Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (319)

Search Parameters:
Keywords = residue-derived carbon

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 2260 KiB  
Article
From Shale to Value: Dual Oxidative Route for Kukersite Conversion
by Kristiina Kaldas, Kati Muldma, Aia Simm, Birgit Mets, Tiina Kontson, Estelle Silm, Mariliis Kimm, Villem Ödner Koern, Jaan Mihkel Uustalu and Margus Lopp
Processes 2025, 13(8), 2421; https://doi.org/10.3390/pr13082421 - 30 Jul 2025
Viewed by 227
Abstract
The increasing need for sustainable valorization of fossil-based and waste-derived materials has gained interest in converting complex organic matrices such as kerogen into valuable chemicals. This study explores a two-step oxidative strategy to decompose and valorize kerogen-rich oil shale, aiming to develop a [...] Read more.
The increasing need for sustainable valorization of fossil-based and waste-derived materials has gained interest in converting complex organic matrices such as kerogen into valuable chemicals. This study explores a two-step oxidative strategy to decompose and valorize kerogen-rich oil shale, aiming to develop a locally based source of aliphatic dicarboxylic acids (DCAs). The method combines air oxidation with subsequent nitric acid treatment to enable selective breakdown of the organic structure under milder conditions. Air oxidation was conducted at 165–175 °C using 1% KOH as an alkaline promoter and 40 bar oxygen pressure (or alternatively 185 °C at 30 bar), targeting 30–40% carbon conversion. The resulting material was then subjected to nitric acid oxidation using an 8% HNO3 solution. This approach yielded up to 23% DCAs, with pre-oxidation allowing a twofold reduction in acid dosage while maintaining efficiency. However, two-step oxidation was still accompanied by substantial degradation of the structure, resulting in elevated CO2 formation, highlighting the need to balance conversion and carbon retention. The process offers a possible route for transforming solid fossil residues into useful chemical precursors and supports the advancement of regionally sourced, sustainable DCA production from unconventional raw materials. Full article
Show Figures

Figure 1

25 pages, 4297 KiB  
Article
Application of Carbon–Silicon Hybrid Fillers Derived from Carbonised Rice Production Waste in Industrial Tread Rubber Compounds
by Valeryia V. Bobrova, Sergey V. Nechipurenko, Bayana B. Yermukhambetova, Andrei V. Kasperovich, Sergey A. Yefremov, Aigerim K. Kaiaidarova, Danelya N. Makhayeva, Galiya S. Irmukhametova, Gulzhakhan Zh. Yeligbayeva and Grigoriy A. Mun
Polymers 2025, 17(15), 2070; https://doi.org/10.3390/polym17152070 - 29 Jul 2025
Viewed by 284
Abstract
The disposal of agro-industrial waste is a pressing environmental issue. At the same time, due to the high silica content in specific agricultural residues, their processed products can be utilised in various industrial sectors as substitutes for commercial materials. This study investigates the [...] Read more.
The disposal of agro-industrial waste is a pressing environmental issue. At the same time, due to the high silica content in specific agricultural residues, their processed products can be utilised in various industrial sectors as substitutes for commercial materials. This study investigates the key technological, physico-mechanical, and viscoelastic properties of industrial elastomeric compounds based on synthetic styrene–butadiene rubber, intended for the tread of summer passenger car tyres, when replacing the commercially used highly reinforcing silica filler (SF), Extrasil 150VD brand (white carbon black), with a carbon–silica filler (CSF). The CSF is produced by carbonising a finely ground mixture of rice production waste (rice husks and stems) in a pyrolysis furnace at 550–600 °C without oxygen. It was found that replacing 20 wt.pts. of silica filler with CSF in industrial tread formulations improves processing parameters (Mooney viscosity increases by up to 5.3%, optimal vulcanisation time by up to 9.2%), resistance to plastic deformation (by up to 7.7%), and tackiness of the rubber compounds (by 31.3–34.4%). Viscoelastic properties also improved: the loss modulus and mechanical loss tangent decreased by up to 24.0% and 14.3%, respectively; the rebound elasticity increased by up to 6.3% and fatigue resistance by up to 2.7 thousand cycles; and the internal temperature of samples decreased by 7 °C. However, a decrease in tensile strength (by 10.7–27.0%) and an increase in wear rate (up to 43.3% before and up to 22.5% after thermal ageing) were observed. Nevertheless, the overall results of this study indicate that the CSF derived from the carbonisation of rice production waste—containing both silica and carbon components—can effectively be used as a partial replacement for the commercially utilised reinforcing silica filler in the production of tread rubber for summer passenger car tyres. Full article
(This article belongs to the Special Issue Polymeric Composites: Manufacturing, Processing and Applications)
Show Figures

