Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (449)

Search Parameters:
Keywords = residual stress reduction

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
35 pages, 15027 KB  
Article
Multi-Scale Drivers of Urban Vegetation Moisture Stress: A Comparative OLS and GWR Analysis in Makassar City, Indonesia
by Ramdan Pano Anwar, Muhammad Irfan, Arifuddin Akil, Chenyu Du and László Kollányi
Land 2026, 15(2), 267; https://doi.org/10.3390/land15020267 - 5 Feb 2026
Abstract
Rapid urban expansion in tropical coastal cities has intensified vegetation moisture stress, compromising urban resilience and ecological stability. This study investigates the spatial drivers of the Moisture Stress Index (MSI) in Makassar City, Indonesia, by integrating biophysical indicators and land-use characteristics through multi-scale [...] Read more.
Rapid urban expansion in tropical coastal cities has intensified vegetation moisture stress, compromising urban resilience and ecological stability. This study investigates the spatial drivers of the Moisture Stress Index (MSI) in Makassar City, Indonesia, by integrating biophysical indicators and land-use characteristics through multi-scale regression analyses. Utilizing dry-season satellite composites (May–August 2025), the research derived Normalized Difference Vegetation Index (NDVI), Land Surface Temperature (LST), and Normalized Difference Built-up Index (NDBI). MSI was modeled using Ordinary Least Squares (OLS) and Geographically Weighted Regression (GWR) across 240 m, 480 m, and 960 m grids. Results indicate that MSI is highly sensitive to urban morphology and land-use configuration. High moisture stress was concentrated in commercial–industrial and dense residential zones characterized by extreme population densities exceeding 28,000 people/km2 and elevated NDBI. In contrast, agricultural zones and open/green spaces provided significant cooling and moisture retention. Comparative performance analysis reveals that the local GWR model significantly outperformed the global OLS model, achieving a substantial reduction in AICc (−10,475.81) and resolving significant spatial autocorrelation to achieve random residuals (z-score = 1.55). The study further confirms that NDBI is the most robust biophysical predictor of MSI. Spatial heterogeneity analysis demonstrated that land-use influences are geographically contingent, with institutional areas showing varied effects based on campus design and canopy presence. These findings emphasize the necessity of scale-aware, climate-adaptive urban planning and demonstrate that GWR provides a high-fidelity tool for identifying neighborhood-level “micro-hotspots” overlooked by global modeling frameworks. Full article
33 pages, 17508 KB  
Article
Analytical and Experimental Compressive Behavior of Reinforced Concrete Columns Subjected to Stray Current and Chloride Ingress
by Igor Lapiro, Rami Eid and Konstantin Kovler
Buildings 2026, 16(3), 654; https://doi.org/10.3390/buildings16030654 - 4 Feb 2026
Abstract
Stray current-induced corrosion poses a significant risk to the durability of reinforced concrete (RC) structures in electrified transit systems. This study addresses a critical knowledge gap by experimentally and analytically investigating the compression behaviors of circular RC columns under the combined effects of [...] Read more.
Stray current-induced corrosion poses a significant risk to the durability of reinforced concrete (RC) structures in electrified transit systems. This study addresses a critical knowledge gap by experimentally and analytically investigating the compression behaviors of circular RC columns under the combined effects of stray currents, chloride intrusion, and sustained service loads. The experimental program involved testing columns constructed with normal strength concrete (NSC) and moderate strength concrete (MSC) under accelerated corrosion induced by electrical potentials of 9 V and 18 V in a 3.5% NaCl solution. A key variable was the application of a sustained axial load, equal to 60% of the ultimate capacity, to simulate realistic service conditions. The findings revealed a severe deterioration in structural performance due to the synergistic effect of mechanical loading and corrosion. NSC columns subjected to 18 V potential and sustained axial loading exhibited a decrease in ultimate load-carrying capacity of up to 46% and a ductility reduction of approximately 69% compared to reference specimens. This damage was significantly more severe than in unloaded or lower-voltage (9 V) scenarios. Furthermore, MSC specimens demonstrated a strength loss of approximately 29% under similar aggressive conditions. An analytical confinement model, adjusted to account for corrosion by reducing the reinforcement cross-section and introducing a semi-empirical parameter α to represent localized pitting, showed strong agreement with the experimental stress–strain curves. The validated model provides a practical tool for assessing the residual capacity of corroded elements, addressing a crucial need in the maintenance of electrified transportation infrastructure. Full article
(This article belongs to the Special Issue Research on Corrosion Resistance of Reinforced Concrete)
14 pages, 6858 KB  
Article
Path Optimization of Laser Welding for Large-Scale Tube-to-Tubesheet
by Xuqiang Kang, Chuchuan Cao, Bingqi Wang and Anguo Huang
Metals 2026, 16(2), 147; https://doi.org/10.3390/met16020147 - 25 Jan 2026
Viewed by 242
Abstract
To address issues of residual stress concentration and deformation in large-scale multi-seam laser welding of tube-to-tubesheet, we established a 12 mm thick Q235 steel simulation model. The model considers the material’s high-temperature performance and mechanical properties. We designed three welding paths: sequential welding, [...] Read more.
To address issues of residual stress concentration and deformation in large-scale multi-seam laser welding of tube-to-tubesheet, we established a 12 mm thick Q235 steel simulation model. The model considers the material’s high-temperature performance and mechanical properties. We designed three welding paths: sequential welding, block-by-block symmetrical welding, and inward–outward symmetrical radial welding. The welding simulation software InteWeld 4.0 was used to study the effects of these paths on deformation. Results showed that the inside-out symmetric radiation welding path disperses heat input effectively. It prevents stiffness reduction from local heat accumulation. By using symmetrically distributed shrinkage forces that offset each other, this path greatly inhibits deformation accumulation. The maximum deformation was only 1.6 mm—5.9% and 33% lower than with block-by-block symmetric welding (1.7 mm) and sequential welding (2.4 mm). This path also resulted in a uniform residual stress distribution, with a maximum stress of only 250 MPa, making it the best option for suppressing deformation. Full article
Show Figures

