Residential Heating Method and Housing Prices: Results of an Empirical Analysis in South Korea
Abstract
1. Introduction
2. Method, Literature Review, and Model
2.1. Method: Hedonic Price Model
2.2. Literature Review
2.3. Model
3. Data, Results, and Discussion
3.1. Data
3.2. Estimation Results of the HPMs
3.3. Discussion of the Results
4. Concluding Remarks
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
CHP | Combined heat and power |
CHS | Centralized heating system |
DHS | District heating system |
GHG | Greenhouse gas |
HPM | Hedonic price model |
IHS | Individual heating system |
LAD | Least absolute deviations |
LS | Least squares |
US | United States |
WTP | Willingness to pay |
References
- Dodoo, A. Techno-economic and environmental performances of heating systems for single-family code-compliant and passive houses. E3S Web Conf. 2019, 111, 03039. [Google Scholar] [CrossRef]
- United States Environmental Protection Agency. CHP Benefits. Available online: https://www.epa.gov/chp/chp-benefits (accessed on 1 May 2025).
- Korea Ministry of Trade, Industry and Energy. The 6th Basic Plan for District Energy Supply, Sejong, South Korea. Available online: https://english.motie.go.kr/ (accessed on 16 July 2025). (In Korean)
- Lygnerud, K.; Fransson, N.; Särnbratt, M.; Motoasca, E.; Neven, T.; Vanschoenwinkel, J.; Pastor, C.; Gabaldon, A.; Belda, A. District energy viewed from the new bauhaus initiative perspective—Sustainable, inclusive and aesthetic heat. Buildings 2023, 13, 2930. [Google Scholar] [CrossRef]
- Kim, J.H.; Kim, H.H.; Yoo, S.H. Social acceptance toward constructing a combined heat and power plant near people’s dwellings in South Korea. Energy 2022, 244, 123175. [Google Scholar] [CrossRef]
- Kim, J.H.; Kim, S.Y.; Yoo, S.H. Economic effects of individual heating system and district heating system in South Korea: An input-output analysis. Appl. Sci. 2020, 10, 5037. [Google Scholar] [CrossRef]
- Nielsen, S.; Grundahl, L. District heating expansion potential with low-temperature and end-use heat savings. Energies 2018, 11, 277. [Google Scholar] [CrossRef]
- Ahvenniem, H.; Klobut, K. Future Services for district heating solutions in residential districts. J. Sustain. Dev. Energy Water Environ. Syst. 2014, 2, 127–138. [Google Scholar] [CrossRef]
- Li, Q.; Tian, R. A study of the impact of the resource thermal power plants with ‘de-industrialised design’ on the nimby effect. E3S Web Conf. 2025, 618, 01004. [Google Scholar] [CrossRef]
- Sun, C.; Meng, X.; Peng, S. Effects of waste-to-energy plants on China’s urbanization: Evidence from a hedonic price analysis in shenzhen. Sustainability 2017, 9, 475. [Google Scholar] [CrossRef]
- Davis, L. The effect of power plants on local housing values and rents. Rev. Econ. Stat. 2011, 93, 1391–1402. [Google Scholar] [CrossRef]
- Rosen, S. Hedonic prices and implicit markets: Product differentiation in pure competition. J. Political Econ. 1974, 82, 34–55. [Google Scholar] [CrossRef]
- Hill, R.J. Hedonic price indexes for residential housing: A survey, evaluation and taxonomy. J. Econ. Surv. 2012, 27, 879–914. [Google Scholar] [CrossRef]