Figure 1

20 pages, 8499 KiB  
Article
Characterization of Low-Temperature Waste-Wood-Derived Biochar upon Chemical Activation
by Bilge Yilmaz, Vasiliki Kamperidou, Serhatcan Berk Akcay, Turgay Kar, Hilal Fazli and Temel Varol
Forests 2025, 16(8), 1237; https://doi.org/10.3390/f16081237 - 27 Jul 2025
Viewed by 213
Abstract
Depending on the feedstock type and the pyrolysis conditions, biochars exhibit different physical, chemical, and structural properties, which highly influence their performance in various applications. This study presents a comprehensive characterization of biochar materials derived from the waste wood of pine (Pinus [...] Read more.
Depending on the feedstock type and the pyrolysis conditions, biochars exhibit different physical, chemical, and structural properties, which highly influence their performance in various applications. This study presents a comprehensive characterization of biochar materials derived from the waste wood of pine (Pinus sylvestris L.) and beech (Fagus sylvatica) after low-temperature pyrolysis at 270 °C, followed by chemical activation using zinc chloride. The resulting materials were thoroughly analyzed in terms of their chemical composition (FTIR), thermal behavior (TGA/DTG), structural morphology (SEM and XRD), elemental analysis, and particle size distribution. The successful modification of raw biomass into carbon-rich structures of increased aromaticity and thermal stability was confirmed. Particle size analysis revealed that the activated carbon of Fagus sylvatica (FSAC) exhibited a monomodal distribution, indicating high homogeneity, whereas Pinus sylvestris-activated carbon showed a distinct bimodal distribution. This heterogeneity was supported by elemental analysis, revealing a higher inorganic content in pine-activated carbon, likely contributing to its dimensional instability during activation. These findings suggest that the uniform morphology of beech-activated carbon may be advantageous in filtration and adsorption applications, while pine-activated carbon’s heterogeneous structure could be beneficial for multifunctional systems requiring variable pore architectures. Overall, this study underscored the potential of chemically activated biochar from lignocellulosic residues for customized applications in environmental and material science domains. Full article
(This article belongs to the Section Wood Science and Forest Products)
Show Figures

Figure 1

19 pages, 4329 KiB  
Article
Quantifying Soil Carbon Sequestration Potential Through Carbon Farming Practices with RothC Model Adapted to Lithuania
by Gustė Metrikaitytė Gudelė and Jūratė Sužiedelytė Visockienė
Land 2025, 14(7), 1497; https://doi.org/10.3390/land14071497 - 19 Jul 2025
Viewed by 386
Abstract
Climate change poses one of the greatest challenges of our time, with greenhouse gas (GHG) emissions significantly contributing to global warming. The agriculture, forestry, and land-use (AFOLU) sectors not only emit GHGs but also offer the potential for carbon sequestration, which can mitigate [...] Read more.
Climate change poses one of the greatest challenges of our time, with greenhouse gas (GHG) emissions significantly contributing to global warming. The agriculture, forestry, and land-use (AFOLU) sectors not only emit GHGs but also offer the potential for carbon sequestration, which can mitigate climate change. This study presents a methodological framework for estimating soil organic carbon (SOC) changes based on carbon farming practices in northern Lithuania. Using satellite-derived indicators of cover crops, no-till farming, and residue retention combined with soil and climate data, SOC dynamics were modeled across the Joniškis municipality for the period 2019–2020 using the Rothamsted Carbon Model (RothC) model. The integration of geospatial data and process-based modeling allowed for spatial estimation of SOC change, revealing positive trends ranging from 0.23 to 0.32 t C ha−1 year−1. Higher increases were observed in areas where multiple carbon farming practices overlapped. The proposed workflow demonstrates the potential of combining Earth observation and modeling approaches for regional-scale carbon assessment and provides a basis for future applications in sustainable land management and climate policy support. Full article
(This article belongs to the Special Issue Soils and Land Management Under Climate Change (Second Edition))
Show Figures

