curves demonstrated good discriminative performance (AUC = 0.806 for global; 0.794 for PreDM; 0.813 for T2DM), suggesting comparable predictive accuracy across glycemic stages. In conclusion, irisin levels decline from prediabetes to overt diabetes and are inversely linked to lipid accumulation and insulin resistance but do not independently predict the HTGW phenotype. These findings support irisin’s role as an integrative indicator of metabolic stress rather than a stand-alone biomarker. Incorporating irisin into multi-parameter metabolic panels may enhance early detection of cardiometabolic risk in dysglycemic populations. Full article
(This article belongs to the Special Issue Molecular Diagnosis and Treatments of Diabetes Mellitus: 2nd Edition)
Show Figures

Figure 1

16 pages, 1949 KB  
Article
Toxicity of Nanoemulsified Eugenia uniflora (Myrtaceae) Essential Oil to Spodoptera frugiperda (Lepidoptera: Noctuidae) and Selectivity to Trichogramma pretiosum (Hymenoptera: Trichogrammatidae)
by Júlia A. C. Oliveira, Karolina G. Figueiredo, Letícia A. Fernandes, Vinícius C. Carvalho, Dejane S. Alves, Julio C. Ugucioni, Jhones L. Oliveira, Hudson W. P. Carvalho, Suzan K. V. Bertolucci and Geraldo A. Carvalho
Plants 2026, 15(2), 248; https://doi.org/10.3390/plants15020248 - 13 Jan 2026
Abstract
Spodoptera frugiperda (fall armyworm) is a polyphagous pest with widespread resistance to synthetic insecticides, while essential oils (EOs) and biological control agents, such as the parasitoid Trichogramma pretiosum, represent promising strategies in integrated pest management (IPM) programs. This study evaluated the toxicity [...] Read more.
Spodoptera frugiperda (fall armyworm) is a polyphagous pest with widespread resistance to synthetic insecticides, while essential oils (EOs) and biological control agents, such as the parasitoid Trichogramma pretiosum, represent promising strategies in integrated pest management (IPM) programs. This study evaluated the toxicity of Eugenia uniflora EO, popularly known as pitanga EO, and nanoemulsion (NEO) to S. frugiperda and the selectivity of the NEO to T. pretiosum. The EO of E. uniflora was characterized by GC-MS/DIC and then diluted in water and Tween 80® for bioassays to estimate the LC50 against S. frugiperda in Potter’s tower. The NEOs were produced by high-shear dispersion using an Ultra-Turrax and characterized for thermal stability, particle size, polydispersity index (PDI), zeta potential (ζ), temporal stability, and morphology. The NEO was diluted to the LC50 (36.05 mg/mL) in 1% Tween 80® solution and tested for toxicity to S. frugiperda and to the parasitoid. The majority compounds in the EO from E. uniflora were curzerene (34.07%), selina-1,3,7(11)-trien-8-one (10.51%), germacrene B (9.51%) and germacrene D (5.03%). The NEO stored at 25 °C remains stable for up to 30 days after preparation. In addition, the NEO showed a particle size of 283.2 nm, a PDI of 0.289, and a zeta potential (ζ) of −23.2 mV. The E. uniflora EO and NEO at a concentration of 36.05 mg/mL were toxic to S. frugiperda (36% probability of survival). Furthermore, NEO was selective for T. pretiosum in its immature stages. The NEO proved to be stable, effective, and selective, indicating potential for IPM. However, validation under semi-field and field conditions is still necessary. Full article
(This article belongs to the Section Phytochemistry)
Show Figures

