Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,958)

Search Parameters:
Keywords = representational similarity

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 1767 KiB  
Article
A Contrastive Representation Learning Method for Event Classification in Φ-OTDR Systems
by Tong Zhang, Xinjie Peng, Yifan Liu, Kaiyang Yin and Pengfei Li
Sensors 2025, 25(15), 4744; https://doi.org/10.3390/s25154744 (registering DOI) - 1 Aug 2025
Abstract
The phase-sensitive optical time-domain reflectometry (Φ-OTDR) system has shown substantial potential in distributed acoustic sensing applications. Accurate event classification is crucial for effective deployment of Φ-OTDR systems, and various methods have been proposed for event classification in Φ-OTDR systems. However, most existing methods [...] Read more.
The phase-sensitive optical time-domain reflectometry (Φ-OTDR) system has shown substantial potential in distributed acoustic sensing applications. Accurate event classification is crucial for effective deployment of Φ-OTDR systems, and various methods have been proposed for event classification in Φ-OTDR systems. However, most existing methods typically rely on sufficient labeled signal data for model training, which poses a major bottleneck in applying these methods due to the expensive and laborious process of labeling extensive data. To address this limitation, we propose CLWTNet, a novel contrastive representation learning method enhanced with wavelet transform convolution for event classification in Φ-OTDR systems. CLWTNet learns robust and discriminative representations directly from unlabeled signal data by transforming time-domain signals into STFT images and employing contrastive learning to maximize inter-class separation while preserving intra-class similarity. Furthermore, CLWTNet incorporates wavelet transform convolution to enhance its capacity to capture intricate features of event signals. The experimental results demonstrate that CLWTNet achieves competitive performance with the supervised representation learning methods and superior performance to unsupervised representation learning methods, even when training with unlabeled signal data. These findings highlight the effectiveness of CLWTNet in extracting discriminative representations without relying on labeled data, thereby enhancing data efficiency and reducing the costs and effort involved in extensive data labeling in practical Φ-OTDR system applications. Full article
(This article belongs to the Topic Distributed Optical Fiber Sensors)
Show Figures

Figure 1

15 pages, 3113 KiB  
Article
Dark Soliton Dynamics for the Resonant Nonlinear Schrödinger Equation with Third- and Fourth-Order Dispersions
by Weiqian Zhao, Yuan Wang, Ziye Wang and Ying Wang
Photonics 2025, 12(8), 773; https://doi.org/10.3390/photonics12080773 (registering DOI) - 31 Jul 2025
Abstract
Optical solitons have emerged as a highly active research domain in nonlinear fiber optics, driving significant advancements and enabling a wide range of practical applications. This study investigates the dynamics of dark solitons in systems governed by the resonant nonlinear Schrödinger equation (RNLSE). [...] Read more.
Optical solitons have emerged as a highly active research domain in nonlinear fiber optics, driving significant advancements and enabling a wide range of practical applications. This study investigates the dynamics of dark solitons in systems governed by the resonant nonlinear Schrödinger equation (RNLSE). For the RNLSE with third-order (3OD) and fourth-order (4OD) dispersions, the dark soliton solution of the equation in the (1+1)-dimensional case is derived using the F-expansion method, and the analytical study is extended to the (2+1)-dimensional case via the self-similar method. Subsequently, the nonlinear equation incorporating perturbation terms is further studied, with particular attention given to the dark soliton solutions in both one and two dimensions. The soliton dynamics are illustrated through graphical representations to elucidate their propagation characteristics. Finally, modulation instability analysis is conducted to evaluate the stability of the nonlinear system. These theoretical findings provide a solid foundation for experimental investigations of dark solitons within the systems governed by the RNLSE model. Full article
(This article belongs to the Section Optoelectronics and Optical Materials)
Show Figures

