Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (301)

Search Parameters:
Keywords = residential apartments

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 1482 KiB  
Article
Optimizing Power Sharing and Demand Reduction in Distributed Energy Resources for Apartments Through Tenant Incentivization
by Janak Nambiar, Samson Yu, Jag Makam and Hieu Trinh
Energies 2025, 18(15), 4073; https://doi.org/10.3390/en18154073 - 31 Jul 2025
Viewed by 155
Abstract
The increasing demand for electricity in multi-tenanted residential areas has placed unforeseen strain on sub-transformers, particularly in dense urban environments. This strain compromises overall grid performance and challenges utilities with shifting and rising peak demand periods. This study presents a novel approach to [...] Read more.
The increasing demand for electricity in multi-tenanted residential areas has placed unforeseen strain on sub-transformers, particularly in dense urban environments. This strain compromises overall grid performance and challenges utilities with shifting and rising peak demand periods. This study presents a novel approach to enhance the operation of a virtual power plant (VPP) comprising a microgrid (MG) integrated with renewable energy sources (RESs) and energy storage systems (ESSs). By employing an advanced monitoring and control system, the proposed topology enables efficient energy management and demand-side control within apartment complexes. The system supports controlled electricity distribution, reducing the likelihood of unpredictable demand spikes and alleviating stress on local infrastructure during peak periods. Additionally, the model capitalizes on the large number of tenancies to distribute electricity effectively, leveraging locally available RESs and ESSs behind the sub-transformer. The proposed research provides a systematic framework for managing electricity demand and optimizing resource utilization, contributing to grid reliability and a transition toward a more sustainable, decentralized energy system. Full article
Show Figures

Figure 1

14 pages, 1717 KiB  
Article
Development of Floor Structures with Crumb Rubber for Efficient Floor Impact Noise Reduction
by Ji-Hoon Park and Chan-Hoon Haan
Acoustics 2025, 7(3), 47; https://doi.org/10.3390/acoustics7030047 - 29 Jul 2025
Viewed by 308
Abstract
Korea has a high population density, considering the size of its territory. Therefore, the importance of convenient and comfortable apartment buildings and high-rise residential–commercial complex buildings has been rising. In addition, because of the improvement in the standard of living along with continuous [...] Read more.
Korea has a high population density, considering the size of its territory. Therefore, the importance of convenient and comfortable apartment buildings and high-rise residential–commercial complex buildings has been rising. In addition, because of the improvement in the standard of living along with continuous national economic growth, the interest in well-being and the expectation of a quiet life with a comfortable and pleasant residential environment have also been increasing. However, Koreans have a lifestyle involving sitting on the floor, so floor impact noise has been occurring more and more frequently. Because of this, neighborly disputes have been a serious social problem. And lately, damage and disputes from noise between floors have been increasing much more. The present work, therefore, used waste tire chips as a resilient material for reducing floor impact noise in order to recycle waste tires effectively. Also, a compounded resilient material, which combines EPS (expanded polystyrene), a flat resilient material on the upper part, with waste tire chips for the lower part, was developed. After constructing waste tire chips at a standardized test building, experiments with both light-weight and heavy-weight floor impact noise were performed. The tests confirmed that waste tire chips, when used as a resilient material, can effectively reduce both light-weight and heavy-weight floor impact noise. Full article
Show Figures