Figure 1

23 pages, 1905 KB  
Article
Anticancer and Antimicrobial Activity of Chlorella vulgaris BA02 Algae Extract Containing Indole-3-Acetic Acid
by Agata Jabłońska-Trypuć, Urszula Wydro, Elżbieta Wołejko, Paweł Kondzior, Maja Leszczyńska, Carmen Estevan Martínez, Özge Karakaş Metin, Marzena Ewa Smolewska, Rafał Krętowski, Marzanna Cechowska-Pasko and Adam Cudowski
Molecules 2026, 31(2), 275; https://doi.org/10.3390/molecules31020275 - 13 Jan 2026
Abstract
In recent years, the incidence of breast cancer has increased significantly; therefore, much attention is being paid to research on natural plant-based raw materials in the treatment and prevention of cancer as well as in the treatment of antibiotic-resistant infections. Therefore, Chlorella vulgaris [...] Read more.
In recent years, the incidence of breast cancer has increased significantly; therefore, much attention is being paid to research on natural plant-based raw materials in the treatment and prevention of cancer as well as in the treatment of antibiotic-resistant infections. Therefore, Chlorella vulgaris algae extract and indole-3-acetic acid (IAA)—a plant hormone with potential anticancer and antimicrobial properties—were selected for the study. The main objective was to evaluate the effect of algae extract and IAA on the proliferation of cells from three different breast cancer lines: MCF-7, ZR-75-1, and MDA-MB-231. In addition, an analysis of apoptosis and oxidative stress parameters in cancer cells was performed, as well as an assessment of IAA toxicity towards E. coli, S. aureus, and C. albicans. The results obtained allow us to conclude that the extract is effective against estrogen-dependent cells, while the effect of IAA alone varies depending on the microorganism studied, the cell line analyzed, and the concentration used. The extract in selected concentrations induces apoptosis and activates oxidative stress mechanisms, while IAA exhibits cytotoxicity at higher concentrations and stimulates proliferation at lower concentrations. This indicates the need to investigate the mechanisms of action of both Chlorella vulgaris algae extract and IAA in cancer and bacterial cells. Full article
Show Figures

Figure 1

12 pages, 2079 KB  
Communication
Synthesis, Structure, and Physical Properties of RbCr2Se2O
by Xiaoning Sun, Pindu Chen, Xiaochun Wen and Hongxiang Chen
Crystals 2026, 16(1), 56; https://doi.org/10.3390/cryst16010056 - 13 Jan 2026
Abstract
Layered compounds containing the T2O plane (T = transition metal), which is the anti-type of the CuO2 plane in cuprate superconductors, have been explored widely because of their diverse physical properties. Among them, KV2Se2O has [...] Read more.
Layered compounds containing the T2O plane (T = transition metal), which is the anti-type of the CuO2 plane in cuprate superconductors, have been explored widely because of their diverse physical properties. Among them, KV2Se2O has attracted much attention due to its interesting physical properties, especially the magnetic order. In this work, we report a new isostructural chromium oxyselenide, RbCr2Se2O. It was synthesized using a solid-state method using Rb2CO3 as the source of Rb and O for the title compound, with the assistance of Ba. The compound crystallizes in the space group P4/mmm with lattice parameters a = 4.01123(8) Å and c = 7.49357(18) Å. Magnetic susceptibility measurements indicate an antiferromagnetic transition at 345 K for RbCr2Se2O and also above room temperature, as the Néel temperature is TN ≈ 400 K for KV2Se2O. The analysis of variable temperature XRD data reveals the anisotropic thermal expansion of the RbCr2Se2O lattice. The almost unchanged lattice parameter a near the transition temperature and the broad peak with an onset temperature of ~360 K in the differential scanning calorimetry data may have a relationship with the magnetic ordering. The measurement of electrical resistivity demonstrates the semiconducting behavior of RbCr2Se2O. The thermal activation model and variable-range hopping model are proposed to describe the conduction mechanism in the high- and low-temperature ranges, respectively. Full article
(This article belongs to the Section Inorganic Crystalline Materials)
Show Figures