Figure 1

19 pages, 6327 KB  
Article
Tailoring the Microstructure and Mechanical Properties of Laser Directed Energy–Deposited Inconel 718 Alloys via Ultrasonic Frequency Modulation
by Bo Peng, Mengmeng Zhang, Xiaoqiang Zhang, Ze Chai, Fahai Ba and Xiaoqi Chen
Crystals 2026, 16(1), 72; https://doi.org/10.3390/cryst16010072 - 21 Jan 2026
Viewed by 208
Abstract
Ultrasonic-assisted laser-directed energy deposition (UA-DED) is a promising combined technology for manufacturing high-value thin-walled Inconel 718 components in aerospace. Nevertheless, the optimal ultrasonic frequency—a key parameter for achieving desirable performance in thin-walled Inconel 718 alloys—remains to be determined. In this study, we systematically [...] Read more.
Ultrasonic-assisted laser-directed energy deposition (UA-DED) is a promising combined technology for manufacturing high-value thin-walled Inconel 718 components in aerospace. Nevertheless, the optimal ultrasonic frequency—a key parameter for achieving desirable performance in thin-walled Inconel 718 alloys—remains to be determined. In this study, we systematically investigated the influence of ultrasonic frequency (12–20 kHz) on the microstructure and mechanical properties of thin-walled Inconel 718 fabricated by UA-DED. The results revealed that an ultrasonic frequency of 20 kHz was optimal and can yield significant improvements in the microstructures of the as-deposited sample coordinate planes, manifested by the complete suppression of large pores, three-dimensional refinement of the γ matrix grains, alleviation of Nb and Mo segregation, the reduction of fragmented Laves particles, a decrease in residual macroscopic stresses, and homogeneous distributions of γ′/γ″ phases and γ-grain orientation. Meanwhile, the application of a 20 kHz ultrasonic frequency endows the manufactured thin-walled 718 parts with superior mechanical properties, including a tensile strength of 899 MPa in the laser scanning direction and 877 MPa in the build direction, along with the corresponding elongations of 34.8% and 38.9%. This work demonstrates the potential of modulating ultrasonic frequency to tailor microstructures and produce high-performance thin-walled Inconel 718 aerospace components. Full article
(This article belongs to the Special Issue Microstructure and Properties of Metals and Alloys)
Show Figures