- McCord, M.J.; MacIntyre, S.; Bidanset, P.; Lo, D.; Davis, P. Examining the spatial relationship between environmental health factors and house prices NO2 problem? J. Eur. Real Estate Res. 2018, 11, 353–398. [Google Scholar] [CrossRef]
- Carruthers, J.I.; Clark, D.E. Valuing environmental quality: A space-based strategy. J. Reg. Sci. 2010, 50, 801–832. [Google Scholar] [CrossRef]
- Tsao, H.; Lu, C. Assessing the impact of aviation noise on housing prices using new estimated noise value: The case of Taiwan taoyuan international airport. Sustainability 2022, 14, 1713. [Google Scholar] [CrossRef]
- Cohen, J.P.; Coughlin, C.C. Spatial hedonic models of airport noise, proximity, and housing price. J. Reg. Sci. 2008, 48, 859–878. [Google Scholar] [CrossRef]
- Sharaan, M.; Somphong, C.; Udo, K. Impact of slr on beach-tourism resort revenue at sahl hasheesh and makadi bay, red sea, egypt; a hedonic pricing approach. J. Mar. Sci. Eng. 2020, 8, 432. [Google Scholar] [CrossRef]
- Nguyen, A.T.; Thành, N.N.; Tuyen, L.T.; Hens, L. Tourism and beach erosion: Valuing the damage of beach erosion for tourism in the hoi an world heritage site, Vietnam. Environ. Dev. Sustain. 2018, 21, 2113–2124. [Google Scholar] [CrossRef]
- Overbeek, R.V.; Ishaak, F.; Geurts, E.; Remoy, H. The added value of environmental certification in the dutch office market. J. Eur. Real Estate Res. 2024, 17, 70–86. [Google Scholar] [CrossRef]
- Vimpari, J. Impact of ground source heat pumps on house sales prices in finland. Energy Effic. 2023, 16, 4. [Google Scholar] [CrossRef]
- Millar, M.A.; Burnside, N.M.; Yu, Z. District heating challenges for the UK. Energies 2019, 12, 310. [Google Scholar] [CrossRef]
- Kuru, M.E.; Yiğit, O.E.; Gulben, C. Sale price classification models for real estate appraisal. Rev. Constr. 2021, 20, 440–451. [Google Scholar] [CrossRef]
- Odgaard, O.; Djørup, S. Review of price regulation regimes for district heating. Int. J. Sustain. Energy Plan. Manag. 2020, 29, 127–140. [Google Scholar]
- Lee, J. Measuring the value of apartment density? The effect of residential density on housing prices in Seoul. Int. J. Hous. Mark. Anal. 2016, 9, 483–501. [Google Scholar] [CrossRef]
- Kim, K.S.; Park, J.Y. Segmentation of the housing market and its determinants: Seoul and its neighbouring new towns in Korea. Aust. Geogr. 2005, 36, 221–232. [Google Scholar] [CrossRef]
- Kim, H.J.; Lim, S.Y.; Yoo, S.H. Public preferences for district heating system over individual heating system: A view of national energy efficiency. Energy Effic. 2019, 12, 723–734. [Google Scholar] [CrossRef]
- Yoon, T.Y.; Ma, Y.; Rhodes, C. Individual heating systems vs. district heating systems: What will consumers pay for convenience. Energy Policy 2015, 86, 73–81. [Google Scholar] [CrossRef]
- Kim, J.H.; Lim, S.Y.; Yoo, S.H. Does district heating affect residential property prices? case study of an urban area in South Korea. Util. Policy 2023, 83, 101611. [Google Scholar] [CrossRef]
- Korea Public Data Portal. Current Status of Apartment Houses, Public Data Portal. Available online: https://kosis.kr/eng/ (accessed on 13 July 2025).