Figure 1

8 pages, 425 KB  
Communication
Analysis of Macrolide Resistance in Bordetella pertussis Isolated from Japanese Children in 2025 Using Test Kit and Sequence Method
by Tomohiro Oishi and Takashi Nakano
Biomedicines 2026, 14(1), 167; https://doi.org/10.3390/biomedicines14010167 - 13 Jan 2026
Abstract
Background: Bordetella pertussis causes pertussis, a respiratory infection with whooping cough. Despite a high vaccine coverage, pertussis resurged post-COVID-19 pandemic. Meanwhile, isolates resistant to macrolides—the first-line therapy—have increased in several countries, including Japan. Culturing B. pertussis and detecting resistance are difficult; reports [...] Read more.
Background: Bordetella pertussis causes pertussis, a respiratory infection with whooping cough. Despite a high vaccine coverage, pertussis resurged post-COVID-19 pandemic. Meanwhile, isolates resistant to macrolides—the first-line therapy—have increased in several countries, including Japan. Culturing B. pertussis and detecting resistance are difficult; reports remain limited in Japan. Methods: From March to August 2025, we collected nasopharyngeal samples from children aged 0–15 years with suspected pertussis at six Japanese clinics. Pediatricians obtained swabs and tested them using gene-amplification kits (e.g., BioFire® SpotFire® in four clinics, LAMP Pertussis Detection® in two clinics). B. pertussis was confirmed by PCR; isolates were sequenced to identify macrolide-resistant mutations. Results: Samples were taken from 54 children, the number of boys and girls was 34 and 20, and their median age was 12 years old. Among 54 B. pertussis isolates, 43/52 (82.7%) sequenced strains harbored the A2047G mutation associated with macrolide resistance. Resistance rates at each clinic varied from 40% to 96%. Conclusions: These findings indicate a post-pandemic rise in macrolide-resistant B. pertussis in Japan. Ongoing resistance surveillance is essential, and repurposing residual clinical samples after routine testing is useful given culture and detection challenges. Full article
(This article belongs to the Special Issue Research Progress on Antimicrobial Resistance (AMR))
Show Figures

Figure 1

24 pages, 1516 KB  
Article
Prediction Models for Non-Destructive Identification of Compacted Soil Layers Based on Electrical Conductivity and Moisture Content
by Hasan Mirzakhaninafchi, Ahmet Çelik, Roaf Parray and Abir Mohammad Hadi
Agriculture 2026, 16(2), 197; https://doi.org/10.3390/agriculture16020197 - 13 Jan 2026
Abstract
Crop root development, and in turn crop growth, is strongly influenced by soil strength and the mechanical impedance of compacted layers, which restrict root elongation and exploration. Because the depth and thickness of compacted layers vary across a field, their identification is essential [...] Read more.
Crop root development, and in turn crop growth, is strongly influenced by soil strength and the mechanical impedance of compacted layers, which restrict root elongation and exploration. Because the depth and thickness of compacted layers vary across a field, their identification is essential for site-specific tillage and sustainable root-zone management. A sensing approach that can support future real-time identification of compacted layers after soil-specific calibration, which would enable variable-depth tillage, reducing mechanical impedance and improving energy-use efficiency while maintaining crop yields. This study aimed to develop and evaluate prediction models that can support future real-time identification of compacted soil layers using soil electrical conductivity (EC) and moisture content as non-destructive indicators. A sandy clay soil (48.6% sand, 29.3% clay, 22.1% silt) was tested in a soil-bin laboratory under controlled conditions at three moisture levels (13, 18, and 22% db.) and six depth layers (C1–C6, 0–30 cm) identified from the penetration-resistance profile to measure penetration resistance, shear resistance, and EC. Penetration and shear resistance increased toward the most resistant depth layer and decreased with increasing moisture content, whereas EC generally increased with both depth layer and moisture content. Linear regression models relating penetration resistance (R2=0.893) and shear resistance (R2=0.782) to EC and moisture content were developed and evaluated. Field validation in a paddy field of similar texture showed that predicted penetration resistance differed from measured values by 3–6% across the three compaction treatments evaluated. Root length density and root volume decreased with increasing machine-induced compaction, confirming the agronomic relevance of the modeled patterns and supporting the suitability of the proposed indicators. Together, these results demonstrate that EC and moisture content can potentially be used as non-destructive proxies for compacted-layer identification and provide a calibration basis for future on-the-go sensing systems to support site-specific, variable-depth tillage in agricultural fields. Full article
(This article belongs to the Section Agricultural Soils)
Show Figures

