Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (4,892)

Search Parameters:
Keywords = reporter cell lines

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 895 KiB  
Article
A Phytochemical and Biological Characterization of Cynara cardunculus L. subsp. scolymus Cultivar “Carciofo di Procida”, a Traditional Italian Agri-Food Product (PAT) of the Campania Region
by Giuseppina Tommonaro, Giulia De Simone, Carmine Iodice, Marco Allarà and Adele Cutignano
Molecules 2025, 30(15), 3285; https://doi.org/10.3390/molecules30153285 - 5 Aug 2025
Abstract
The artichoke (Cynara cardunculus L. subsp. scolymus) is an endemic perennial plant of the Mediterranean area commonly consumed as food. It is known since ancient times for its beneficial properties for human health, among which its antioxidant activity due to polyphenolics [...] Read more.
The artichoke (Cynara cardunculus L. subsp. scolymus) is an endemic perennial plant of the Mediterranean area commonly consumed as food. It is known since ancient times for its beneficial properties for human health, among which its antioxidant activity due to polyphenolics stands out. In the frame of our ongoing studies aiming to highlight the biodiversity and the chemodiversity of natural resources, we investigated the phenolic and saponin content of the cultivar “Carciofo di Procida” collected at Procida, an island of the Gulf of Naples (Italy). Along with the edible part of the immature flower, we included in our analyses the stem and the external bracts, generally discarded for food consuming or industrial preparations. The LCMS quali-quantitative profiling of polyphenols (including anthocyanins) and cynarasaponins of this cultivar is reported for the first time. In addition to antioxidant properties, we observed a significant cytotoxic activity due to extracts from external bracts against human neuroblastoma SH-SY5Y cell lines with 43% of cell viability, after 24 h from the treatment (50 μg/mL), and less potent but appreciable effects also against human colorectal adenocarcinoma CaCo-2 cells. This suggests that the different metabolite composition may be responsible for the bioactivity of extracts obtained from specific parts of artichoke and foresees a possible exploitation of the discarded material as a source of beneficial compounds. Full article
(This article belongs to the Special Issue Extraction and Analysis of Natural Products in Food—3rd Edition)
Show Figures

Figure 1

27 pages, 2005 KiB  
Article
Glyoxalase 1 Inducer, trans-Resveratrol and Hesperetin–Dietary Supplement with Multi-Modal Health Benefits
by Mingzhan Xue, Naila Rabbani and Paul J. Thornalley
Antioxidants 2025, 14(8), 956; https://doi.org/10.3390/antiox14080956 (registering DOI) - 4 Aug 2025
Viewed by 14
Abstract
A dietary supplement, trans-resveratrol and hesperetin (tRES+HESP)—also known as GlucoRegulate—induces increased expression of glyoxalase 1 (Glo1) by activation of transcription factor Nrf2, countering accumulation of the reactive dicarbonyl glycating agent, methylglyoxal. tRES+HESP corrected insulin resistance and decreased fasting and postprandial plasma glucose [...] Read more.
A dietary supplement, trans-resveratrol and hesperetin (tRES+HESP)—also known as GlucoRegulate—induces increased expression of glyoxalase 1 (Glo1) by activation of transcription factor Nrf2, countering accumulation of the reactive dicarbonyl glycating agent, methylglyoxal. tRES+HESP corrected insulin resistance and decreased fasting and postprandial plasma glucose and low-grade inflammation in overweight and obese subjects in a clinical trial. The aim of this study was to explore, for the first time, health-beneficial gene expression other than Glo1 induced by tRES+HESP in human endothelial cells and fibroblasts in primary culture and HepG2 hepatoma cell line and activity of cis-resveratrol (cRES) as a Glo1 inducer. We measured antioxidant response element-linked gene expression in these cells in response to 5 µM tRES+HESP by the NanoString method. tRES+HESP increases gene expression linked to the prevention of dicarbonyl stress, lipid peroxidation, oxidative stress, proteotoxicity and hyperglycemia-linked glycolytic overload. Downstream benefits were improved regulation of glucose and lipid metabolism and decreased inflammation, extracellular matrix remodeling and senescence markers. The median effective concentration of tRES was ninefold lower than cRES in the Glo1 inducer luciferase reporter assay. The GlucoRegulate supplement provides a new treatment option for the prevention of type 2 diabetes and metabolic dysfunction–associated steatotic liver disease and supports healthy aging. Full article
Show Figures