Figure 1

26 pages, 4572 KiB  
Article
Transfer Learning-Based Ensemble of CNNs and Vision Transformers for Accurate Melanoma Diagnosis and Image Retrieval
by Murat Sarıateş and Erdal Özbay
Diagnostics 2025, 15(15), 1928; https://doi.org/10.3390/diagnostics15151928 - 31 Jul 2025
Viewed by 39
Abstract
Background/Objectives: Melanoma is an aggressive type of skin cancer that poses serious health risks if not detected in its early stages. Although early diagnosis enables effective treatment, delays can result in life-threatening consequences. Traditional diagnostic processes predominantly rely on the subjective expertise [...] Read more.
Background/Objectives: Melanoma is an aggressive type of skin cancer that poses serious health risks if not detected in its early stages. Although early diagnosis enables effective treatment, delays can result in life-threatening consequences. Traditional diagnostic processes predominantly rely on the subjective expertise of dermatologists, which can lead to variability and time inefficiencies. Consequently, there is an increasing demand for automated systems that can accurately classify melanoma lesions and retrieve visually similar cases to support clinical decision-making. Methods: This study proposes a transfer learning (TL)-based deep learning (DL) framework for the classification of melanoma images and the enhancement of content-based image retrieval (CBIR) systems. Pre-trained models including DenseNet121, InceptionV3, Vision Transformer (ViT), and Xception were employed to extract deep feature representations. These features were integrated using a weighted fusion strategy and classified through an Ensemble learning approach designed to capitalize on the complementary strengths of the individual models. The performance of the proposed system was evaluated using classification accuracy and mean Average Precision (mAP) metrics. Results: Experimental evaluations demonstrated that the proposed Ensemble model significantly outperformed each standalone model in both classification and retrieval tasks. The Ensemble approach achieved a classification accuracy of 95.25%. In the CBIR task, the system attained a mean Average Precision (mAP) score of 0.9538, indicating high retrieval effectiveness. The performance gains were attributed to the synergistic integration of features from diverse model architectures through the ensemble and fusion strategies. Conclusions: The findings underscore the effectiveness of TL-based DL models in automating melanoma image classification and enhancing CBIR systems. The integration of deep features from multiple pre-trained models using an Ensemble approach not only improved accuracy but also demonstrated robustness in feature generalization. This approach holds promise for integration into clinical workflows, offering improved diagnostic accuracy and efficiency in the early detection of melanoma. Full article
Show Figures

Figure 1

30 pages, 940 KiB  
Article
Language Contact and Population Contact as Sources of Dialect Similarity
by Jonathan Dunn and Sidney Wong
Languages 2025, 10(8), 188; https://doi.org/10.3390/languages10080188 - 31 Jul 2025
Viewed by 143
Abstract
This paper creates a global similarity network between city-level dialects of English in order to determine whether external factors like the amount of population contact or language contact influence dialect similarity. While previous computational work has focused on external influences that contribute to [...] Read more.
This paper creates a global similarity network between city-level dialects of English in order to determine whether external factors like the amount of population contact or language contact influence dialect similarity. While previous computational work has focused on external influences that contribute to phonological or lexical similarity, this paper focuses on grammatical variation as operationalized in computational construction grammar. Social media data was used to create comparable English corpora from 256 cities across 13 countries. Each sample is represented using the type frequency of various constructions. These frequency representations are then used to calculate pairwise similarities between city-level dialects; a prediction-based evaluation shows that these similarity values are highly accurate. Linguistic similarity is then compared with four external factors: (i) the amount of air travel between cities, a proxy for population contact, (ii) the difference in the linguistic landscapes of each city, a proxy for language contact, (iii) the geographic distance between cities, and (iv) the presence of political boundaries separating cities. The results show that, while all these factors are significant, the best model relies on language contact and geographic distance. Full article
(This article belongs to the Special Issue Dialectal Dynamics)
Show Figures