Figure 1

28 pages, 3635 KiB  
Article
Optimizing Energy Performance of Phase-Change Material-Enhanced Building Envelopes Through Novel Performance Indicators
by Abrar Ahmad and Shazim Ali Memon
Buildings 2025, 15(15), 2678; https://doi.org/10.3390/buildings15152678 - 29 Jul 2025
Viewed by 797
Abstract
Over recent decades, phase-change materials (PCMs) have gained prominence as latent-heat thermal energy storage systems in building envelopes because of their high energy density. However, only PCMs that complete a full daily charge–discharge cycle can deliver meaningful energy and carbon-emission savings. This simulation [...] Read more.
Over recent decades, phase-change materials (PCMs) have gained prominence as latent-heat thermal energy storage systems in building envelopes because of their high energy density. However, only PCMs that complete a full daily charge–discharge cycle can deliver meaningful energy and carbon-emission savings. This simulation study introduces a methodology that simultaneously optimizes PCM integration for storage efficiency, indoor thermal comfort, and energy savings. Two new indicators are proposed: overall storage efficiency (ECn), which consolidates heating and cooling-efficiency ratios into a single value, and the performance factor (PF), which quantifies the PCM’s effectiveness in maintaining thermal comfort. Using EnergyPlus v8.9 coupled with DesignBuilder, a residential ASHRAE 90.1 mid-rise apartment was modeled in six warm-temperate (Cfb) European cities for the summer period from June 1 to August 31. Four paraffin PCMs (RT-22/25/28/31 HC, 20 mm thickness) were tested under natural and controlled ventilation strategies, with windows opening 50% when outdoor air was at least 2 °C cooler than indoors. Simulation outputs were validated against experimental cubicle data, yielding a mean absolute indoor temperature error ≤ 4.5%, well within the ±5% tolerance commonly accepted for building thermal simulations. The optimum configuration—RT-25 HC with temperature-controlled ventilation—achieved PF = 1.0 (100% comfort compliance) in all six cities and delivered summer cooling-energy savings of up to 3376 kWh in Paris, the highest among the locations studied. Carbon-emission reductions reached 2254 kg CO2-e year−1, and static payback periods remained below the assumed 50-year building life at a per kg PCM cost of USD 1. The ECn–PF framework, therefore, provides a transparent basis for selecting cost-effective, energy-efficient, and low-carbon PCM solutions in warm-temperate buildings. Full article
(This article belongs to the Section Building Energy, Physics, Environment, and Systems)
Show Figures

Figure 1

20 pages, 8104 KiB  
Article
Energy Consumption Analysis of Using Mashrabiya as a Retrofit Solution for a Residential Apartment in Al Ain Square, Al Ain, UAE
by Lindita Bande, Anwar Ahmad, Saada Al Mansoori, Waleed Ahmed, Amna Shibeika, Shama Anbrine and Abdul Rauf
Buildings 2025, 15(14), 2532; https://doi.org/10.3390/buildings15142532 - 18 Jul 2025
Viewed by 271
Abstract
The city of Al Ain is a fast-developing area. With building typology varying from low-rise to mid-rise, sustainable design in buildings is needed. As the majority of the city’s population is Emirati Citizens, the percentage of expats is increasing. The expats tend to [...] Read more.
The city of Al Ain is a fast-developing area. With building typology varying from low-rise to mid-rise, sustainable design in buildings is needed. As the majority of the city’s population is Emirati Citizens, the percentage of expats is increasing. The expats tend to live in mid-rise buildings. One of the central midrise areas is AL Ain Square. This study aims to investigate how an optimized mashrabiya pattern can impact the energy and the Predicted Mean Vote (PMV) in a 3-bedroom apartment, fully oriented to the south, of an expat family. The methodology is as follows: case study selection, Weather analysis, Modeling/Validation of the base case scenario, Optimization of the mashrabiya pattern, Simulation of various scenarios, and Results. Analyzing the selected case study is the initial step of the methodology. This analysis begins with the district, building typology, and the chosen apartment. The weather analysis is relevant for using the mashrabiya (screen device) and the need to improve energy consumption and thermal comfort. The modeling of the base case shall be performed in Rhino Grasshopper. The validation is based on a one-year electricity bill provided by the owner. The optimization of mashrabiya patterns is an innovative process, where various designs are compared and then optimized to select the most efficient pattern. The solutions to the selected scenarios will then yield the results of the optimal scenario. This study is relevant to industry, academia, and local authorities as an innovative approach to retrofitting buildings. Additionally, the research presents a creative vision that suggests optimized mashrabiya patterns can significantly enhance energy savings, with the hexagonal grid configuration demonstrating the highest efficiency. This finding highlights the potential for geometry-driven shading optimization tailored to specific climatic and building conditions. Contrasting earlier mashrabiya studies that assess one static pattern, we couple a geometry-agnostic evolutionary solver with a utility-calibrated EnergyPlus model to test thousands of square, hexagonal, and triangular permutations. This workflow uncovers a previously undocumented non-linear depth perforation interaction. It validates a hexagonal screen that reduces annual cooling energy by 12.3%, establishing a replicable, grid-specific retrofit method for hot-arid apartments. Full article
Show Figures