Figure 1

24 pages, 10561 KiB  
Article
Investigating the Potential of Propranolol as an Anti-Tumor Agent in Colorectal Cancer Cell Lines
by Shiekhah Mohammad Alzahrani, Huda Abdulaziz Al Doghaither, Hind Ali Alkhatabi, Mohammad Abdullah Basabrain and Peter Natesan Pushparaj
Int. J. Mol. Sci. 2025, 26(15), 7513; https://doi.org/10.3390/ijms26157513 - 4 Aug 2025
Viewed by 41
Abstract
The incidence and mortality of colorectal cancer (CRC) have increased globally. Several therapeutic approaches have been suggested to address this health issue, in addition to classical methods. Propranolol (PRO) is a beta-blocker that was repurposed to treat infantile hemangiomas, and its anti-tumor activity [...] Read more.
The incidence and mortality of colorectal cancer (CRC) have increased globally. Several therapeutic approaches have been suggested to address this health issue, in addition to classical methods. Propranolol (PRO) is a beta-blocker that was repurposed to treat infantile hemangiomas, and its anti-tumor activity has been reported. This study aimed to investigate the effects of PRO in a panel of CRC cell lines and its potential impact when combined with chemotherapy. The effects of PRO on cell cytotoxicity, cell morphology, colony formation, cell death induction, cell cycle, mitochondrial and intracellular reactive oxygen species (ROS), and migration were measured in all cells. CompuSyn software was utilized to assess the possible synergistic or additive interaction in the combined treatment. The results showed that PRO suppressed cell proliferation, altered cell morphology, inhibited colony formation, induced apoptosis, altered cell cycle and ROS generation, and inhibited the migration of treated cells in a cell-type-specific, time-dependent, and dose-dependent manner compared with the control. HT-29 was the most sensitive cell line to PRO in terms of cytotoxicity, apoptosis, cell cycle arrest, and ROS generation, while SW-480 was the most sensitive in terms of migration inhibition. Moreover, the PRO and capecitabine combination exhibited a synergistic effect and induced mitochondrial apoptosis in metastatic CRC cells. The data suggest that PRO could be a promising adjuvant therapy for primary and advanced CRC. This study identified variations between CRC cell lines in response to PRO, which may be related to their genetic and epigenetic differences. In addition, the findings highlight the potential of combination strategies to improve therapeutic outcomes in metastatic CRC. Full article
(This article belongs to the Special Issue Programmed Cell Death and Oxidative Stress: 3rd Edition)
Show Figures