Figure 1

21 pages, 1816 KiB  
Review
Lignin Waste Valorization in the Bioeconomy Era: Toward Sustainable Innovation and Climate Resilience
by Alfonso Trezza, Linta Mahboob, Anna Visibelli, Michela Geminiani and Annalisa Santucci
Appl. Sci. 2025, 15(14), 8038; https://doi.org/10.3390/app15148038 - 18 Jul 2025
Viewed by 432
Abstract
Lignin, the most abundant renewable aromatic biopolymer on Earth, is rapidly emerging as a powerful enabler of next-generation sustainable technologies. This review shifts the focus to the latest industrial breakthroughs that exploit lignin’s multifunctional properties across energy, agriculture, healthcare, and environmental sectors. Lignin-derived [...] Read more.
Lignin, the most abundant renewable aromatic biopolymer on Earth, is rapidly emerging as a powerful enabler of next-generation sustainable technologies. This review shifts the focus to the latest industrial breakthroughs that exploit lignin’s multifunctional properties across energy, agriculture, healthcare, and environmental sectors. Lignin-derived carbon materials are offering scalable, low-cost alternatives to critical raw materials in batteries and supercapacitors. In agriculture, lignin-based biostimulants and controlled-release fertilizers support resilient, low-impact food systems. Cosmetic and pharmaceutical industries are leveraging lignin’s antioxidant, UV-protective, and antimicrobial properties to create bio-based, clean-label products. In water purification, lignin-based adsorbents are enabling efficient and biodegradable solutions for persistent pollutants. These technological leaps are not merely incremental, they represent a paradigm shift toward a materials economy powered by renewable carbon. Backed by global sustainability roadmaps like the European Green Deal and China’s 14th Five-Year Plan, lignin is moving from industrial residue to strategic asset, driven by unprecedented investment and cross-sector collaboration. Breakthroughs in lignin upgrading, smart formulation, and application-driven design are dismantling long-standing barriers to scale, performance, and standardization. As showcased in this review, lignin is no longer just a promising biopolymer, it is a catalytic force accelerating the global transition toward circularity, climate resilience, and green industrial transformation. The future of sustainable innovation is lignin-enabled. Full article
(This article belongs to the Special Issue Biosynthesis and Applications of Natural Products)
Show Figures

Figure 1

26 pages, 1389 KiB  
Article
Forest Biomass Fuels and Energy Price Stability: Policy Implications for U.S. Gasoline and Diesel Markets
by Chukwuemeka Valentine Okolo and Andres Susaeta
Energies 2025, 18(14), 3732; https://doi.org/10.3390/en18143732 - 15 Jul 2025
Viewed by 233
Abstract
U.S. gasoline and diesel prices are often volatile, driven by geopolitical risks and disruptions in the fossil fuel market. Forest biomass fuels, particularly renewable diesel derived from logging residues, offer a low-carbon alternative with the potential to stabilize fuel prices. This study evaluates [...] Read more.
U.S. gasoline and diesel prices are often volatile, driven by geopolitical risks and disruptions in the fossil fuel market. Forest biomass fuels, particularly renewable diesel derived from logging residues, offer a low-carbon alternative with the potential to stabilize fuel prices. This study evaluates whether biomass can moderate fuel price volatility using ANOVA, Tukey post hoc tests, and quadratic regression based on monthly data for biomass production, inventories, and retail fuel prices. Findings reveal the existence of a significant nonlinear relationship between forest biomass inventory levels and fossil fuel prices. Average gasoline prices peaked in the medium-inventory group (M = 0.837) and dropped in the high-inventory group (M = 0.684). Diesel prices followed a similar pattern, with the highest values in the medium-inventory group (M = 0.963) and the lowest in the high-inventory group (M = 0.759). One-way ANOVA results were statistically significant for both gasoline (F(2, 99) = 7.39, p = 0.001) and diesel (F(2, 99) = 7.22, p = 0.0012). Tukey tests confirmed that diesel prices fell significantly from both medium to high and low to high-inventory levels. This result remains robust when using the biomass index level and the biomass production level. These results indicate a threshold effect: only at higher biomass inventories do fossil fuel prices decline, suggesting a potential for substitution. However, current policies inadequately support biomass integration, highlighting the need for targeted reforms. Full article
(This article belongs to the Special Issue Emerging Trends in Energy Economics: 3rd Edition)
Show Figures