- Korea Ministry of Land, Infrastructure and Transport. Public-Led 3080+: A Plan to Expand Housing Supply in Metropolitan Area, Seoul, South Korea. Available online: https://www.molit.go.kr/english/ (accessed on 13 July 2025). (In Korean)
- Lancaster, K.J. A new approach to consumer theory. J. Political Econ. 1966, 74, 132–157. [Google Scholar] [CrossRef]
- Huber, P.J. Robust regression: Asymptotics, conjectures and monte carlo. Ann. Stat. 1973, 1, 799–821. [Google Scholar] [CrossRef]
- Yoo, S.H. A robust estimation of hedonic price models: Least absolute deviations estimation. Appl. Econ. Lett. 2001, 8, 55–58. [Google Scholar] [CrossRef]
- Cropper, M.L.; Deck, L.B.; McConnell, K.E. On the choice of funtional form for hedonic price functions. Rev. Econ. Stat. 1988, 70, 668–675. [Google Scholar] [CrossRef]
- Box, G.E.P.; Cox, D.R. An analysis of transformations. J. R. Stat. 1964, 26, 211–252. [Google Scholar] [CrossRef]
- KB Real Estates, Kookmin Bank. Available online: https://kbland.kr (accessed on 31 July 2023).
- Uiwang City. 33rd 2022 Uiwang City Statistical Yearbook, Uiwang, South Korea. Available online: https://datamoa.uiwang.go.kr/index.do#none (accessed on 13 July 2025). (In Korean).
- Brand Reputation Index, Korea Corporate Reputation Research Institute. Available online: https://brikorea.com (accessed on 31 July 2023).
- Halvorsen, R.; Palmquist, R. The interpretation of dummy variables in semilogarithmic equations. Am. Econ. Rev. 1980, 70, 474–475. [Google Scholar]
- Kennedy, P.E. Estimation with correctly interpreted dummy variables in semilogarithmic equations. Am. Econ. Rev. 1981, 71, 801. [Google Scholar]
- Heat Supply Regulations, Korea District Heating Corporation. Available online: https://www.kdhc.co.kr/eng/main/main.do (accessed on 11 July 2025).
Categories | Sources | Methods | Countries and Regions | Main Results |
---|---|---|---|---|
Related to HPM | McCord et al. [14] | Space-based HPM | Denver, CO, USA |
|
Carruthers et al. [15] | Space-based HPM | Puget Sound, WA, USA |
| |
Tsao et al. [16] | HPM | Vicinity of Taoyuan Airport, Taiwan |
| |
Cohen et al. [17] | Spatial HPM | Vicinity of Hartsfield-Jackson Atlanta Airport, USA |
| |
Sharaan et al. [18] | HPM | Red Sea Resort Area, Egypt |
| |
Nguyen et al. [19] | HPM | Hoi An World Heritage Beach Area, Vietnam |
| |
Overbeek et al. [20] | HPM | Amsterdam and major cities, The Netherlands |
| |
Vimpari [21] | HPM | Helsinki and other cities, Finland |
| |
Related to district heating system (DHS) and housing Prices | Millar et al. [22] | Case study analysis | Glasgow, Scotland, UK |
|
Kuru et al. [23] | Levene’s test | İzmir, Turkey |
| |
Odgaard et al. [24] | Case study analysis | Denmark, Sweden, Estonia |