Figure 1

21 pages, 4400 KiB  
Article
BFLE-Net: Boundary Feature Learning and Enhancement Network for Medical Image Segmentation
by Jiale Fan, Liping Liu and Xinyang Yu
Electronics 2025, 14(15), 3054; https://doi.org/10.3390/electronics14153054 - 30 Jul 2025
Viewed by 105
Abstract
Multi-organ medical image segmentation is essential for accurate clinical diagnosis, effective treatment planning, and reliable prognosis, yet it remains challenging due to complex backgrounds, irrelevant noise, unclear organ boundaries, and wide variations in organ size. To address these challenges, the boundary feature learning [...] Read more.
Multi-organ medical image segmentation is essential for accurate clinical diagnosis, effective treatment planning, and reliable prognosis, yet it remains challenging due to complex backgrounds, irrelevant noise, unclear organ boundaries, and wide variations in organ size. To address these challenges, the boundary feature learning and enhancement network is proposed. This model integrates a dedicated boundary learning module combined with an auxiliary loss function to strengthen the semantic correlations between boundary pixels and regional features, thus reducing category mis-segmentation. Additionally, channel and positional compound attention mechanisms are employed to selectively filter features and minimize background interference. To further enhance multi-scale representation capabilities, the dynamic scale-aware context module dynamically selects and fuses multi-scale features, significantly improving the model’s adaptability. The model achieves average Dice similarity coefficients of 81.67% on synapse and 90.55% on ACDC datasets, outperforming state-of-the-art methods. This network significantly improves segmentation by emphasizing boundary accuracy, noise reduction, and multi-scale adaptability, enhancing clinical diagnostics and treatment planning. Full article
Show Figures

Figure 1

23 pages, 8450 KiB  
Article
Spatio-Temporal Collaborative Perception-Enabled Fault Feature Graph Construction and Topology Mining for Variable Operating Conditions Diagnosis
by Jiaxin Zhao, Xing Wu, Chang Liu and Feifei He
Sensors 2025, 25(15), 4664; https://doi.org/10.3390/s25154664 - 28 Jul 2025
Viewed by 201
Abstract
Industrial equipment fault diagnosis faces dual challenges: significant data distribution discrepancies caused by diverse operating conditions impair generalization capabilities, while underutilized spatio-temporal information from multi-source data hinders feature extraction. To address this, we propose a spatio-temporal collaborative perception-driven feature graph construction and topology [...] Read more.
Industrial equipment fault diagnosis faces dual challenges: significant data distribution discrepancies caused by diverse operating conditions impair generalization capabilities, while underutilized spatio-temporal information from multi-source data hinders feature extraction. To address this, we propose a spatio-temporal collaborative perception-driven feature graph construction and topology mining methodology for variable-condition diagnosis. First, leveraging the operational condition invariance and cross-condition consistency of fault features, we construct fault feature graphs using single-source data and similarity clustering, validating topological similarity and representational consistency under varying conditions. Second, we reveal spatio-temporal correlations within multi-source feature topologies. By embedding multi-source spatio-temporal information into fault feature graphs via spatio-temporal collaborative perception, we establish high-dimensional spatio-temporal feature topology graphs based on spectral similarity, extending generalized feature representations into the spatio-temporal domain. Finally, we develop a graph residual convolutional network to mine topological information from multi-source spatio-temporal features under complex operating conditions. Experiments on variable/multi-condition datasets demonstrate the following: feature graphs seamlessly integrate multi-source information with operational variations; the methodology precisely captures spatio-temporal delays induced by vibrational direction/path discrepancies; and the proposed model maintains both high diagnostic accuracy and strong generalization capacity under complex operating conditions, delivering a highly reliable framework for rotating machinery fault diagnosis. Full article
(This article belongs to the Section Fault Diagnosis & Sensors)
Show Figures