Figure 1

48 pages, 5755 KiB  
Review
Accelerated Carbonation of Waste Incineration Residues: Reactor Design and Process Layout from Laboratory to Field Scales—A Review
by Quentin Wehrung, Davide Bernasconi, Fabien Michel, Enrico Destefanis, Caterina Caviglia, Nadia Curetti, Meissem Mezni, Alessandro Pavese and Linda Pastero
Clean Technol. 2025, 7(3), 58; https://doi.org/10.3390/cleantechnol7030058 - 11 Jul 2025
Viewed by 809
Abstract
Municipal solid waste (MSW) and refuse-derived fuel (RDF) incineration generate over 20 million tons of residues annually in the EU. These include bottom ash (IBA), fly ash (FA), and air pollution control residues (APCr), which pose significant environmental challenges due to their leaching [...] Read more.
Municipal solid waste (MSW) and refuse-derived fuel (RDF) incineration generate over 20 million tons of residues annually in the EU. These include bottom ash (IBA), fly ash (FA), and air pollution control residues (APCr), which pose significant environmental challenges due to their leaching potential and hazardous properties. While these residues contain valuable metals and reactive mineral phases suitable for carbonation or alkaline activation, chemical, techno-economic, and policy barriers have hindered the implementation of sustainable, full-scale management solutions. Accelerated carbonation technology (ACT) offers a promising approach to simultaneously sequester CO2 and enhance residue stability. This review provides a comprehensive assessment of waste incineration residue carbonation, covering 227 documents ranging from laboratory studies to field applications. The analysis examines reactor designs and process layouts, with a detailed classification based on material characteristics, operating conditions, investigated parameters, and the resulting pollutant stabilization, CO2 uptake, or product performance. In conclusion, carbonation-based approaches must be seamlessly integrated into broader waste management strategies, including metal recovery and material repurposing. Carbonation should be recognized not only as a CO2 sequestration process, but also as a binding and stabilization strategy. The most critical barrier remains chemical: the persistent leaching of sulfates, chromium(VI), and antimony(V). We highlight what we refer to as the antimony problem, as this element can become mobilized by up to three orders of magnitude in leachate concentrations. The most pressing research gap hindering industrial deployment is the need to design stabilization approaches specifically tailored to critical anionic species, particularly Sb(V), Cr(VI), and SO42−. Full article
(This article belongs to the Collection Review Papers in Clean Technologies)
Show Figures