| |
Lee [25] | HPM | Seoul Metropolitan Area, Republic of Korea |
| |
Kim et al. [26] | Multiple regression analysis | Seoul and New Towns, Republic of Korea |
| |
Kim et al. [27] | Contingent valuation | Nationwide, Republic of Korea |
| |
Yoon et al. [28] | Contingent valuation | Seoul and Incheon, Republic of Korea |
| |
Kim et al. [29] | HPM | Seoul, Republic of Korea |
|
Variables | Descriptions | Means | Standard Deviations | Expected Signs |
---|---|---|---|---|
PRICE a | Sale price for apartment (unit: KRW million) | 820 | 330 | (−) |
SA | Supply area (unit: m2) | 108.3 | 24.9 | (+) |
TH | Total number of households | 994.6 | 825.9 | (+) |
ROOM | Number of rooms per unit | 3.1 | 0.4 | (+) |
BATH | Number of bathrooms per unit | 1.9 | 0.4 | (+) |
BUILT | Age of apartment (years) | 15.8 | 9.4 | (+) |
HFLR | High floor dummy (1 = yes; 0 = No) | 0.6 | 0.5 | (+) |
SOUTH | Main orientation to the south (1 = south-facing; 0 = other) | 0.9 | 0.3 | (+) |
DHS | District heating system dummy (1 = district heating system; 0 = individual or central heating system) | 0.6 | 0.5 | (+) |
NFOR | Number of foreigners per 10,000 residents | 51.6 | 28.0 | (−) |
NCOM | Number of businesses per 10,000 residents | 784.3 | 193.7 | (−) |
NPOOR | Number of recipients of basic living security or minimum pension per 10,000 residents | 955.7 | 262.0 | (−) |
WDS | Walking distance to nearest subway station (unit: km) | 2.4 | 1.3 | (−) |
PREM | Apartment premium brand dummy (1 = top 10 brand, 0 = other) | 0.8 | 0.5 | (+) |
Variables a | PRICE | SA | TH | ROOM | BATH | BUILT | HFLR | SOUTH | NFOR | NCOM | NPOOR | WDS | PREM | DHS |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
PRICE | 1.00 | |||||||||||||
SA | 0.71 | 1.00 | ||||||||||||
TH | 0.48 | 0.33 | 1.00 | |||||||||||
ROOM | 0.49 | 0.76 | 0.30 | 1.00 | ||||||||||
BATH | 0.51 | 0.57 | 0.26 | 0.44 | 1.00 | |||||||||
BUILT | −0.58 | −0.27 | −0.27 | −0.15 | −0.48 | 1.00 | ||||||||
HFLR | 0.12 | 0.02 | 0.08 | 0.03 | 0.02 | −0.06 | 1.00 | |||||||
SOUTH | 0.28 | 0.14 | 0.17 | 0.08 | 0.17 | −0.14 | 0.04 | 1.00 | ||||||
NFOR | −0.44 | −0.29 | −0.29 | −0.14 | −0.30 | 0.29 | −0.04 | −0.23 | 1.00 | |||||
NCOM | 0.05 | −0.02 | −0.29 | −0.05 | −0.04 | −0.07 | −0.01 | −0.02 | 0.57 | 1.00 | ||||
NPOOR | −0.38 | −0.29 | −0.34 | −0.19 | −0.28 | 0.17 | −0.03 | −0.25 | 0.95 | 0.64 | 1.00 | |||
WDS | 0.19 | 0.15 | −0.19 | 0.04 | 0.17 | −0.29 | 0.00 | 0.11 | −0.22 | 0.28 | −0.16 | 1.00 | ||
PREM | 0.38 | 0.16 | 0.72 | 0.21 | 0.24 | −0.39 | 0.07 | 0.19 | −0.17 | −0.38 | −0.25 | −0.41 | 1.00 | |
DHS | 0.61 | 0.35 | 0.42 | 0.22 | 0.33 | −0.38 | 0.08 | 0.27 | −0.62 | −0.06 | −0.59 | 0.24 | 0.22 | 1.00 |