Figure 1

18 pages, 296 KiB  
Article
Residential Heating Method and Housing Prices: Results of an Empirical Analysis in South Korea
by Chang-Soo Noh, Min-Ki Hyun and Seung-Hoon Yoo
Energies 2025, 18(14), 3809; https://doi.org/10.3390/en18143809 - 17 Jul 2025
Viewed by 385
Abstract
This study empirically delves into whether residential heating methods significantly affect apartment prices in Uiwang City, a suburban city near the Seoul Metropolitan area, South Korea. Using data from 1256 apartment sales, where both district heating systems (DHSs) and individual heating systems (IHSs) [...] Read more.
This study empirically delves into whether residential heating methods significantly affect apartment prices in Uiwang City, a suburban city near the Seoul Metropolitan area, South Korea. Using data from 1256 apartment sales, where both district heating systems (DHSs) and individual heating systems (IHSs) coexist, a hedonic price equation was estimated to analyze the impact of the heating method choices on housing values. Various housing attributes, including physical, locational, and environmental factors, were controlled, and multiple regression models were compared to identify the best-performing specification. The results show that apartments equipped with a DHS are priced, on average, KRW 92 million (USD 72 thousand) higher than those with an IHS. The price difference corresponds to KRW 849 thousand (USD 665) per m2 and possesses the statistical significance at the 5% level. Moreover, it is quite meaningful, representing roughly 11.2% of the price of an average apartment. These findings suggest that the use of DHS has a positive effect on apartment prices that reflect consumers’ preferences, beyond its advantages in stable heat supply and energy cost savings. This article provides empirical evidence that DHS can serve as an important urban infrastructure contributing to asset value enhancement. Although this study is based on a specific geographic area and caution must be exercised in generalizing its findings, it reports the interesting finding that residential heating method significantly affects housing prices. Full article
16 pages, 3743 KiB  
Article
Evaluation of Different Housing Typologies with a Design Pedagogy
by Yalcin Yildirim, Elif Altas Cakil and Merve Ersoy
Architecture 2025, 5(3), 46; https://doi.org/10.3390/architecture5030046 - 30 Jun 2025
Viewed by 434
Abstract
Design studios generally concentrate on some critical concerns of urban life to overcome, and housing is one of those. Rapid development and advanced technology increase the need for and problems with housing. Such concerns should be addressed in theory, practice, and pedagogy. This [...] Read more.
Design studios generally concentrate on some critical concerns of urban life to overcome, and housing is one of those. Rapid development and advanced technology increase the need for and problems with housing. Such concerns should be addressed in theory, practice, and pedagogy. This study assesses the sophomores’ design output and their understanding of housing typologies based on real-world project sites to contribute to pedagogical aspects. Our study results show that students’ villa typologies generally focus on specific social groups with central themes, including health and recreation, while apartment complex designs converge on community life, urban identity, and tranquility. Based on the survey, students were part of it; they had difficulty with the scale and site-related grading problems, while most wished to work on the other typology theme. This study eventually calls attention to housing problems based on the design students’ perspectives on different residential typologies. Full article
Show Figures