Figure 1

30 pages, 433 KB  
Review
State of Knowledge in the Field of Regenerative Hardfacing Methods in the Context of the Circular Economy
by Wiesław Czapiewski, Stanisław Pałubicki, Jarosław Plichta and Krzysztof Nadolny
Appl. Sci. 2026, 16(2), 792; https://doi.org/10.3390/app16020792 - 13 Jan 2026
Abstract
Regenerative hardfacing of steel substrates is an important technology for restoring the surface layer of components operating under wear conditions, supporting the goals of the circular economy (CE) by extending the service life of components, reducing material and energy consumption throughout their life [...] Read more.
Regenerative hardfacing of steel substrates is an important technology for restoring the surface layer of components operating under wear conditions, supporting the goals of the circular economy (CE) by extending the service life of components, reducing material and energy consumption throughout their life cycle, and shortening downtime during machine repairs. The article provides a synthetic analysis of the literature on the production of functional layers exclusively on steels and systematizes process → structure → properties (PSP) relationships in the context of technological quality and the prediction of the functional properties of welds. The review covers methods used and developed in steel hardfacing (including arc processes and variants with increased energy concentration), analyzed on the basis of measurable process indicators: energy parameters (arc energy/heat input/volume energy), dilution, bead geometry, heat-affected zone characteristics, and the risk of welding defects. It has been shown that these factors determine the structural effects in the weld and the area at the fusion boundary (including phase composition and morphology, hardness gradient, and susceptibility to cracking), which translates into functional properties (hardness, wear resistance, adhesion, and fatigue life) and durability after regeneration. The main result of the work is the development of a PSP table dedicated to hardfacing on steel substrates, mapping the key “levers” of the process to structural consequences and trends in functional properties. This facilitates the identification of optimization directions (minimization of energy input and dilution while ensuring fusion continuity), which translates into longer durability after regeneration and a lower risk of defects—key, measurable effects of CE. Research gaps have also been identified regarding the comparability of results (standardization of energy metrics) and the need to determine and verify “technology windows” within the WPS/WPQR (welding procedure specification/welding procedure qualification record) for layers deposited on steels. Full article
(This article belongs to the Special Issue Advanced Welding Technology and Its Applications)
18 pages, 8449 KB  
Article
Genome-Wide Identification of R2R3-MYB Gene Family in Strawberry (Fragaria vesca L.) and Functional Characterization of FvMYB103 in Cold Stress
by Changjia Zhao, Zhe Chen, Wenhui Li, Deguo Han, Xiang Chen, Fenghua Huang, Lihua Zhang, Wanda Liu, Yu Wang and Xingguo Li
Int. J. Mol. Sci. 2026, 27(2), 771; https://doi.org/10.3390/ijms27020771 - 13 Jan 2026
Abstract
Fragaria vesca L., a widely distributed model species, serves as a key resource for studying the evolution and genetics of the Fragaria genus. Research has shown that R2R3-MYB transcription factors are crucial for plant growth and development. However, their specific role in cold [...] Read more.
Fragaria vesca L., a widely distributed model species, serves as a key resource for studying the evolution and genetics of the Fragaria genus. Research has shown that R2R3-MYB transcription factors are crucial for plant growth and development. However, their specific role in cold resistance in F. vesca is not well understood. In this study, we used the latest genome data for the strawberry (F. vesca v6.0). We performed a genome-wide identification of the R2R3-MYB gene family in F. vesca. We identified a total of 106 R2R3-FvMYBs. Based on their predicted functions in plants, we classified these genes into 25 distinct subfamilies. We then conducted a comprehensive bioinformatics analysis of this family. We performed a detailed examination of the R2R3-FvMYBs structures and physicochemical properties. This analysis provided five key parameters for each protein: molecular weight, the number of amino acids, theoretical isoelectric point, grand average of hydropathicity (GRAVY), and instability index. Gene duplication analysis suggested that segmental duplications were a primary driver of the proliferation of this gene family. Promoter cis-acting element prediction revealed that a large proportion of R2R3-FvMYBs possess elements predominantly associated with phytohormone responsiveness and biotic/abiotic stress responses. Quantitative real-time reverse transcription PCR (qRT-PCR) results confirmed that the expression levels of several R2R3-FvMYBs were upregulated under cold stress. Furthermore, compared to wild-type controls, the overexpression of FvMYB103 in Arabidopsis thaliana enhanced cold tolerance, accompanied by increases in the relevant physiological indices. Collectively, these findings support further investigation into R2R3-MYB gene family to directly assess their contribution to cold resistance. Full article
(This article belongs to the Special Issue Advance in Plant Abiotic Stress: 3rd Edition)
Show Figures