Figure 1

58 pages, 1801 KB  
Review
Medicinal Plants and Phytochemicals in Cardioprotection—Mechanistic Pathways and Translational Roadmap
by Diana Maria Morariu-Briciu, Alex-Robert Jîjie, Sorin Lucian Bolintineanu, Ana-Maria Pah, Sorin Dan Chiriac, Adelina Chevereșan, Victor Dumitrașcu, Cătălin Prodan Bărbulescu and Radu Jipa
Life 2026, 16(1), 175; https://doi.org/10.3390/life16010175 - 21 Jan 2026
Viewed by 281
Abstract
Despite major advances in guideline-directed cardiovascular therapy, residual cardiovascular risk persists, partly driven by oxidative stress, chronic inflammation, endothelial dysfunction, and mitochondrial injury not fully addressed by current drugs. Translation of plant-based cardioprotectants is constrained by preparation-dependent variability in extract chemistry (plant part/cultivar/processing [...] Read more.
Despite major advances in guideline-directed cardiovascular therapy, residual cardiovascular risk persists, partly driven by oxidative stress, chronic inflammation, endothelial dysfunction, and mitochondrial injury not fully addressed by current drugs. Translation of plant-based cardioprotectants is constrained by preparation-dependent variability in extract chemistry (plant part/cultivar/processing and extraction method), low and variable systemic exposure for key actives (notably curcuminoids and many polyphenols), and clinically relevant safety/interaction considerations (e.g., hepatotoxicity reports with concentrated green tea extracts and antiplatelet-related bleeding-risk considerations for some botanicals). We therefore provide a mechanism- and translation-oriented synthesis of evidence for cardioprotective botanicals, chosen for long-standing traditional use and scientific validation with reproducible experimental data and, where available, human studies, including Crataegus monogyna, Allium sativum, Olea europaea, Ginkgo biloba, Leonurus cardiaca, and Melissa officinalis. Across studies, polyphenols (especially flavonoids and phenolic acids) and organosulfur compounds are most consistently associated with cardioprotection, while terpene-derived constituents and secoiridoids contribute mechanistically in plant-specific settings (e.g., Ginkgo and Olea). Predominantly in experimental models, these agents engage redox-adaptive (Nrf2), mitochondrial (mPTP), endothelial, and inflammatory (NF-κB) pathways, with reported reductions in ischemia–reperfusion injury, oxidative damage, and apoptosis. Clinical evidence remains heterogeneous and is largely confined to short-term studies and surrogate outcomes (blood pressure, lipids, oxidative biomarkers, endothelial function), with scarce data on hard cardiovascular endpoints or event reduction. Priorities include standardized, chemotype-controlled formulations with PK/PD-guided dosing and adequately powered randomized trials that assess safety and herb–drug interactions. Full article
(This article belongs to the Section Pharmaceutical Science)
Show Figures

Figure 1

24 pages, 15635 KB  
Article
Effect of Post-Printing Methods on the Microstructure and Mechanical Properties of Ti6Al4V Titanium Alloy Samples Fabricated Using Laser Powder Bed Fusion
by Krzysztof Żaba, Stanislav Rusz, Alicja Haslik-Sopata, Łukasz Kuczek, Ilona Różycka, Maciej Balcerzak and Tomasz Trzepieciński
Materials 2026, 19(2), 401; https://doi.org/10.3390/ma19020401 - 19 Jan 2026
Viewed by 253
Abstract
Laser powder bead fusion (LPBF) allows for the fabrication of highly accurate components from metal powders, which is difficult to achieve using traditional methods. LPBF-produced components can be characterized by their porosity and unfavorable microstructure, making further processing difficult. Therefore, appropriate post-printing methods [...] Read more.
Laser powder bead fusion (LPBF) allows for the fabrication of highly accurate components from metal powders, which is difficult to achieve using traditional methods. LPBF-produced components can be characterized by their porosity and unfavorable microstructure, making further processing difficult. Therefore, appropriate post-printing methods are crucial, as they reduce porosity, reduce residual stresses, and stabilize the microstructure. The aim of this paper was to determine the effect of post-printing methods on the microhardness and microstructure of Ti6Al4V titanium alloy samples fabricated using the LPBF process in different orientations. Hot isostatic pressing (HIP) at various temperatures (910 °C, 1150 °C, 1250 °C), annealing at 1020 °C, and twist channel angular pressing using a 90° channel ending with a helical exit were considered postprocessing methods for LPBF-produced samples. Printing orientation significantly determined the effectiveness of HIP and the heat treatment processes. Higher microhardness was observed on the cross-section oriented perpendicular to the 3D printing direction. Annealing under appropriately selected conditions favors the precipitation of fine particles of the α phase in the β phase, leading to a strengthening effect by precipitation. Based on the microhardness measurements, clear differences were observed in the mean values, statistical ranges, and result distributions depending on the printing plane, HIP process parameters, and the use of an additional heat treatment. The HIP process leads to a more pronounced homogenization of microstructure and defect reduction, with the morphology of the microstructure and microhardness distribution dependent on the HIP process temperature. Full article
Show Figures