Figure 1

13 pages, 2665 KiB  
Article
Kapok-Derived Super Hollow Porous Carbon Fibers and Their Greenhouse Gases Adsorption
by Hun-Seung Jeong, Cheol-Ki Cho, Dong-Chul Chung, Kay-Hyeok An and Byung-Joo Kim
Fibers 2025, 13(7), 92; https://doi.org/10.3390/fib13070092 - 4 Jul 2025
Viewed by 295
Abstract
Industrialization and modernization have significantly improved the quality of life but have also led to substantial pollution. Cost-effective technologies are urgently needed to mitigate emissions from major polluting sectors, such as the automotive and transport industries. In this study, we synthesized naturally derived, [...] Read more.
Industrialization and modernization have significantly improved the quality of life but have also led to substantial pollution. Cost-effective technologies are urgently needed to mitigate emissions from major polluting sectors, such as the automotive and transport industries. In this study, we synthesized naturally derived, kapok-based porous carbon fibers (KP-PCFs) with hollow structures. We investigated their adsorption/desorption behavior for the greenhouse gas n-butane following ASTM D5228 standards. Scanning electron microscopy and X-ray diffraction analyses were conducted to examine changes in fiber diameter and crystalline structure under different activation times. The micropore properties of KP-PCFs were characterized using Brunauer–Emmett–Teller, t-plot, and non-localized density functional theory models based on N2/77K adsorption isotherm data. The specific surface area and total pore volume ranged from 500 to 1100 m2/g and 0.24 to 0.60 cm3/g, respectively, while the micropore and mesopore volumes were 0.20–0.45 cm3/g and 0.04–0.15 cm3/g, respectively. With increasing activation time, the n-butane adsorption capacity improved from 62.2% to 73.5%, whereas retentivity (residual adsorbate) decreased from 6.0% to 1.3%. The adsorption/desorption rate was highly correlated with pore diameter: adsorption capacity was highest for diameters of 1.5–2.5 nm, while retentivity was greatest for diameters of 3.5–5.0 nm. Full article
Show Figures

Graphical abstract

20 pages, 2206 KiB  
Article
Application of Carbon Materials Derived from Nocino Walnut Liqueur Pomace Residue for Chlorpyrifos Removal from Water
by Milena Zlatković, Rialda Kurtić, Igor A. Pašti, Tamara Tasić, Vedran Milanković, Nebojša Potkonjak, Christoph Unterweger and Tamara Lazarević-Pašti
Materials 2025, 18(13), 3072; https://doi.org/10.3390/ma18133072 - 28 Jun 2025
Viewed by 433
Abstract
This study explores the use of carbon materials derived from Nocino walnut liqueur pomace residue for the removal of chlorpyrifos, a widely used organophosphate pesticide, from water. Carbon adsorbents were synthesized from young walnut biomass under different thermal and chemical treatment conditions, and [...] Read more.
This study explores the use of carbon materials derived from Nocino walnut liqueur pomace residue for the removal of chlorpyrifos, a widely used organophosphate pesticide, from water. Carbon adsorbents were synthesized from young walnut biomass under different thermal and chemical treatment conditions, and their structural and surface properties were characterized using BET analysis, FTIR, SEM-EDX, Boehm titration, and zeta potential measurements. The materials exhibited distinct textural and chemical features, including high surface areas and varied surface functionalizations. Batch adsorption studies revealed that the chlorpyrifos removal followed pseudo-second-order kinetics and was best described by the Freundlich and Langmuir isotherms, indicating a combination of pore filling and physisorption via π-π and van der Waals interactions. The highest adsorption capacity of 45.2 ± 0.2 mg g−1 was achieved at 30 °C. Thermodynamic analysis confirmed the process to be endothermic, spontaneous, and entropy-driven, with desolvation effects enhancing the performance at elevated temperatures. Dynamic filtration experiments validated the practical applicability of the materials, while moderate reusability was achieved through ethanol-based regeneration. These findings demonstrate the potential of walnut pomace-derived carbons as low-cost, renewable, and effective adsorbents for sustainable water decontamination. Full article
(This article belongs to the Section Carbon Materials)
Show Figures