Figure 1

30 pages, 1366 KB  
Review
Verticillium Wilt of Cotton: Identification and Detection of the Causal Pathogen and Its Control
by Duy P. Le, Carlos Trapero, Chi P. T. Nguyen, Thao T. Tran, Donald Gardiner and Andrew Chen
Plants 2026, 15(2), 239; https://doi.org/10.3390/plants15020239 - 13 Jan 2026
Abstract
Verticillium wilt (VW) of cotton caused by the soilborne pathogen Verticillium dahliae is a major disease across cotton production worldwide. The disease can result in yield reductions up to 80% on some occasions. V. dahliae is an asexual fungus and belongs to a [...] Read more.
Verticillium wilt (VW) of cotton caused by the soilborne pathogen Verticillium dahliae is a major disease across cotton production worldwide. The disease can result in yield reductions up to 80% on some occasions. V. dahliae is an asexual fungus and belongs to a relatively small Verticillium genus in the Ascomycota, though both of the mating type idiomorphs are present within some populations. The diversity of V. dahliae is widely associated with vegetative compatibility groups (VCGs), of which six different VCGs are recognised. Of these, isolates belonging to VCGs 1, 2, and 4 are globally distributed and associated with a broad host range, including cotton. Approximately 400 plant species have been recorded as hosts of V. dahliae. The pathogenicity and virulence of V. dahliae in many cases are correlated with VCG designations and hosts of origin. Disease management of VW of cotton still relies on accurate, rapid detection and quantification of V. dahliae using both conventional and molecular approaches. The use of resistant cultivars is the most effective and economical control strategy; however, no cultivars confer complete resistance to the disease. Control strategies including cultural, biological, chemical, and induced-resistance approaches have indicated certain degrees of success in minimising disease damage and diminishing the build-up of pathogen inoculum. In this review, we discuss insights into the VW disease of cotton, and the associated pathogen and current control approaches, as well as future research perspectives. Full article
(This article belongs to the Special Issue Mycology and Plant Pathology—2nd Edition)
Show Figures