Figure 1

17 pages, 2269 KiB  
Article
Organophosphate Flame Retardants in Indoor Dust in the Tampa Bay (Florida) Area
by Adebayo Solanke, Lukasz Talalaj, Claire Graham and Henry Alegria
Toxics 2025, 13(6), 508; https://doi.org/10.3390/toxics13060508 - 16 Jun 2025
Viewed by 482
Abstract
As polybrominated diphenyl ethers were phased out as flame retardants and plasticizers, increasing quantities of organophosphate triesters (OPEs) have been used as replacements. Despite a surge in reports on levels and profiles of OPEs, especially in indoor environments, and the potential exposure, there [...] Read more.
As polybrominated diphenyl ethers were phased out as flame retardants and plasticizers, increasing quantities of organophosphate triesters (OPEs) have been used as replacements. Despite a surge in reports on levels and profiles of OPEs, especially in indoor environments, and the potential exposure, there are still understudied areas with no data on the levels of these chemicals. We carried out the first study investigating levels and profiles of OPEs in indoor dust from such an area, the Tampa Bay (Florida) area. ∑13OPEs measured at each site ranged from 545 to 502,086 ng g−1, with overall medians and means over 64 sites of 15,447 and 36,135 ng g−1, respectively. Alkyl OPEs were predominant, with lesser levels of chlorinated and aryl OPEs. Median levels were highest for tris (2-butoxyethyl) phosphate (TBOEP) and triphenyl phosphate (TPHP) at 4641 and 1046 ng g−1, respectively; lower for tris(1,3–dichloro-2-propyl) phosphate (TDCIPP), tris(2-chloropropyl) phosphate (T2CPP), and tris (2-chloroisopropyl) phosphate (TCIPP) at 530, 458, and 360 ng g−1, respectively; with others ranging from 2 to 85 ng g−1. There were differences in levels in different microenvironments (urban versus suburban; non-residential versus residential; apartments versus single-family homes; daycares versus residences and university rooms; building age; and rooms with different floor material). Estimated daily intakes for median and higher exposure scenarios for ∑13OPEs (in ng kg−1 bw day−1) were 12 and 552 for toddlers and 6 and 451 for adults, respectively. TBOEP accounted for 30% of total intake for toddlers and adults in a mean exposure scenario but 90% for high exposure scenario. Full article
(This article belongs to the Section Emerging Contaminants)
Show Figures

Graphical abstract

25 pages, 52045 KiB  
Article
Numerical Study of Optimal Temperature Sensor Placement in Multi-Apartment Buildings with Radiant Floor Heating
by Guiqiang Wang, Shilu Li and Haiman Wang
Buildings 2025, 15(12), 2026; https://doi.org/10.3390/buildings15122026 - 12 Jun 2025
Viewed by 1185
Abstract
In northern China, radiant floor heating is widely used in multi-apartment residential buildings, with indoor temperature being a key factor in evaluating a user’s heating demands. However, due to variations in building structure, room orientation, and the outdoor environment, identifying the optimal placement [...] Read more.
In northern China, radiant floor heating is widely used in multi-apartment residential buildings, with indoor temperature being a key factor in evaluating a user’s heating demands. However, due to variations in building structure, room orientation, and the outdoor environment, identifying the optimal placement of temperature sensors across multiple zones remains challenging. In this study, we propose a data-driven methodology to identify the optimal placement of temperature sensors for a typical apartment with multiple zones. The proposed methodology is based on computational fluid dynamics (CFD) simulations of several typical scenarios and quantifies the relationship between the temperature field and the volume-averaged operating temperature to determine the optimal locations for temperature sensors. Results indicate that the temperature sensors need to be placed on planes ranging from 1.0 m to 1.7 m, with each plane featuring a distinct optimal area. The RMSE analysis reveals that, despite obvious temperature variations across the residence, the root mean square errors (RMSEs) at the designated sensor locations remain consistently low, with a maximum of 0.35 °C and most values below 0.3 °C. The above results indicate that the optimal sensor placement can significantly reduce potential errors between recorded temperatures and volume-averaged operating temperatures, which can be used as input parameters for personal indoor temperature control. Full article
Show Figures

Figure 1

17 pages, 898 KiB  
Article
Building a Sustainable Future: Tackling Carbon Challenges in Jordan’s Multi-Family Apartments
by Zayed F. Zeadat
Sustainability 2025, 17(12), 5411; https://doi.org/10.3390/su17125411 - 12 Jun 2025
Viewed by 578
Abstract
Focusing on issues related to SDG 11 (Sustainable Cities and Communities) and SDG 13 (Climate Action), this study aligns with the framework of the 2030 Agenda for Sustainable Development. This study explores the barriers unique to the industry that obstruct the adoption of [...] Read more.
Focusing on issues related to SDG 11 (Sustainable Cities and Communities) and SDG 13 (Climate Action), this study aligns with the framework of the 2030 Agenda for Sustainable Development. This study explores the barriers unique to the industry that obstruct the adoption of low-carbon emission solutions in Jordan’s multi-family residential buildings. Multi-family apartments constitute 73% of the total housing stock and account for over 80% of all residential structures. A total of eight main barriers that are preventing the implementation of low-carbon emission techniques were evaluated. The Fuzzy Delphi Method was utilized to gather insights from the Consultancy Council members of the Jordan Housing Investors Association. The results suggest that a major obstacle is the insufficient knowledge among end-users regarding environmental concerns, along with financial limitations, resulting in a lack of enthusiasm for low-carbon multi-family apartments. Moreover, insufficient cooperation between consultants and contractors leads to subpar constructability, which is worsened by the prevailing conventional procurement method that prioritizes cost and schedule above environmental consequences. To further investigate, it is advisable to examine the utilization of contemporary procurement methods, such as Design–Build and Construction Management and modern family contracts such as NEC4 in the housing industry of Jordan. These alternative methods have the potential to solve the current difficulties by promoting more effective and environmentally friendly building practices. Full article
(This article belongs to the Special Issue Green Innovations for Sustainable Development Goals Achievement)
Show Figures