Figure 1

31 pages, 2262 KiB  
Article
Strike a Pose: Relationships Between Infants’ Motor Development and Visuospatial Representations of Bodies
by Emma L. Axelsson, Tayla Britton, Gurmeher K. Gulhati, Chloe Kelly, Helen Copeland, Luca McNamara, Hester Covell and Alyssa A. Quinn
Behav. Sci. 2025, 15(8), 1021; https://doi.org/10.3390/bs15081021 - 28 Jul 2025
Viewed by 429
Abstract
Infants discriminate faces early in the first year, but research on infants’ discrimination of bodies is plagued by mixed findings. Using a familiarisation novelty preference method, we investigated 7- and 9-month-old infants’ discrimination of body postures presented in upright and inverted orientations, and [...] Read more.
Infants discriminate faces early in the first year, but research on infants’ discrimination of bodies is plagued by mixed findings. Using a familiarisation novelty preference method, we investigated 7- and 9-month-old infants’ discrimination of body postures presented in upright and inverted orientations, and with and without heads, along with relationships with gross and fine motor development. In our initial studies, 7-month-old infants discriminated upright headless postures with forward-facing and about-facing images. Eye tracking revealed that infants looked at the bodies of the upright headless postures the longest and at the heads of upright whole figures for 60–70% of the time regardless of the presence of faces, suggesting that heads detract attention from bodies. In a more stringent test, with similarly complex limb positions between test items, infants could not discriminate postures. With longer trials, the 7-month-olds demonstrated a familiarity preference for the upright whole figures, and the 9-month-olds demonstrated a novelty preference, albeit with a less robust effect. Unlike previous studies, we found that better gross motor skills were related to the 7-month-olds’ better discrimination of upright headless postures compared to inverted postures. The 9-month-old infants’ lower gross and fine motor skills were associated with a stronger preference for inverted compared to upright whole figures. This is further evidence of a configural representation of bodies in infancy, but it is constrained by an upper bias (heads in upright figures, feet in inverted), the test item similarity, and the trial duration. The measure and type of motor development reveals differential relationships with infants’ representations of bodies. Full article
(This article belongs to the Special Issue The Role of Early Sensorimotor Experiences in Cognitive Development)
Show Figures

Figure 1

20 pages, 3334 KiB  
Article
Brush Stroke-Based Writing Trajectory Control Model for Robotic Chinese Calligraphy
by Dongmei Guo, Wenjun Fang and Wenwen Yang
Electronics 2025, 14(15), 3000; https://doi.org/10.3390/electronics14153000 - 28 Jul 2025
Viewed by 221
Abstract
Engineering innovations play a critical role in achieving the United Nations’ Sustainable Development Goals, especially in human–robotic interaction and precise engineering. For the robot, writing Chinese calligraphy with hairy brush pen is a form of precision operation. Existing writing trajectory control models mainly [...] Read more.
Engineering innovations play a critical role in achieving the United Nations’ Sustainable Development Goals, especially in human–robotic interaction and precise engineering. For the robot, writing Chinese calligraphy with hairy brush pen is a form of precision operation. Existing writing trajectory control models mainly focus on writing trajectory models, and the fine-grained trajectory control model based on brush strokes is not studied. The problem of how to establish writing trajectory control based on brush stroke model needs to be solved. On the basis of the proposed composite-curve-dilation brush stroke model (CCD-BSM), this study investigates the control methods of intelligent calligraphy robots and proposed fine-grained writing trajectory control models that conform to the rules of brush calligraphy to reflect the local writing characteristics. By decomposing and refining each writing process, control models in the process of brush movement are analyzed and modeled. According to the writing rules, fine-grained writing trajectory control models of strokes are established based on the CCD-BSM. The parametric representations of the control models are built for the three stages of initiation, execution, and completion of strokes writing. Experimental results demonstrate that the proposed fine-grained control models can exhibit excellent performances in basic strokes and Chinese characters with better writing capabilities. Compared with existing models, the writing results demonstrate the advantages of our proposed model in terms of high average similarity with two quantitative indicators Cosine similarity (CSIM) and Structural similarity index measure (SSIM), which are 99.54% and 97.57%, respectively. Full article
Show Figures