Figure 1

27 pages, 6689 KiB  
Article
Steroidal Oximes and Cervical Cancer: An In Silico Mechanistic Pathway Approach
by Carlos Antonio Sánchez-Valdeolivar, Alan Carrasco-Carballo, Jorge Organista-Nava, Jesús Sandoval-Ramírez and Berenice Illades-Aguiar
Sci. Pharm. 2025, 93(3), 36; https://doi.org/10.3390/scipharm93030036 - 4 Aug 2025
Viewed by 39
Abstract
Cervical cancer affects 661,000 women worldwide; as a result, new treatment alternatives are still being sought, with steroid oximes being the most prominent. However, the molecular targets where steroid oximes exert their anticancer activity remain unknown. In this study, reports of the activity [...] Read more.
Cervical cancer affects 661,000 women worldwide; as a result, new treatment alternatives are still being sought, with steroid oximes being the most prominent. However, the molecular targets where steroid oximes exert their anticancer activity remain unknown. In this study, reports of the activity in cell lines were obtained, and the targets associated with cervical cancer were identified using bioinformatics tools, based on two- and three-dimensional structural similarity analysis. Subsequently, molecular targets were analyzed via molecular docking using Schrödinger software v.2022-4 to determine their effects compared with reference drugs. Interrelated proteins and isolated proteins were observed, suggesting both the multi-target and single-target activity of steroid oximes. The analysis revealed that 60% of the 42 identified proteins had previously been reported in the literature and were associated with cervical cancer in processes related to cell proliferation, invasion, migration, and apoptosis. Among them, SRC, IGF1R, and MDM2 showed feasibility for multi-target interaction, which is consistent with the lower IC50 values reported for oximes in cervical cancer cell lines (HeLa and CaSki). This finding suggests that steroid oximes are multi-target molecules that can inhibit the proteins associated with cervical cancer, particularly through the IGF1R, MDM2, and SRC pathways related to cell proliferation and apoptosis, serving as a guideline for the future design of new steroidal oximes. Full article
(This article belongs to the Topic Bioinformatics in Drug Design and Discovery—2nd Edition)
Show Figures

Figure 1

18 pages, 2432 KiB  
Article
Alkali Lignin-Based Biopolymer Formulations for Electro-Assisted Drug Delivery of Natural Antioxidants in Breast Cancer Cells—A Preliminary Study
by Severina Semkova, Radina Deneva, Georgi Antov, Donika Ivanova and Biliana Nikolova
Int. J. Mol. Sci. 2025, 26(15), 7481; https://doi.org/10.3390/ijms26157481 - 2 Aug 2025
Viewed by 239
Abstract
Recently, a number of natural biologically active substances have been proven to be attractive alternatives to conventional anticancer medicine or as adjuvants in contemporary combination therapies. Although lignin-based materials were previously accepted as waste materials with limited usefulness, recent studies increasingly report the [...] Read more.
Recently, a number of natural biologically active substances have been proven to be attractive alternatives to conventional anticancer medicine or as adjuvants in contemporary combination therapies. Although lignin-based materials were previously accepted as waste materials with limited usefulness, recent studies increasingly report the possibility of their use for novel applications in various industrial branches, including biomedicine. In this regard, the safety, efficiency, advantages and limitations of lignin compounds for in vitro/in vivo applications remain poorly studied and described. This study was carried out to investigate the possibility of using newly synthesized, alkali lignin-based micro-/nano-biopolymer formulations (Lignin@Formulations/L@F) as carriers for substances with antioxidant and/or anticancer effectiveness. Moreover, we tried to assess the opportunity for using an electro-assisted approach for achieving improved intracellular internalization. An investigation was conducted on an in vitro panel of breast cell lines, namely two breast cancer lines with different metastatic potentials and one non-tumorigenic line as a control. The characterization of all tested formulations was performed via DLS (dynamic light scattering) analysis. We developed an improved separation procedure via size/charge unification for all types of Lignin@Formulations. Moreover, in vitro applications were investigated. The results demonstrate that compared to healthy breast cells, both tested cancer lines exhibited slight sensitivity after treatment with different formulations (empty or loaded with antioxidant substances). This effect was also enhanced after applying electric pulses. L@F loaded with Quercetin was also explored only on the highly metastatic cancer cell line as a model for the breast cancer type most aggressive and non-responsive to traditional treatments. All obtained data suggest that the tested formulations have potential as carriers for the electro-assisted delivery of natural antioxidants such as Quercetin. Full article
(This article belongs to the Special Issue Natural Products in Cancer Prevention and Treatment)
Show Figures