Graphical abstract

24 pages, 2387 KiB  
Review
Application of Ceramic Membranes Derived from Waste and Natural Materials for the Removal of Organic Dyes from Wastewater: A Review
by Keotshepile A. Malebadi, Lawrence Sawunyama, Naledi H. Seheri and Damian C. Onwudiwe
Ceramics 2025, 8(3), 80; https://doi.org/10.3390/ceramics8030080 - 25 Jun 2025
Viewed by 750
Abstract
The growing demand for organic dyes across industries increases their environmental impact since wastewater containing organic dyes poses serious risks to aquatic life, human beings, and the environment. The removal of organic dye residues is a challenge for traditional wastewater treatment facilities, highlighting [...] Read more.
The growing demand for organic dyes across industries increases their environmental impact since wastewater containing organic dyes poses serious risks to aquatic life, human beings, and the environment. The removal of organic dye residues is a challenge for traditional wastewater treatment facilities, highlighting the need for advanced treatment techniques that balance cost-effectiveness and sustainability in the face of today’s strict environmental regulations. The use of low-cost starting materials in ceramic membrane technology has recently become more popular as a feasible option because of its affordability and effectiveness, leveraging the synergy of adsorption and filtration to improve dye removal. Recent developments in ceramic membranes derived from waste and natural materials are examined in this review paper, along with their types, mechanisms, and applications in eliminating organic dyes from wastewater. The various forms of ceramic membranes derived from waste and natural materials are classified as follows: those composed solely of inexpensive starting materials, composites of inexpensive materials, hybrids of inexpensive and commercial materials, and inexpensive materials functionalized with cutting-edge materials such as carbon nanotubes and nanoparticles. These membranes have shown promising results in lab-scale research, but their large-scale use is still limited. The factors that negate the commercialization of these membranes are also critically discussed. Finally, key challenges and future research opportunities in the development of sustainable ceramic membranes for highly efficient dye removal are highlighted. Full article
Show Figures

Figure 1

15 pages, 3169 KiB  
Article
Coconut Residue-Derived Nanoporous Carbon via Hydrothermal Carbonization for Nanoporous Carbon-Based Supercapacitor Electrodes
by Kemchat Ruenroengrit, Jumpon Kunyuan, Nuttapong Ruttanadech, Napat Kaewtrakulchai, Pramote Puengjinda, Nattapat Chaiammart, Sutee Chutipaijit, Achanai Buasri, Masayoshi Fuji, Apiluck Eiad-Ua and Gasidit Panomsuwan
Polymers 2025, 17(13), 1752; https://doi.org/10.3390/polym17131752 - 25 Jun 2025
Viewed by 516
Abstract
The increasing demand for sustainable and cost-effective energy storage solutions has driven interest in biomass-derived carbon materials for supercapacitor electrodes. This study explores the valorization of coconut residue (CR), an abundant agricultural waste, as a carbon precursor for nanoporous carbon (NPC) production. NPC [...] Read more.
The increasing demand for sustainable and cost-effective energy storage solutions has driven interest in biomass-derived carbon materials for supercapacitor electrodes. This study explores the valorization of coconut residue (CR), an abundant agricultural waste, as a carbon precursor for nanoporous carbon (NPC) production. NPC was synthesized via hydrothermal carbonization (HTC) of CR, followed by chemical activation using potassium hydroxide (KOH) at varying temperatures (700, 800, and 900 °C). The effects of activation temperature on the structure and electrochemical performance of the NPC were systematically investigated. The activated materials exhibited amorphous, highly porous structures, with surface areas increasing alongside activation temperature—reaching a maximum of 1969 m2 g−1 at 900 °C. Electrochemical characterization was conducted using a three-electrode setup through cyclic voltammetry (CV) and galvanostatic charge–discharge (GCD) in a 1 M Na2SO4 electrolyte. The sample activated at 900 °C with a CR:KOH weight ratio of 1:2.5 achieved the highest specific capacitance of 52 F g−1 at a specific current of 1 A g−1. These findings underscore the potential of CR as a low-cost and sustainable raw material for fabricating efficient electrode materials in energy storage applications. Full article
Show Figures