Figure 1

24 pages, 1530 KiB  
Article
A Lightweight Robust Training Method for Defending Model Poisoning Attacks in Federated Learning Assisted UAV Networks
by Lucheng Chen, Weiwei Zhai, Xiangfeng Bu, Ming Sun and Chenglin Zhu
Drones 2025, 9(8), 528; https://doi.org/10.3390/drones9080528 - 28 Jul 2025
Viewed by 338
Abstract
The integration of unmanned aerial vehicles (UAVs) into next-generation wireless networks greatly enhances the flexibility and efficiency of communication and distributed computation for ground mobile devices. Federated learning (FL) provides a privacy-preserving paradigm for device collaboration but remains highly vulnerable to poisoning attacks [...] Read more.
The integration of unmanned aerial vehicles (UAVs) into next-generation wireless networks greatly enhances the flexibility and efficiency of communication and distributed computation for ground mobile devices. Federated learning (FL) provides a privacy-preserving paradigm for device collaboration but remains highly vulnerable to poisoning attacks and is further challenged by the resource constraints and heterogeneous data common to UAV-assisted systems. Existing robust aggregation and anomaly detection methods often degrade in efficiency and reliability under these realistic adversarial and non-IID settings. To bridge these gaps, we propose FedULite, a lightweight and robust federated learning framework specifically designed for UAV-assisted environments. FedULite features unsupervised local representation learning optimized for unlabeled, non-IID data. Moreover, FedULite leverages a robust, adaptive server-side aggregation strategy that uses cosine similarity-based update filtering and dimension-wise adaptive learning rates to neutralize sophisticated data and model poisoning attacks. Extensive experiments across diverse datasets and adversarial scenarios demonstrate that FedULite reduces the attack success rate (ASR) from over 90% in undefended scenarios to below 5%, while maintaining the main task accuracy loss within 2%. Moreover, it introduces negligible computational overhead compared to standard FedAvg, with approximately 7% additional training time. Full article
(This article belongs to the Special Issue IoT-Enabled UAV Networks for Secure Communication)
Show Figures

Figure 1

21 pages, 5527 KiB  
Article
SGNet: A Structure-Guided Network with Dual-Domain Boundary Enhancement and Semantic Fusion for Skin Lesion Segmentation
by Haijiao Yun, Qingyu Du, Ziqing Han, Mingjing Li, Le Yang, Xinyang Liu, Chao Wang and Weitian Ma
Sensors 2025, 25(15), 4652; https://doi.org/10.3390/s25154652 - 27 Jul 2025
Viewed by 278
Abstract
Segmentation of skin lesions in dermoscopic images is critical for the accurate diagnosis of skin cancers, particularly malignant melanoma, yet it is hindered by irregular lesion shapes, blurred boundaries, low contrast, and artifacts, such as hair interference. Conventional deep learning methods, typically based [...] Read more.
Segmentation of skin lesions in dermoscopic images is critical for the accurate diagnosis of skin cancers, particularly malignant melanoma, yet it is hindered by irregular lesion shapes, blurred boundaries, low contrast, and artifacts, such as hair interference. Conventional deep learning methods, typically based on UNet or Transformer architectures, often face limitations in regard to fully exploiting lesion features and incur high computational costs, compromising precise lesion delineation. To overcome these challenges, we propose SGNet, a structure-guided network, integrating a hybrid CNN–Mamba framework for robust skin lesion segmentation. The SGNet employs the Visual Mamba (VMamba) encoder to efficiently extract multi-scale features, followed by the Dual-Domain Boundary Enhancer (DDBE), which refines boundary representations and suppresses noise through spatial and frequency-domain processing. The Semantic-Texture Fusion Unit (STFU) adaptively integrates low-level texture with high-level semantic features, while the Structure-Aware Guidance Module (SAGM) generates coarse segmentation maps to provide global structural guidance. The Guided Multi-Scale Refiner (GMSR) further optimizes boundary details through a multi-scale semantic attention mechanism. Comprehensive experiments based on the ISIC2017, ISIC2018, and PH2 datasets demonstrate SGNet’s superior performance, with average improvements of 3.30% in terms of the mean Intersection over Union (mIoU) value and 1.77% in regard to the Dice Similarity Coefficient (DSC) compared to state-of-the-art methods. Ablation studies confirm the effectiveness of each component, highlighting SGNet’s exceptional accuracy and robust generalization for computer-aided dermatological diagnosis. Full article
(This article belongs to the Section Biomedical Sensors)
Show Figures