Graphical abstract

15 pages, 5772 KB  
Article
Study on Formation Mechanism of Edge Cracks and Targeted Improvement in Hot-Rolled Sheets of Grain-Oriented Electrical Steel
by Weidong Zeng, Hui Tang, Xiaoyong Tang, Jiaming Wang, Zhongyu Piao and Fangqin Dai
Metals 2026, 16(1), 96; https://doi.org/10.3390/met16010096 - 15 Jan 2026
Viewed by 242
Abstract
Edge cracks in hot-rolled sheets of industrial grain-oriented electrical steel significantly affect the yield rate and pose substantial challenges to cold rolling fabrication. Eliminating such structural defects through hot rolling requires a thorough understanding of their formation mechanism. This study investigates the formation [...] Read more.
Edge cracks in hot-rolled sheets of industrial grain-oriented electrical steel significantly affect the yield rate and pose substantial challenges to cold rolling fabrication. Eliminating such structural defects through hot rolling requires a thorough understanding of their formation mechanism. This study investigates the formation mechanism of edge cracks in hot-rolled sheets, which are characterized by coarse strip-like grains with typical thicknesses ranging from 20 μm to 100 μm. Coarse, strip-shaped grains have low fracture stress, which is the cause of edge cracks. They originate from abnormally developed columnar grains in continuous casting slabs after reheating, which is unavoidable in industrial large-scale production. Inadequate fragmentation and insufficient recrystallization during rough rolling result in residual coarse grains of intermediate slabs, and their preferential deformation and outward protrusion lead to the formation of grooves. In the subsequent finishing rolling process, deformed coarse grains near the grooves undergo further elongation, developing into distinct strip-like structures. Based on the above mechanistic understanding, the edge microstructure under various rolling parameters was investigated, and targeted improvement measures for edge cracks were proposed. It is concluded that the edge quality can be significantly enhanced through increasing the total width reduction, additional rough rolling passes, and the implementation of edge heating during rough rolling. Quantitative analysis demonstrates that increasing the rolling passes from D to E significantly reduces the fraction of band structure from 64% to 48% and the average width of elongated grains from 43.5 μm to 38.4 μm. Full article
(This article belongs to the Section Metal Casting, Forming and Heat Treatment)
Show Figures

Figure 1

25 pages, 1914 KB  
Review
Mitochondria and Aging: Redox Balance Modulation as a New Approach to the Development of Innovative Geroprotectors (Fundamental and Applied Aspects)
by Ekaterina Mironova, Igor Kvetnoy, Sofya Balazovskaia, Viktor Antonov, Stanislav Poyarkov and Gianluigi Mazzoccoli
Int. J. Mol. Sci. 2026, 27(2), 842; https://doi.org/10.3390/ijms27020842 - 14 Jan 2026
Viewed by 265
Abstract
Redox (reduction–oxidation) processes underlie all forms of life and are a universal regulatory mechanism that maintains homeostasis and adapts the organism to changes in the internal and external environments. From capturing solar energy in photosynthesis and oxygen generation to fine-tuning cellular metabolism, redox [...] Read more.
Redox (reduction–oxidation) processes underlie all forms of life and are a universal regulatory mechanism that maintains homeostasis and adapts the organism to changes in the internal and external environments. From capturing solar energy in photosynthesis and oxygen generation to fine-tuning cellular metabolism, redox reactions are key determinants of life activity. Proteins containing sulfur- and selenium-containing amino acid residues play a crucial role in redox regulation. Their reversible oxidation by physiological oxidants, such as hydrogen peroxide (H2O2), plays the role of molecular switches that control enzymatic activity, protein structure, and signaling cascades. This enables rapid and flexible cellular responses to a wide range of stimuli—from growth factors and nutrient signals to toxins and stressors. Mitochondria, the main energy organelles and also the major sources of reactive oxygen species (ROS), play a special role in redox balance. On the one hand, mitochondrial ROS function as signaling molecules, regulating cellular processes, including proliferation, apoptosis, and immune response, while, on the other hand, their excessive accumulation leads to oxidative stress, damage to biomolecules, and the development of pathological processes. So, mitochondria act not only as a “generator” of redox signals but also as a central link in maintaining cellular and systemic redox homeostasis. Redox signaling forms a multi-layered cybernetic system, which includes signal perception, activation of signaling pathways, the initiation of physiological responses, and feedback regulatory mechanisms. At the molecular level, this is manifested by changes in the activity of redox-regulated proteins of which the redox proteome consists, thereby affecting the epigenetic landscape and gene expression. Physiological processes at all levels of biological organization—from subcellular to systemic—are controlled by redox mechanisms. Studying these processes opens a way to understanding the universal principles of life activity and identifying the biochemical mechanisms whose disruption causes the occurrence and development of pathological reactions. It is important to emphasize that new approaches to redox balance modulation are now actively developed, ranging from antioxidant therapy and targeted intervention on mitochondria to pharmacological and nutraceutical regulation of signaling pathways. This article analyzes the pivotal role of redox balance and its regulation at various levels of living organisms—from molecular and cellular to tissue, organ, and organismal levels—with a special emphasis on the role of mitochondria and modern strategies for influencing redox homeostasis. Full article
(This article belongs to the Special Issue ROS Signalling and Cell Turnover)
Show Figures