Figure 1

19 pages, 2583 KiB  
Article
Assessment of Carbon Neutrality Performance of Buildings Using EPD-Certified Korean Construction Materials
by Seongjo Wang and Sungho Tae
Appl. Sci. 2025, 15(12), 6533; https://doi.org/10.3390/app15126533 - 10 Jun 2025
Viewed by 426
Abstract
Achieving carbon neutrality in the building sector is essential for addressing the global climate crisis. However, the production stage—which contributes to over 29% of a building’s life cycle carbon emissions (CE)—poses significant challenges for consistent carbon performance assessment due to the diversity of [...] Read more.
Achieving carbon neutrality in the building sector is essential for addressing the global climate crisis. However, the production stage—which contributes to over 29% of a building’s life cycle carbon emissions (CE)—poses significant challenges for consistent carbon performance assessment due to the diversity of building materials and the uniqueness of individual building projects. These factors often lead to inconsistent evaluation results across assessors and the fragmented management of carbon data at the project level. This study proposes the Zero Carbon Building Index (ZCBI), a quantitative assessment method that incorporates embodied carbon from raw material extraction, transportation, and manufacturing. ZCBI enables the evaluation of carbon neutrality performance at the material level and supports the identification of reduction potentials in the production stage. A classification system was developed to evaluate CE during production, creating reference buildings for residential and non-residential purposes. Additionally, a Korean Environmental Product Declaration (EPD) database was established by incorporating CE data from 797 EPD-certified materials. Carbon reduction (CR) and ZCBI values were analyzed by categorizing CE variations across manufacturers into the lowest, average, and highest values. The results showed that CR for apartment complexes ranged from 42.1 to 311 kgCO2e/m2, with ZCBI values between 8.84% and 65.30%, and those for business facilities ranged from 40.9 to 264 kgCO2e/m2, with ZCBI values from 8.59% and 55.43. The proposed ZCBI framework provides a basis for optimizing material selection to reduce emissions and may evolve into a comprehensive carbon neutrality assessment covering the entire construction process. Full article
(This article belongs to the Section Green Sustainable Science and Technology)
Show Figures

Figure 1

19 pages, 1542 KiB  
Article
Predictive Modelling for Residential Construction Demands Using ElasticNet Regression
by Elrasheid Elkhidir, Tirth Patel and James Olabode Bamidele Rotimi
Buildings 2025, 15(10), 1649; https://doi.org/10.3390/buildings15101649 - 14 May 2025
Viewed by 507
Abstract
The residential construction sector is critical to economic stability and housing availability. Residential construction demands often fluctuate due to demographic, economic, social, or market condition variables. This study seeks to investigate the significance of these external variables and produce a predictive model for [...] Read more.
The residential construction sector is critical to economic stability and housing availability. Residential construction demands often fluctuate due to demographic, economic, social, or market condition variables. This study seeks to investigate the significance of these external variables and produce a predictive model for residential construction demand using ElasticNet regression. Adopting New Zealand as a case study and leveraging datasets from Statistics New Zealand, this research identifies key demographic, economic, and market factors influencing four building categories: retirement villages, apartments, multiunit developments, and standalone houses. The research results indicate that age groups, particularly the 20−39 and 65+ age groups, and economic indicators, such as the house price index and unemployment rates, have high prediction powers. The models showed high accuracy for some categories, with R2 values exceeding 0.87 for retirement villages and 0.91 for multi-units. Challenges were encountered with standalone houses and apartments due to residual variance. The research findings highlight the importance of targeted urban planning and policy adjustments to satisfy the requirements of specific age groups, address housing affordability and demographic shifts, and cater to prevailing market conditions. This research provides practical insights and guidance for urban planners, public housing agencies, residential developers, and residential contractors while offering a robust methodological framework for predictive modelling in the construction sector. Full article
Show Figures