Figure 1

17 pages, 424 KiB  
Article
HyMePre: A Spatial–Temporal Pretraining Framework with Hypergraph Neural Networks for Short-Term Weather Forecasting
by Fei Wang, Dawei Lin, Baojun Chen, Guodong Jing, Yi Geng, Xudong Ge, Daoming Wei and Ning Zhang
Appl. Sci. 2025, 15(15), 8324; https://doi.org/10.3390/app15158324 (registering DOI) - 26 Jul 2025
Viewed by 217
Abstract
Accurate short-term weather forecasting plays a vital role in disaster response, agriculture, and energy management, where timely and reliable predictions are essential for decision-making. Graph neural networks (GNNs), known for their ability to model complex spatial structures and relational data, have achieved remarkable [...] Read more.
Accurate short-term weather forecasting plays a vital role in disaster response, agriculture, and energy management, where timely and reliable predictions are essential for decision-making. Graph neural networks (GNNs), known for their ability to model complex spatial structures and relational data, have achieved remarkable success in meteorological forecasting by effectively capturing spatial dependencies among distributed weather stations. However, most existing GNN-based approaches rely on pairwise station connections, limiting their capacity to represent higher-order spatial interactions. Moreover, their dependence on supervised learning makes them vulnerable to spatial heterogeneity and temporal non-stationarity. This paper introduces a novel spatial–temporal pretraining framework, Hypergraph-enhanced Meteorological Pretraining (HyMePre), which combines hypergraph neural networks with self-supervised learning to model high-order spatial dependencies and improve generalization across diverse climate regimes. HyMePre employs a two-stage masking strategy, applying spatial and temporal masking separately, to learn disentangled representations from unlabeled meteorological time series. During forecasting, dynamic hypergraphs group stations based on meteorological similarity, explicitly capturing high-order dependencies. Extensive experiments on large-scale reanalysis datasets show that HyMePre outperforms conventional GNN models in predicting temperature, humidity, and wind speed. The integration of pretraining and hypergraph modeling enhances robustness to noisy data and improves generalization to unseen climate patterns, offering a scalable and effective solution for operational weather forecasting. Full article
Show Figures

Figure 1

19 pages, 2564 KiB  
Article
FLIP: A Novel Feedback Learning-Based Intelligent Plugin Towards Accuracy Enhancement of Chinese OCR
by Xinyue Tao, Yueyue Han, Yakai Jin and Yunzhi Wu
Mathematics 2025, 13(15), 2372; https://doi.org/10.3390/math13152372 - 24 Jul 2025
Viewed by 245
Abstract
Chinese Optical Character Recognition (OCR) technology is essential for digital transformation in Chinese regions, enabling automated document processing across various applications. However, Chinese OCR systems struggle with visually similar characters, where subtle stroke differences lead to systematic recognition errors that limit practical deployment [...] Read more.
Chinese Optical Character Recognition (OCR) technology is essential for digital transformation in Chinese regions, enabling automated document processing across various applications. However, Chinese OCR systems struggle with visually similar characters, where subtle stroke differences lead to systematic recognition errors that limit practical deployment accuracy. This study develops FLIP (Feedback Learning-based Intelligent Plugin), a lightweight post-processing plugin designed to improve Chinese OCR accuracy across different systems without external dependencies. The plugin operates through three core components as follows: UTF-8 encoding-based output parsing that converts OCR results into mathematical representations, error correction using information entropy and weighted similarity measures to identify and fix character-level errors, and adaptive feedback learning that optimizes parameters through user interactions. The approach functions entirely through mathematical calculations at the character encoding level, ensuring universal compatibility with existing OCR systems while effectively handling complex Chinese character similarities. The plugin’s modular design enables seamless integration without requiring modifications to existing OCR algorithms, while its feedback mechanism adapts to domain-specific terminology and user preferences. Experimental evaluation on 10,000 Chinese document images using four state-of-the-art OCR models demonstrates consistent improvements across all tested systems, with precision gains ranging from 1.17% to 10.37% and overall Chinese character recognition accuracy exceeding 98%. The best performing model achieved 99.42% precision, with ablation studies confirming that feedback learning contributes additional improvements from 0.45% to 4.66% across different OCR architectures. Full article
(This article belongs to the Special Issue Crowdsourcing Learning: Theories, Algorithms, and Applications)
Show Figures