Figure 1

27 pages, 11868 KB  
Article
Random Vibration Evaluation and Optimization of a Flexible Positioning Platform Considering Power Spectral Density
by Lufan Zhang, Mengyuan Hu, Heng Yan, Hehe Sun, Zhenghui Zhang and Peijuan Wu
Sensors 2026, 26(2), 514; https://doi.org/10.3390/s26020514 - 13 Jan 2026
Abstract
The flexible positioning platform is a critical structural component in the ultra-high acceleration macro–micro motion platform, enabling precise positioning across multiple scales. However, under high-frequency start–stop cycles and prolonged multi-condition operation, it is prone to fatigue damage induced by random vibrations, which poses [...] Read more.
The flexible positioning platform is a critical structural component in the ultra-high acceleration macro–micro motion platform, enabling precise positioning across multiple scales. However, under high-frequency start–stop cycles and prolonged multi-condition operation, it is prone to fatigue damage induced by random vibrations, which poses a threat to system reliability. This study proposes a method for evaluating and optimizing the platform’s performance under random vibration based on power spectral density (PSD) analysis. In accordance with the IEC 60068-2-64 standard, representative load spectra from Tables A.8 and A.6 were selected as excitation inputs. Frequency-domain analyses of stress, strain, and displacement were conducted using ANSYS Workbench 2022R1 in conjunction with the nCode platform, incorporating the Gaussian three-sigma probability interval. The results reveal that stress and deformation are highly concentrated in the hinge region, indicating a structural vulnerability. Fatigue life predictions were carried out using the Dirlik method and Miner’s linear damage rule under various PSD loading conditions. The findings demonstrate that hinge stiffness is a key factor influencing vibration resistance and service life. This research provides theoretical support for the design optimization of flexible structures operating in complex random vibration environments. Full article
(This article belongs to the Section Fault Diagnosis & Sensors)
Show Figures