Figure 1

17 pages, 9214 KiB  
Article
Forecasting Average Daily and Peak Electrical Load Based on Average Monthly Electricity Consumption Data
by Saidjon Tavarov, Aleksandr Sidorov and Natalia Glotova
Electricity 2025, 6(2), 26; https://doi.org/10.3390/electricity6020026 - 7 May 2025
Cited by 1 | Viewed by 1222
Abstract
This article is devoted to the determination of the average daily electric load and the average electric load during the hours of maximum load, taking into account the generalized coefficient Ai, using data on electricity consumption for apartment buildings and individual [...] Read more.
This article is devoted to the determination of the average daily electric load and the average electric load during the hours of maximum load, taking into account the generalized coefficient Ai, using data on electricity consumption for apartment buildings and individual residential buildings in Chelyabinsk and the cities of Dushanbe and Khorog in the Republic of Tajikistan. The results of modeling the average daily electric load, taking into account the developed generalized coefficient Ai, showed that the specific power values for apartments in apartment buildings and in individual residential buildings in the city of Chelyabinsk and the cities of Dushanbe and Khorog of the Republic of Tajikistan were overestimated, taking into account the applicability in the Republic of Tajikistan of the same standard values of specific electric loads (SELs) for apartments in apartment buildings (ABs) as in the Russian Federation. According to the results of modeling using data on the average monthly electricity consumption for 226 apartments in ABs and for individual residential buildings in Chelyabinsk, and according to the proposed approach, the average daily electric load on days during the month varied in the range of 2–3.5 kW/sq and below, while that for the cities of Dushanbe and Khorog of the Republic of Tajikistan varied in the range of 2–5 kW/sq and below, which did not exceed the SEL given by RB 256.1325800.2016. However, because of the lack of other energy sources (gas supply and hot water supply) in the conditions of the Republic of Tajikistan, on the basis of the obtained maximum load time factor and the generalized coefficient Ai(E), the obtained values of actual capacity exceeded the maximum during peak hours by 1.2–2.5 times the SEL given by RB 256.1325800.2016. To increase the durability and serviceability of power supplies and enhance the effectiveness of forecasting, the authors propose an approach based on the clustering of meteorological conditions, where each cluster has its own regression model. The decrease in mean absolute error due to clustering was 0.52 MW (57%). The use of meteorological conditions allowed the forecast error to be reduced by 0.22 MW (27%). High accuracy in electrical consumption forecasting leads to increased quality of power system management in general, including under such key indicators as reliability and serviceability. Full article
Show Figures

Figure 1

20 pages, 5233 KiB  
Article
Improvement of Self-Consumption Rates by Cogeneration and PV Production for Renewable Energy Communities
by Samuele Branchetti, Carlo Petrovich, Nicola Gessa and Gianluca D’Agosta
Electronics 2025, 14(9), 1755; https://doi.org/10.3390/electronics14091755 - 25 Apr 2025
Cited by 1 | Viewed by 847
Abstract
The goal of decarbonization has driven the adoption of several intervention strategies across Europe, including the promotion of Renewable Energy Communities (RECs). This study analyses an electric REC in Italy to explore the performance of different potential energy mixes combining a biogas-based cogeneration [...] Read more.
The goal of decarbonization has driven the adoption of several intervention strategies across Europe, including the promotion of Renewable Energy Communities (RECs). This study analyses an electric REC in Italy to explore the performance of different potential energy mixes combining a biogas-based cogeneration (CHP) system and photovoltaic (PV) plants. The analysis is based on a real REC composed of 53 members (mainly companies) with a Self-Sufficiency Rate (SSR) of 92% and a Self-Consumption Rate (SCR) of 60%. Adding 550 residential consumers (apartments) to the REC, the total production matches total consumption, and both SSR and SCR converge to 84%. Compared to RECs that rely solely on PV systems, this case study shows that biogas integration leads to an increase of around 40 percentage points in both SSR and SCR—equivalent to an average gain of 0.4 to 0.6 percentage points for each percentage point increase in the CHP share of the CHP-PV production mix. The analysis quantifies how SSR and SCR vary not only with different biogas/PV production ratios but, more importantly, with variations in the total annual production-to-consumption ratio of the RECs. These results can guide the design of RECs tailored to the specific characteristics of local contexts. Full article
(This article belongs to the Special Issue Smart Energy Communities: State of the Art and Future Developments)
Show Figures