Figure 1

14 pages, 4701 KB  
Article
A Uniformity Coefficient-Based Method for Improving the Wear Resistance of Mold Ejector Pin Guide Holes via Oblique Laser Shock Peening
by Enfu Liu, Yueying Ye, Yudie Zhang, Shixu Mu, Zhilong Xu, Wenjun Jiang and Yin Li
Materials 2026, 19(2), 332; https://doi.org/10.3390/ma19020332 - 14 Jan 2026
Viewed by 235
Abstract
To address the severe wear of the hole wall and orifice in ejector pin guide holes of injection molds caused by frequent hole-shaft sliding, this study proposes a composite strengthening method that combines nitriding with oblique laser shock peening (N-OLSP). The strengthening uniformity [...] Read more.
To address the severe wear of the hole wall and orifice in ejector pin guide holes of injection molds caused by frequent hole-shaft sliding, this study proposes a composite strengthening method that combines nitriding with oblique laser shock peening (N-OLSP). The strengthening uniformity in both circumferential and axial directions was evaluated by defining a laser shock peening uniformity coefficient (k). By strictly controlling the uniformity coefficient ratio of two adjacent spots to be no less than 0.98, the optimal step angles for circumferential and axial directions were determined. Comparative experiments were conducted on three types of samples: Untreated, Nitrided, and N-OLSP treated. The results demonstrate that N-OLSP significantly enhances both surface hardness and residual compressive stress of the guide hole, and the degree of improvement increases with a higher value of k. Among the tested samples, N-OLSP exhibited the best wear resistance at the orifice, reducing the wear rate to 0.60 μm/h. Compared with the untreated and nitrided samples, the wear rate reduction achieved by N-OLSP was 66.85% and 16.67%, respectively. Full article
(This article belongs to the Section Metals and Alloys)
Show Figures

Figure 1

15 pages, 4513 KB  
Article
Effects of Oil Removal and Saturation on Core Integrity in Jimsar Shale Cores
by Linmao Lu, Hongyan Qu, Yanjie Chu, Mingyuan Yang, Hongzhou Wang, Fujian Zhou and Jun Zhang
Processes 2026, 14(2), 246; https://doi.org/10.3390/pr14020246 - 10 Jan 2026
Viewed by 200
Abstract
The shale oil reservoir is characterized by ultra-low porosity and permeability and multi-scale strong heterogeneity. During the sampling process of downhole cores, the rocks can easily be affected by drilling fluid contamination, mechanical stress damage, and other factors, altering the original distribution of [...] Read more.
The shale oil reservoir is characterized by ultra-low porosity and permeability and multi-scale strong heterogeneity. During the sampling process of downhole cores, the rocks can easily be affected by drilling fluid contamination, mechanical stress damage, and other factors, altering the original distribution of oil–water and the characteristics of pore structures. Oil removal and oil saturation are critical steps in core pre-treatment, yet the mechanism of its impact on cores has not been systematically studied. This research focuses on oil removal in six cores from the Jimsar shale oil reservoir with different oil saturations. The necessity and effectiveness of the oil removal saturation and its impact on the microstructure of the cores were systematically evaluated by employing nuclear magnetic resonance (NMR), CT scanning, and permeability testing methods. The results indicate that there are significant differences in fluid composition, pore structure, and wettability among downhole cores, making oil removal saturation treatment a necessary prerequisite for subsequent experiments. High-temperature and high-pressure oil removal shows significant effectiveness, with an average core weight reduction of 2.46% and average reduction in T2 peak area of 73.75%. The efficacy of oil saturation is influenced by the initial pore-throat distribution in the cores. The oil removal process significantly alters petrophysical parameters, with an average increase in porosity of 3.21 times and permeability rising by an average of 2.16 times, although individual variations exist. Microstructural analysis demonstrates that the oil removal process preferentially removes crude oil from larger pores, while residual oil is mainly distributed in smaller pores, indicated by a left shift in T2 peak values. Meanwhile, high-temperature and high-pressure conditions induce microfracture development, promoting the migration of crude oil into smaller pores. This research reveals the complex impact mechanism of the oil removal saturation process on shale cores, providing a theoretical basis for accurately evaluating shale reservoir characteristics and optimizing experimental design. Full article
Show Figures