Figure 1

12 pages, 2452 KB  
Article
The Effect of Micro-Cutting on the Residual Height of Surface Topography in NiTi Shape Memory Alloy Using a Small-Diameter Cutter
by Xinyi Wang, Zeming Li, Yansen Wang, Zelin Wang, Zhenshan Chen, Junxiang Liu, Jian Wang and Guijie Wang
Coatings 2026, 16(1), 100; https://doi.org/10.3390/coatings16010100 - 12 Jan 2026
Abstract
The milled surface topography of NiTi SMA critically affects its frictional behavior, corrosion resistance, and biocompatibility, which are essential for biomedical and aerospace applications. This study combines simulation and single-factor experiments to investigate the coupling behavior among surface topography evolution, work hardening, plastic [...] Read more.
The milled surface topography of NiTi SMA critically affects its frictional behavior, corrosion resistance, and biocompatibility, which are essential for biomedical and aerospace applications. This study combines simulation and single-factor experiments to investigate the coupling behavior among surface topography evolution, work hardening, plastic deformation, and residual stress evolution. Results showed that increasing feed per tooth led to a significant rise in surface residual height and an improvement in surface isotropy. With the increase in feed per tooth, the error between the experimental and simulated heights gradually decreased from 105.6% to 30.9%, indicating that both material properties and feed per tooth strongly affect residual profile formation in the feed direction. In addition, larger feed per tooth intensifies work hardening and plastic deformation but reduces surface residual stress, thereby increasing microhardness. These effects can mitigate material rebound and improve surface profile accuracy. The results provide a direct basis for controlling the surface integrity of NiTi SMA components through machining parameter optimization, enabling precise tailoring of functional surface characteristics, such as wear performance, chemical stability, and biological response, which is of critical importance for high-end biomedical implants and aerospace systems. Full article
(This article belongs to the Section Surface Characterization, Deposition and Modification)
23 pages, 3585 KB  
Article
Mass Deposition Rates of Carbon Dioxide onto a Cryogenically Cooled Surface
by Martin Jan Tuinier, Wout Jacob René Ververs, Danica Tešić, Ivo Roghair and Martin van Sint Annaland
Processes 2026, 14(2), 271; https://doi.org/10.3390/pr14020271 - 12 Jan 2026
Abstract
The rates of CO2 mass deposition onto cryogenically cooled surfaces are crucial for CO2 removal processes that rely on cryogenics. A dedicated experimental setup was constructed to measure CO2 mass deposition rates under controlled conditions. Experiments were carried out with [...] Read more.
The rates of CO2 mass deposition onto cryogenically cooled surfaces are crucial for CO2 removal processes that rely on cryogenics. A dedicated experimental setup was constructed to measure CO2 mass deposition rates under controlled conditions. Experiments were carried out with both pure CO2 and CO2/N2 mixtures, growing frost layers up to 8 mm thick. Results demonstrated that heat transfer through the frost layer significantly slows down the mass deposition process. Furthermore, it was found that the addition of N2 to the gas phase has a considerable influence on mass deposition rates, because it introduces an additional mass transfer resistance toward the frost surface. To describe the experimentally observed behavior, a frost growth model based on mass and energy balances was developed. Expressions for the frost density as a function of the frost temperature and for the effective frost conductivity as a function of the frost density were derived and implemented in the model. When accounting for drift fluxes, the model accurately captures the behavior observed in experiments. The findings of this work highlight the significant impact of heat transfer limitations on processes that accumulate a thick solid CO2 layer, such as continuously cooled heat exchangers. Conversely, technologies like cryogenically refrigerated packed beds do not develop a thick solid CO2 layer; calculations showed that a frost layer of 3.24∙10−5 m is formed, resulting in a Biot number well below 0.01, indicating that heat transfer in the frost layer is not limiting. Full article
(This article belongs to the Section Chemical Processes and Systems)
18 pages, 2552 KB  
Article
Transgenic Citrus sinensis Expressing the Pepper Bs2 R-Gene Shows Broad Transcriptional Activation of Defense Responses to Citrus Canker
by Lorena Noelia Sendín, Verónica Andrea Ledesma, Rocío Liliana Gómez, Qibin Yu, Frederick G. Gmitter, Patricia Albornoz, Esteban Mariano Pardo, Ramón Enrique, Atilio Pedro Castagnaro and María Paula Filippone
Agronomy 2026, 16(2), 187; https://doi.org/10.3390/agronomy16020187 - 12 Jan 2026
Abstract
The pepper Bs2 resistance gene confers resistance to susceptible Solanaceae plants against pathogenic strains of Xanthomonas campestris pv. vesicatoria carrying the avrBs2 avirulence gene. Previously, we generated Bs2-transgenic Citrus sinensis plants that exhibited enhanced resistance to citrus canker caused by Xanthomonas citri [...] Read more.
The pepper Bs2 resistance gene confers resistance to susceptible Solanaceae plants against pathogenic strains of Xanthomonas campestris pv. vesicatoria carrying the avrBs2 avirulence gene. Previously, we generated Bs2-transgenic Citrus sinensis plants that exhibited enhanced resistance to citrus canker caused by Xanthomonas citri subsp. citri (Xcc), although the underlying mechanisms remained unknown. To elucidate the molecular basis of the early defense response, we performed a comparative transcriptomic analysis of Bs2-expressing and non-transgenic plants 48 h after Xcc inoculation. A total of 2022 differentially expressed genes (DEGs) were identified, including 1356 up-regulated and 666 down-regulated genes. In Bs2-plants, 36.8% of the up-regulated DEGs were associated with defense responses and biotic stress. Functional annotation revealed major changes in genes encoding receptor-like kinases, transcription factors, hormone biosynthesis enzymes, pathogenesis-related proteins, secondary metabolism, and cell wall modification. Among hormone-related pathways, genes linked to ethylene biosynthesis and signaling were the most strongly regulated. Consistently, endogenous ethylene levels increased in Bs2-plants following Xcc infection, and treatment with an ethylene-releasing compound enhanced resistance in non-transgenic plants. Overall, our results indicate the Bs2 expression activates a complex defense network in citrus and may represent a valuable strategy for controlling canker and other Xanthomonas-induced diseases. Full article
(This article belongs to the Section Pest and Disease Management)
Show Figures

Figure 1

Back to TopTop