Variables a | Least Squares Estimation b | Least Absolute Deviations Estimation b | Box–Cox Transformations b | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Linear-Linear | Linear-Log | Log- Linear | Log-Log | Linear-Linear | Linear-Log | Log- Linear | Log-Log | Linear | Log | |
Constant | −2.0893 | −55.5018 | 0.6976 | −3.7878 | −1.0256 | −53.1502 | 0.8511 | −3.3305 | 0.5248 | −12.7574 |
(−2.78) ** | (−10.60) ** | (9.33) ** | (−7.71) ** | (−2.08) ** | (−15.80) ** | (15.84) ** | (−9.29) ** | (6.32) ** | (−7.99) ** | |
SA | 0.0732 | 7.7607 | 0.0070 | 0.7669 | 0.0664 | 7.2897 | 0.0070 | 0.7920 | 0.0087 | 1.7064 |
(25.08) ** | (25.04) ** | (23.96) ** | (26.39) ** | (34.66) ** | (36.63) ** | (33.69) ** | (37.35) ** | (13.81) ** | (12.64) ** | |
TH | 0.0002 | 0.2803 | 0.0000 | 0.0460 | 0.0003 | 0.3601 | 0.0000 | 0.0464 | 0.0000 | 0.0451 |
(2.27) ** | (3.66) ** | (1.51) | (6.41) ** | (4.71) ** | (7.33) ** | (2.59) ** | (8.86) ** | (0.34) | (3.32) ** | |
ROOM | −0.3987 | 0.0839 | 0.0098 | 0.1597 | −0.2871 | 0.1084 | 0.0007 | 0.1454 | 0.0040 | 0.1862 |
(−2.62) ** | (0.19) | (0.65) | (3.90) ** | (−2.88) ** | (0.39) | (0.06) ** | (4.87) ** | (0.28) | (2.60) ** | |
BATH | −0.6377 | −1.7853 | 0.0565 | −0.0070 | −0.6132 | −1.6087 | 0.0471 | −0.0156 | 0.0503 | −0.1791 |
(−4.15) ** | (−7.63) ** | (3.69) ** | (−0.32) | (−6.07) ** | (−10.70) ** | (4.28) ** | (−0.97) | (2.77) ** | (−3.27) ** | |
BUILT | −0.0662 | −0.9318 | −0.0092 | −0.1278 | −0.0567 | −0.6818 | −0.0093 | −0.1123 | −0.0104 | −0.2059 |
(−9.17) ** | (−9.81) ** | (−12.78) ** | (−14.36) ** | (−11.96) ** | (−11.18) ** | (−17.91) ** | (−17.29) ** | (−9.53) ** | (−7.96) ** | |
NFOR | −0.0535 | −3.6131 | −0.0056 | −0.3317 | −0.0563 | −3.6441 | −0.0054 | −0.3016 | −0.0071 | −1.0339 |
(−8.29) ** | (−6.86) ** | (−8.65) ** | (−6.71) ** | (−13.27) ** | (−10.77) ** | (−11.60) ** | (−8.37) ** | (−7.04) ** | (−6.54) ** | |
NCOM | 0.0062 | 4.7162 | 0.0006 | 0.4667 | 0.0064 | 4.8657 | 0.0007 | 0.4629 | 0.0007 | 1.2384 |
(15.84) ** | (14.21) ** | (16.16) ** | (15.00) ** | (25.15) ** | (22.84) ** | (24.87) ** | (20.39) ** | (9.42) ** | (9.87) ** | |
NPOOR | 0.0024 | 1.5551 | 0.0002 | 0.0125 | 0.0018 | 1.2273 | 0.0000 | −0.0902 | 0.0004 | 0.5001 |
(2.70) ** | (1.65) * | (1.86) * | (0.14) | (3.10) ** | (2.02) ** | (−0.26) | (−1.40) | (3.56) ** | (2.00) ** | |
PREM | 1.6988 | 1.4492 | 0.2029 | 0.1459 | 1.6926 | 1.6414 | 0.2093 | 0.1565 | 0.2549 | 0.4590 |
(9.34) ** | (7.69) ** | (11.20) ** | (8.25) ** | (14.17) ** | (13.56) ** | (16.07) ** | (12.13) ** | (9.63) ** | (8.46) ** | |
HFLR | 0.3765 | 0.3860 | 0.0379 | 0.0389 | 0.2820 | 0.3012 | 0.0424 | 0.0409 | 0.0444 | 0.0815 |
(4.42) ** | (4.52) ** | (4.47) ** | (4.86) ** | (5.04) ** | (5.49) ** | (6.96) ** | (7.00) ** | (3.96) ** | (4.25) ** | |