Figure 1

16 pages, 3064 KB  
Article
Curcumin Mitigates Fumonisin B1-Induced Ovarian Toxicity in Peak-Laying Ducks via Hormone Metabolic Protection and Enhanced Reproductive Resilience
by Lihua Wang, Rui Liang, Qingyun Cao, Zhiwei Hou, Ali Mujtaba Shah, Qiuyi Deng, Xue Li, Jinze Li, Jiaqing Chen, Lukuyu A. Bernard, Muhammad Kashif Saleemi, Lin Yang and Wence Wang
Toxins 2026, 18(1), 34; https://doi.org/10.3390/toxins18010034 - 9 Jan 2026
Viewed by 342
Abstract
The objective of this study was to evaluate the protective effect of curcumin (Cur) on reproductive toxicity induced by fumonisin B1 (FB1) in laying ducks during the peak egg-laying period. A total of seventy-two 50-week-old Cherry Valley ducks were randomly [...] Read more.
The objective of this study was to evaluate the protective effect of curcumin (Cur) on reproductive toxicity induced by fumonisin B1 (FB1) in laying ducks during the peak egg-laying period. A total of seventy-two 50-week-old Cherry Valley ducks were randomly assigned to four groups: control, FB1 (30 mg/kg), Cur (200 mg/kg), and Cur + FB1 (200 mg/kg + 30 mg/kg). The experiment lasted for 35 days. Our results showed that cur supplementation effectively restored the reductions in final body weight (p = 0.005) and oviduct length (p = 0.020) induced by FB1 exposure. Residual FB1 concentrations in serum, liver, and ovaries were markedly increased in the FB1-treated group, while Cur significantly decreased the FB1 residual in duck liver (p < 0.05). Meanwhile, Cur supplementation markedly counteracted the FB1-induced reductions in serum total protein, albumin, triglycerides, and high-density lipoprotein induced by FB1 exposure. Cur supplementation effectively regulated FB1-induced oxidative stress, inflammation, and endocrine disruption. Specifically, Cur lowered FB1-induced malondialdehyde levels (p < 0.010), attenuated interleukin-1β increase (p = 0.083), and reversed the reduction in immunoglobulin G levels. FB increased the levels of hormones associated with duck reproduction, including estradiol, follicle-stimulating hormone, and luteinizing hormone; in contrast, curcumin supplementation decreased the levels of these hormones (p < 0.010). Histopathological analysis revealed that Cur significantly alleviated the inflammation and necrosis in the liver, kidneys, ovaries, and oviducts induced by FB1. In conclusion, dietary Cur supplementation effectively alleviated FB1-induced reproductive toxicity in laying ducks by enhancing antioxidant capacity, improving lipid metabolism, and restoring hormonal homeostasis. Full article
Show Figures