Figure 1

19 pages, 5838 KiB  
Article
Post-Occupancy Evaluation in High-Rise Apartment Buildings in Vietnam
by Yuanchen Wang, Anh Tuan Tran, Thi Hai Ha Pham, Thi Hoa Nguyen, Konstantinos Stergiaropoulos and Dirk Schwede
Appl. Sci. 2025, 15(9), 4741; https://doi.org/10.3390/app15094741 - 24 Apr 2025
Viewed by 594
Abstract
As part of the CAMaRSEC research project, long-term indoor environmental measurements with accompanying occupant surveys were conducted over one year in 49 households in 15 high-rise residential apartment buildings in Hanoi, Vietnam. A comprehensive analysis of the collected data revealed differences in the [...] Read more.
As part of the CAMaRSEC research project, long-term indoor environmental measurements with accompanying occupant surveys were conducted over one year in 49 households in 15 high-rise residential apartment buildings in Hanoi, Vietnam. A comprehensive analysis of the collected data revealed differences in the indoor environment and energy consumption patterns during the operational phase of the buildings, as well as their correlation with diverse occupant behaviors. In addition, by comparing subjective thermal evaluations based on occupant surveys with predictions based on comfort models, the limitations of existing models in predicting the thermal sensations of local people were identified. Furthermore, the findings indicated that the apartment building design standard in Vietnam underestimates the thermal adaptation of occupants, which may lead to significant building performance gaps. Larger scale surveys and measurements are required to provide sufficient databases to refine local building design standards, especially for mixed-mode buildings. Full article
(This article belongs to the Special Issue Advances in the Energy Efficiency and Thermal Comfort of Buildings)
Show Figures

Figure 1

23 pages, 7639 KiB  
Article
Evaluating Thermal Insulation Strategies for High-Rise Residential Buildings in Sarajevo
by Florian Teichmann, Azra Korjenic, Lamija Balić, Mirela Idrizović, Aldin Turković, Amir Ljubijankić, Venera Simonović and Sanela Klarić
Energies 2025, 18(7), 1758; https://doi.org/10.3390/en18071758 - 1 Apr 2025
Viewed by 596
Abstract
Aging residential buildings in urban areas require effective thermal insulation to enhance energy efficiency and indoor comfort. In Bosnia and Herzegovina (BiH), expanded polystyrene (EPS) is the most commonly used insulation material due to its affordability, despite concerns regarding its flammability and environmental [...] Read more.
Aging residential buildings in urban areas require effective thermal insulation to enhance energy efficiency and indoor comfort. In Bosnia and Herzegovina (BiH), expanded polystyrene (EPS) is the most commonly used insulation material due to its affordability, despite concerns regarding its flammability and environmental impact. While regulatory changes since 2019 have recommended rock wool for high-rise buildings, the absence of binding fire safety regulations has allowed the continued use of EPS, often driven by financial constraints. This study examines energy efficiency refurbishments in Sarajevo’s high-rise residential buildings and analyze the implications of the partial implementation of recommended measures. Using case studies, surveys, and expert interviews, this research identifies key challenges, such as limited funding, fragmented renovations, and inconsistent coordination between stakeholders. The findings indicate that facade insulation is often prioritized over comprehensive upgrades, including window replacement and heating system improvements, leading to suboptimal energy savings and minimal cost reductions for residents. Additionally, the complexity of multi-apartment ownership structures hinders uniform improvements in energy efficiency. Despite these challenges, property values tend to increase after renovation, highlighting the long-term financial benefits. To maximize energy savings and ensure sustainable urban housing, stronger interdisciplinary collaboration, improved funding mechanisms, and adherence to fire-safety standards are necessary. These measures would enhance the effectiveness of renovations and support long-term energy efficiency strategies. Full article
(This article belongs to the Section G: Energy and Buildings)
Show Figures

Figure 1

Back to TopTop