Figure 1

14 pages, 2616 KiB  
Article
Novel Throat-Attached Piezoelectric Sensors Based on Adam-Optimized Deep Belief Networks
by Ben Wang, Hua Xia, Yang Feng, Bingkun Zhang, Haoda Yu, Xulehan Yu and Keyong Hu
Micromachines 2025, 16(8), 841; https://doi.org/10.3390/mi16080841 - 22 Jul 2025
Viewed by 257
Abstract
This paper proposes an Adam-optimized Deep Belief Networks (Adam-DBNs) denoising method for throat-attached piezoelectric signals. The method aims to process mechanical vibration signals captured through polyvinylidene fluoride (PVDF) sensors attached to the throat region, which are typically contaminated by environmental noise and physiological [...] Read more.
This paper proposes an Adam-optimized Deep Belief Networks (Adam-DBNs) denoising method for throat-attached piezoelectric signals. The method aims to process mechanical vibration signals captured through polyvinylidene fluoride (PVDF) sensors attached to the throat region, which are typically contaminated by environmental noise and physiological noise. First, the short-time Fourier transform (STFT) is utilized to convert the original signals into the time–frequency domain. Subsequently, the masked time–frequency representation is reconstructed into the time domain through a diagonal average-based inverse STFT. To address complex nonlinear noise structures, a Deep Belief Network is further adopted to extract features and reconstruct clean signals, where the Adam optimization algorithm ensures the efficient convergence and stability of the training process. Compared with traditional Convolutional Neural Networks (CNNs), Adam-DBNs significantly improve waveform similarity by 6.77% and reduce the local noise energy residue by 0.099696. These results demonstrate that the Adam-DBNs method exhibits substantial advantages in signal reconstruction fidelity and residual noise suppression, providing an efficient and robust solution for throat-attached piezoelectric sensor signal enhancement tasks. Full article
(This article belongs to the Section E:Engineering and Technology)
Show Figures