Figure 1

12 pages, 3062 KB  
Article
Discrete Element Simulation Study on Shear Mechanical Properties of Coal Seams with Horizontal Bedding Under Different Normal Stresses
by Xinchuan Fan, Jianchun Ou, Yanjun Tong, Xiaojun He and Bican Wang
Processes 2025, 13(12), 4001; https://doi.org/10.3390/pr13124001 - 11 Dec 2025
Viewed by 320
Abstract
In deep coal mining, fault slip-type rockbursts occur frequently. Understanding the shear mechanical properties of bedded coal seams and their intrinsic mechanisms is crucial. This study used PFC2D7.0 numerical simulation to systematically investigate the shear mechanical behavior and micro-mechanisms of bedded [...] Read more.
In deep coal mining, fault slip-type rockbursts occur frequently. Understanding the shear mechanical properties of bedded coal seams and their intrinsic mechanisms is crucial. This study used PFC2D7.0 numerical simulation to systematically investigate the shear mechanical behavior and micro-mechanisms of bedded coal under different normal stresses (1, 2, 3, 4 MPa). The research results show that: (1) The shear stress-displacement curves of bedded coal show three stages: elastic rise, strain softening, and residual stability. Both peak and residual shear strengths increase with the rise in normal stress. The peak strength shows nonlinear growth, while the residual strength exhibits a good linear relationship. Higher normal stress significantly reduces the strength reduction rate and effectively inhibits the brittleness of coal. (2) The failure mode consistently manifests as shear failure along the preset weak bedding plane, forming a distinct shear zone. Crack evolution analysis shows that shear cracks within the bedding are the primary form of damage, with minimal contribution from tensile cracks. (3) Force chain analysis shows that an increase in normal stress significantly enhances the density and connectivity of compressive force chains within the shear zone. It also effectively inhibits tensile force chains, with the bedding plane consistently serving as the primary area for stress concentration and transfer. This study provides important theoretical references for understanding the shear instability mechanism of bedded coal, predicting its mechanical response, and preventing fault slip-type rockbursts in deep coal mines. Full article
(This article belongs to the Special Issue Safety Monitoring and Intelligent Diagnosis of Mining Processes)
Show Figures

Figure 1

13 pages, 4637 KB  
Article
Rapid Stress Relief of Ti-6Al-4V Titanium Alloy by Electropulsing Treatment
by Aprilia Aprilia, Jin Lee Tan, Zixuan Ling, Vincent Gill, Paul Williams, Martyn A. Jones and Wei Zhou
Materials 2025, 18(24), 5555; https://doi.org/10.3390/ma18245555 - 11 Dec 2025
Viewed by 624
Abstract
This study investigates the effectiveness and underlying mechanisms of electropulsing treatment (EPT) for rapid stress relief of Ti-6Al-4V titanium alloy. Stress relief is an essential step in manufacturing processes to ensure long component lifespan. Residual stress accumulation within a component is often undesirable, [...] Read more.
This study investigates the effectiveness and underlying mechanisms of electropulsing treatment (EPT) for rapid stress relief of Ti-6Al-4V titanium alloy. Stress relief is an essential step in manufacturing processes to ensure long component lifespan. Residual stress accumulation within a component is often undesirable, as it may lead to premature failures. Currently, the stress relief of titanium alloys is typically carried out using an annealing heat-treatment process in a vacuum furnace. However, this method is time-consuming, usually requiring several hours. In this paper, an alternative fast stress relief method by EPT was investigated. A controllable pulsing treatment using alternating high density pulsing current with short pulse width was carried out. Results showed that EPT is effective in relieving residual stress in Ti-6Al-4V alloy. Up to 90% of the surface residual stresses induced by shot peening were successfully relieved by EPT with a treatment duration of only 114 ms. Reductions of low-angle grain boundaries (2–10°), local misorientation, and deformed grains were observed, while no significant grain growth or phase transformation was found. The stress-relief mechanism of EPT is attributed to the combined effects of dislocation movement driven by electron wind force (EWF), dislocation creep at elevated temperatures, and dislocation glide due to local yielding of residual stress under high-temperature conditions. The temperature rise during EPT was identified as a significant factor enabling stress relaxation. Full article
Show Figures