SOUTH | 0.4570 | 0.4049 | 0.0852 | 0.0758 | 0.3319 | 0.2772 | 0.0593 | 0.0596 | 0.0997 | 0.1226 |
(2.89) ** | (2.56) ** | (5.40) ** | (5.11) ** | (3.20) ** | (2.73) ** | (5.24) ** | (5.50) ** | (5.06) ** | (3.05) ** | |
WDS | −0.0853 | −0.6025 | −0.0107 | −0.0662 | −0.3128 | −0.8514 | −0.0224 | −0.0794 | −0.0114 | −0.2012 |
(−1.95) * | (−6.08) ** | (−2.45) ** | (−7.13) ** | (−10.90) ** | (−13.39) ** | (−7.17) ** | (−11.72) ** | (−1.92) * | (−7.64) ** | |
DHS | 0.9967 | 0.9876 | 0.1382 | 0.1259 | 0.7115 | 0.6749 | 0.1004 | 0.1062 | 0.2431 | 0.2402 |
(6.63) ** | (6.25) ** | (9.24) ** | (8.49) ** | (7.21) ** | (6.65) ** | (9.34) ** | (9.81) ** | (12.61) ** | (5.76) ** | |
0.0922 | 0.3378 | |||||||||
(3.90) ** | (12.14) ** | |||||||||
Adjusted- c | 0.807 | 0.806 | 0.871 | 0.886 | 0.795 | 0.798 | 0.869 | 0.883 | 0.536 | 0.530 |
Wald Statistics (p-values) | 44.01 | 39.01 | 74.33 | 63.58 | 52.03 | 44.18 | 78.87 | 86.59 | 154.68 | 30.80 |
(0.000) ** | (0.000) ** | (0.000) ** | (0.000) ** | (0.000) ** | (0.000) ** | (0.000) ** | (0.000) ** | (0.000) ** | (0.000) ** | |
RMSPE d | 19.24 | 17.76 | 9.82 | 7.91 | 17.99 | 16.30 | 10.03 | 7.79 | 10.53 | 11.11 |
Models | The Gap a | t-Values |
---|---|---|
Least Squares | ||
Linear-Linear | KRW 100 million (USD 78 thousand) | 6.63 |
Linear-Log | KRW 99 million (USD 77 thousand) | 6.25 |
Log-Linear | KRW 121 million (USD 94 thousand) | 8.62 |
Log-Log | KRW 110 million (USD 86 thousand) | 7.97 |
Least Absolute Deviations | ||
Linear-Linear | KRW 71 million (USD 55 thousand) | 7.21 |
Linear-Log | KRW 67 million (USD 52 thousand) | 6.65 |
Log-Linear | KRW 86 million (USD 67 thousand) | 8.88 |
Log-Log | KRW 92 million (USD 72 thousand) | 9.31 |
Box-Cox Transformation | ||
Linear | KRW 80 million (USD 140 thousand) | 12.44 |
Log | KRW 100 million (USD 78 thousand) | 5.55 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Noh, C.-S.; Hyun, M.-K.; Yoo, S.-H. Residential Heating Method and Housing Prices: Results of an Empirical Analysis in South Korea. Energies 2025, 18, 3809. https://doi.org/10.3390/en18143809
Noh C-S, Hyun M-K, Yoo S-H. Residential Heating Method and Housing Prices: Results of an Empirical Analysis in South Korea. Energies. 2025; 18(14):3809. https://doi.org/10.3390/en18143809
Chicago/Turabian StyleNoh, Chang-Soo, Min-Ki Hyun, and Seung-Hoon Yoo. 2025. "Residential Heating Method and Housing Prices: Results of an Empirical Analysis in South Korea" Energies 18, no. 14: 3809. https://doi.org/10.3390/en18143809
APA StyleNoh, C.-S., Hyun, M.-K., & Yoo, S.-H. (2025). Residential Heating Method and Housing Prices: Results of an Empirical Analysis in South Korea. Energies, 18(14), 3809. https://doi.org/10.3390/en18143809