Figure 1

18 pages, 1569 KiB  
Article
Assessing the Techno-Economic Feasibility of Bamboo Residue-Derived Hard Carbon
by Senqiang Qin, Chenghao Yu, Yanghao Jin, Gaoyue Zhang, Wei Xu, Ao Wang, Mengmeng Fan, Kang Sun and Shule Wang
Appl. Sci. 2025, 15(13), 7113; https://doi.org/10.3390/app15137113 - 24 Jun 2025
Viewed by 407
Abstract
Bamboo residues represent an abundant, renewable biomass feedstock that can be converted into hard carbon—an emerging anode material for sodium-ion batteries. This study presents a detailed techno-economic analysis of hard carbon production from bamboo residues across China’s ten most bamboo-rich provinces. Regional feedstock [...] Read more.
Bamboo residues represent an abundant, renewable biomass feedstock that can be converted into hard carbon—an emerging anode material for sodium-ion batteries. This study presents a detailed techno-economic analysis of hard carbon production from bamboo residues across China’s ten most bamboo-rich provinces. Regional feedstock availability was estimated from provincial production statistics, while average transportation distances were derived using a square-root-area-based approximation method. The process includes hydrothermal pretreatment, acid washing, carbonization, graphitization, and ball milling. Material and energy inputs were estimated for each stage, and both capital and operating expenses were evaluated using a discounted cash flow model assuming a 15% internal rate of return. The resulting minimum selling price of bamboo-derived hard carbon ranges from 14.47 to 18.15 CNY/kg. Assuming 10% of bamboo residues can be feasibly collected and processed, these ten provinces could collectively support an annual hard carbon production capacity of approximately 1.04 million tons. The results demonstrate that bamboo residues are a strategically distributed and underutilized resource for producing cost-competitive hard carbon at scale, particularly in provinces with existing bamboo industries and supply chains. Full article
Show Figures

Figure 1

13 pages, 914 KiB  
Article
Natural Coagulants as an Efficient Alternative to Chemical Ones for Continuous Treatment of Aquaculture Wastewater
by Isabella T. Tomasi, Rui A. R. Boaventura and Cidália M. S. Botelho
Appl. Sci. 2025, 15(12), 6908; https://doi.org/10.3390/app15126908 - 19 Jun 2025
Viewed by 373
Abstract
Aquaculture effluents are a growing source of water pollution, releasing suspended solids, organic matter, nitrogen, and phosphorus into aquatic environments. Recirculating aquaculture systems (RASs) have emerged as a more sustainable solution, allowing water to be continuously treated and reused. Within RASs, coagulation–flocculation is [...] Read more.
Aquaculture effluents are a growing source of water pollution, releasing suspended solids, organic matter, nitrogen, and phosphorus into aquatic environments. Recirculating aquaculture systems (RASs) have emerged as a more sustainable solution, allowing water to be continuously treated and reused. Within RASs, coagulation–flocculation is a key treatment step due to its simplicity and effectiveness. Tannin-based coagulants have gained attention as natural alternatives to traditional chemical agents. Although natural coagulants have been studied in aquaculture, only a few works explore their use in continuous-flow systems. This study evaluates a chestnut shell-based (CS) coagulant applied in continuous mode for the post-treatment of aquaculture effluent. The performance of CS was compared with Tanfloc, aluminum sulfate, and ferric chloride in removing color and dissolved organic carbon (DOC). At natural pH (6.5) and 50 mg·L−1, CS and Tanfloc achieved color removal of 61.0% and 65.5%, respectively, outperforming chemical coagulants. For DOC, Tanfloc and chemical coagulants removed 45–50%, while CS removed 32%. All coagulants removed over 90% of phosphorus, but nitrogen removal was limited (30–40%). These results highlight the potential of tannin-derived coagulants, particularly from agro-industrial residues, as sustainable solutions for aquaculture wastewater treatment in continuous systems. Full article
Show Figures