Figure 1

22 pages, 4636 KiB  
Article
SP-GEM: Spatial Pattern-Aware Graph Embedding for Matching Multisource Road Networks
by Chenghao Zheng, Yunfei Qiu, Jian Yang, Bianying Zhang, Zeyuan Li, Zhangxiang Lin, Xianglin Zhang, Yang Hou and Li Fang
ISPRS Int. J. Geo-Inf. 2025, 14(7), 275; https://doi.org/10.3390/ijgi14070275 - 15 Jul 2025
Viewed by 275
Abstract
Identifying correspondences of road segments in different road networks, namely road-network matching, is an essential task for road network-centric data processing such as data integration of road networks and data quality assessment of crowd-sourced road networks. Traditional road-network matching usually relies on feature [...] Read more.
Identifying correspondences of road segments in different road networks, namely road-network matching, is an essential task for road network-centric data processing such as data integration of road networks and data quality assessment of crowd-sourced road networks. Traditional road-network matching usually relies on feature engineering and parameter selection of the geometry and topology of road networks for similarity measurement, resulting in poor performance when dealing with dense and irregular road network structures. Recent development of graph neural networks (GNNs) has demonstrated unsupervised modeling power on road network data, which learn the embedded vector representation of road networks through spatial feature induction and topology-based neighbor aggregation. However, weighting spatial information on the node feature alone fails to give full play to the expressive power of GNNs. To this end, this paper proposes a Spatial Pattern-aware Graph EMbedding learning method for road-network matching, named SP-GEM, which explores the idea of spatially-explicit modeling by identifying spatial patterns in neighbor aggregation. Firstly, a road graph is constructed from the road network data, and geometric, topological features are extracted as node features of the road graph. Then, four spatial patterns, including grid, high branching degree, irregular grid, and circuitous, are modelled in a sector-based road neighborhood for road embedding. Finally, the similarity of road embedding is used to find data correspondences between road networks. We conduct an algorithmic accuracy test to verify the effectiveness of SP-GEM on OSM and Tele Atlas data. The algorithmic accuracy experiments show that SP-GEM improves the matching accuracy and recall by at least 6.7% and 10.2% among the baselines, with high matching success rate (>70%), and improves the matching accuracy and recall by at least 17.7% and 17.0%, compared to the baseline GNNs, without spatially-explicit modeling. Further embedding analysis also verifies the effectiveness of the induction of spatial patterns. This study not only provides an effective and practical algorithm for road-network matching, but also serves as a test bed in exploring the role of spatially-explicit modeling in GNN-based road network modeling. The experimental performances of SP-GEM illuminate the path to develop GeoEmbedding services for geospatial applications. Full article
Show Figures

Figure 1

17 pages, 2550 KiB  
Article
Solar and Wind 24 H Sequenced Prediction Using L-Transform Component and Deep LSTM Learning in Representation of Spatial Pattern Correlation
by Ladislav Zjavka
Atmosphere 2025, 16(7), 859; https://doi.org/10.3390/atmos16070859 - 15 Jul 2025
Viewed by 255
Abstract
Spatiotemporal correlations between meteo-inputs and wind–solar outputs in an optimal regional scale are crucial for developing robust models, reliable in mid-term prediction time horizons. Modelling border conditions is vital for early recognition of progress in chaotic atmospheric processes at the destination of interest. [...] Read more.
Spatiotemporal correlations between meteo-inputs and wind–solar outputs in an optimal regional scale are crucial for developing robust models, reliable in mid-term prediction time horizons. Modelling border conditions is vital for early recognition of progress in chaotic atmospheric processes at the destination of interest. This approach is used in differential and deep learning; artificial intelligence (AI) techniques allow for reliable pattern representation in long-term uncertainty and regional irregularities. The proposed day-by-day estimation of the RE production potential is based on first data processing in detecting modelling initialisation times from historical databases, considering correlation distance. Optimal data sampling is crucial for AI training in statistically based predictive modelling. Differential learning (DfL) is a recently developed and biologically inspired strategy that combines numerical derivative solutions with neurocomputing. This hybrid approach is based on the optimal determination of partial differential equations (PDEs) composed at the nodes of gradually expanded binomial trees. It allows for modelling of highly uncertain weather-related physical systems using unstable RE. The main objective is to improve its self-evolution and the resulting computation in prediction time. Representing relevant patterns by their similarity factors in input–output resampling reduces ambiguity in RE forecasting. Node-by-node feature selection and dynamical PDE representation of DfL are evaluated along with long-short-term memory (LSTM) recurrent processing of deep learning (DL), capturing complex spatio-temporal patterns. Parametric C++ executable software with one-month spatial metadata records is available to compare additional modelling strategies. Full article
(This article belongs to the Special Issue Applications of Artificial Intelligence in Atmospheric Sciences)
Show Figures

Figure 1

Back to TopTop