Graphical abstract

28 pages, 39423 KB  
Article
Experimental Development and Field Validation of an Advanced Penstock Repair Process for Extending Service Life in a Hydropower Plant
by David A. del Río, Johann A. Caballero, Jessica T. Muñoz, Leonardo Rojas, Gerardo Galvis-Romero, Nhora Cecilia Parra-Rodriguez, Laidi Morales-Cruz, Alejandro Morales-Ortiz, Andrés F. Duque, Daniel Hincapié, Camilo Seifert-Yepes, Sebastián Acuña-Carmona, Wilber Silva-López, César Nieto-Londoño and Rafael E. Vásquez
Water 2025, 17(24), 3495; https://doi.org/10.3390/w17243495 - 10 Dec 2025
Viewed by 623
Abstract
The rehabilitation of critical water-conveyance infrastructure plays a fundamental role in the water–energy nexus and constitutes a key strategy for extending the operational lifetime of hydropower facilities. These interventions are aligned to the United Nations’ 2030 Agenda, which declare that ensuring access to [...] Read more.
The rehabilitation of critical water-conveyance infrastructure plays a fundamental role in the water–energy nexus and constitutes a key strategy for extending the operational lifetime of hydropower facilities. These interventions are aligned to the United Nations’ 2030 Agenda, which declare that ensuring access to affordable, reliable, sustainable, and modern energy systems is essential for long-term energy security. This paper presents a field-validated, non-thermal repair methodology developed for the Chivor II hydropower penstock, a critical water conduction tunnel used for energy production in Colombia, that has been affected by a circumferential fatigue crack. Due to the geometric confinement of the penstock within the rock mass, conventional thermal or stress-relief treatments were unfeasible. Therefore, the proposed methodology uses controlled material removal with a welding sequence designed to release stored elastic energy and induce compressive stresses through the Poisson effect. Its main contribution is demonstrated through pilot-scale validation and full-scale implementation under real operating conditions, achieving 50% reduction in tensile stresses and left 99% of the examined surface under compression, which represents effective residual-stress stabilization, structural recovery, and hydraulic reliability. The methodology ensures reliable water conveyance for hydropower generation and can be applied to other pressurized conduits and pipelines where accessibility and heat treatment are constrained, strengthening SDGs 7 and 9 on clean energy, water sustainability, and resilient infrastructure. Full article
(This article belongs to the Section Water-Energy Nexus)
Show Figures

Figure 1

22 pages, 8720 KB  
Article
Investigation into the Mechanical Response of Shield Lining Under Simultaneous Construction of Subway Station and Tunnel
by Xusu He, Yang Liu, Shilin Zhang, Xuantao Shi, Yanhua Cao, Xiaowei Li and Sulei Zhang
Processes 2025, 13(12), 3968; https://doi.org/10.3390/pr13123968 - 8 Dec 2025
Viewed by 330
Abstract
To reduce downtime of the Tunnel Boring Machine and improve construction efficiency of subway tunnels, the tunnel–station synchronous construction method was implemented in the Qingdao metro. In this method, the TBM advanced continuously through the station, while the upper station was excavated in [...] Read more.
To reduce downtime of the Tunnel Boring Machine and improve construction efficiency of subway tunnels, the tunnel–station synchronous construction method was implemented in the Qingdao metro. In this method, the TBM advanced continuously through the station, while the upper station was excavated in stages using the primary support arch covering technique. Focusing on a construction scheme with low-grade temporary segments, this study develops a three-dimensional numerical model to investigate the mechanical response of shield lining during the simultaneous construction of a subway station and tunnel. The Mohr–Coulomb model and the Elastic model were employed to represent the mechanical behavior of the surrounding rock and support structure, respectively. The deformation, bending moment, axial force, and residual bearing capacity coefficients of the shield lining were systematically examined across six distinct construction stages. The results showed that asymmetric gradual unloading of the surrounding rock at the arch part caused the vertical displacement of the shield lining to be predominantly upward, with a maximum heave of 1.51 mm. Horizontal displacement exhibited significant asymmetry. During station arch excavation, asymmetric unloading led to an increase and clockwise shift in the bending moments of the shield lining. The axial forces transitioned from compression to tension at specific locations (40° and 240°), whereas the removal of temporary supports had only a minor influence. The maximum tensile stress of the shield lining increased by 3.35 times in Stage III and reached 0.69 MPa in Stage V, representing a 1.65-fold increase compared to the previous stage. Although the residual bearing capacity coefficient generally satisfied safety requirements throughout the construction process, it decreased to a minimum of 0.88 in Stage V, a 7% reduction relative to Stage IV, necessitating close monitoring. This study not only confirmed the safety of using temporary segments made of lower-grade concrete (C30) in tunnel–station synchronous construction but also provided valuable insights for optimizing construction schemes and controlling key risks, such as structural deformation, in similarly complex urban environments. Full article
(This article belongs to the Section Process Control and Monitoring)
Show Figures

Figure 1

Back to TopTop