Figure 1

22 pages, 2181 KiB  
Article
Efficiency of a New Biochar Made from Agave Bagasse to Remove Conventional Pollutants in Samples from Laguna de Bustillos, Chihuahua, Mexico, and Pharmaceutical Derivatives in Synthetic Water
by Wendy Nayely Medina-Esparza, Oscar Aguilar-Juárez, Sergio Gómez-Salazar, René Morán-Salazar, Montserrat López-Covarrubias, Luz Olivia Leal-Quezada, Jorge Del Real-Olvera and Víctor Manuel Reyes-Gómez
Processes 2025, 13(6), 1861; https://doi.org/10.3390/pr13061861 - 12 Jun 2025
Viewed by 746
Abstract
Research on using biochar as an adsorbent of contaminants in aqueous matrices has gained significant relevance in recent years due to the surface chemistry and porous structure of biochar, which facilitate the retention of a wide range of pollutants. This study explores the [...] Read more.
Research on using biochar as an adsorbent of contaminants in aqueous matrices has gained significant relevance in recent years due to the surface chemistry and porous structure of biochar, which facilitate the retention of a wide range of pollutants. This study explores the adsorption performance of a novel biochar produced from agave bagasse—a readily available agro-industrial waste in Mexico—through low-temperature pyrolysis. The biochar was evaluated for its capacity to remove conventional water quality parameters (chemical oxygen demand (COD), nitrates (NO3), total nitrogen (TN), total phosphorus (TP), ammonium (NH4+), turbidity, apparent color, and true color) from water samples collected from the polluted Bustillos Lagoon in Chihuahua, Mexico. Additionally, the removal of emerging pharmaceutical contaminants, specifically acetaminophen (Act) and diclofenac (Dfc), was assessed in synthetic aqueous solutions. Potentiometric titration analyses revealed a significant contribution of surface acidity in the adsorption of pharmaceutical derivatives, highlighting the relevance of functional groups retained during low-temperature pyrolysis. The biochar derived from agave bagasse (BBAF1) was tested in a fixed-bed column system and compared with two commercial activated carbons (CACCF2 and CVCF3). The BBAF1 biochar achieved average removal efficiencies ranging from 50% to 90% for all conventional parameters. In contrast, those of ACT and DFC were between 0.43 and 0.67 mg g−1 (59–85%) and 0.34 and 0.62 mg g−1 (37–79%), respectively, demonstrating their potential as an adsorbent material for improving water quality. This work supports the development of circular economic strategies by valorizing agricultural residues while offering an effective solution to environmental pollution challenges. Full article
(This article belongs to the Section Separation Processes)
Show Figures

Graphical abstract

17 pages, 48587 KiB  
Article
Characterization of Briquettes from Potato Stalk Residues for Sustainable Solid Biofuel Production
by Marlon Andrés Piarpuezán Enríquez, Daniel Roberto Zapata Hidalgo and Fernando Pantoja-Suárez
Processes 2025, 13(6), 1851; https://doi.org/10.3390/pr13061851 - 12 Jun 2025
Viewed by 595
Abstract
The development of biofuels aligned with the circular economy has gained increasing attention as a sustainable alternative to non-renewable energy sources. This study aims to evaluate the physical and thermal properties of biomass briquettes derived from potato stalk residues to assess their potential [...] Read more.
The development of biofuels aligned with the circular economy has gained increasing attention as a sustainable alternative to non-renewable energy sources. This study aims to evaluate the physical and thermal properties of biomass briquettes derived from potato stalk residues to assess their potential as biofuels. For this, dried potato stalk residues were subjected to pyrolysis for carbonization, followed by grinding and mixing with potato and achira binders in proportions of 10% and 20%, respectively. The briquetting process was performed at a pressure of 10 MPa with compaction times of 30 and 60 s. Scanning electron microscopy (SEM) revealed a porous structure with uniform binder distribution, while Raman spectroscopy confirmed the presence of D and G bands, indicative of amorphous carbon structures with graphite-like imperfections. Thermogravimetric analysis (TGA) determined a moisture content of 10%, which ensures stability. Non-carbonized briquettes exhibited higher compressive strength, withstanding forces in excess of 400 N at 20% deformation. The average calorific value of both briquette types was 15 MJ/kg, comparable to biofuels derived from sugarcane bagasse and rice hulls, with samples exceeding the 12 MJ/kg threshold for biomass fuel classification. These results indicate that potato stalk briquettes could be a viable biofuel alternative to support renewable energy diversification. Full article
(This article belongs to the Section Chemical Processes and Systems)
Show Figures

Figure 1

Back to TopTop