Figure 1

17 pages, 1872 KiB  
Article
Bioactive Chalcones from Aizoon africanum: Isolation and Cytotoxicity Against Liver and Neural Cancer Cells
by Ali O. E. Eltahir, Naeem Sheik Abdul, Taskeen F. Docrat, Paolo Bristow, Elias Chipofya, Robert C. Luckay, Monde A. Nyila, Jeanine L. Marnewick, Kadidiatou O. Ndjoubi and Ahmed A. Hussein
Plants 2025, 14(15), 2389; https://doi.org/10.3390/plants14152389 - 2 Aug 2025
Viewed by 202
Abstract
Aizoon africanum (L.) Klak (Synonym Galenia africana L.) is traditionally used for a variety of medicinal purposes; however, it has been reported to cause liver damage and severe ascites, particularly in sheep and Angora goats in the arid regions of the Western Cape. [...] Read more.
Aizoon africanum (L.) Klak (Synonym Galenia africana L.) is traditionally used for a variety of medicinal purposes; however, it has been reported to cause liver damage and severe ascites, particularly in sheep and Angora goats in the arid regions of the Western Cape. This study explores its cytotoxic properties to identify potential cytotoxic compound(s) in the plant. The methanolic extract of A. africanum was re-investigated and subjected to various chromatographic techniques, including preparative HPLC, resulting in the isolation of eight compounds (18). Structural elucidation was primarily based on NMR data. Among the isolated compounds, four were flavanones, one was a flavonone, and three were chalcones. Notably, compound 8 was identified as a new chalcone, while compounds 2 and 3 were reported for the first time from this plant. The toxicity of these isolated compounds was evaluated against the HepG2 and SH-SY5Y cancer cell lines using the MTT assay. We further investigated markers of cell death using spectrophotometric and luminometric methods. Among the isolated compounds, 7 and 8 exhibited cytotoxic activities within the range of 3.0–20.0 µg/mL. Notably, the compounds demonstrated greater cytotoxicity towards liver-derived HepG2 cells compared to the neuronal SH-SY5Y cell line. Compound 7 (2′,4′-dihydroxychalcone) was identified as inducing apoptosis through the intrinsic pathway without causing overt necrosis. The findings indicate that the phytochemicals derived from A. africanum exhibit differential cytotoxic effects based on cell type, suggesting potential for developing novel anticancer agents, particularly compound 7. Additionally, the identification of compound 8 provides insight into the liver toxicity of this plant observed in sheep in South Africa. Full article
Show Figures

Figure 1

24 pages, 3243 KiB  
Article
Design of Experiments Leads to Scalable Analgesic Near-Infrared Fluorescent Coconut Nanoemulsions
by Amit Chandra Das, Gayathri Aparnasai Reddy, Shekh Md. Newaj, Smith Patel, Riddhi Vichare, Lu Liu and Jelena M. Janjic
Pharmaceutics 2025, 17(8), 1010; https://doi.org/10.3390/pharmaceutics17081010 - 1 Aug 2025
Viewed by 196
Abstract
Background: Pain is a complex phenomenon characterized by unpleasant experiences with profound heterogeneity influenced by biological, psychological, and social factors. According to the National Health Interview Survey, 50.2 million U.S. adults (20.5%) experience pain on most days, with the annual cost of prescription [...] Read more.
Background: Pain is a complex phenomenon characterized by unpleasant experiences with profound heterogeneity influenced by biological, psychological, and social factors. According to the National Health Interview Survey, 50.2 million U.S. adults (20.5%) experience pain on most days, with the annual cost of prescription medication for pain reaching approximately USD 17.8 billion. Theranostic pain nanomedicine therefore emerges as an attractive analgesic strategy with the potential for increased efficacy, reduced side-effects, and treatment personalization. Theranostic nanomedicine combines drug delivery and diagnostic features, allowing for real-time monitoring of analgesic efficacy in vivo using molecular imaging. However, clinical translation of these nanomedicines are challenging due to complex manufacturing methodologies, lack of standardized quality control, and potentially high costs. Quality by Design (QbD) can navigate these challenges and lead to the development of an optimal pain nanomedicine. Our lab previously reported a macrophage-targeted perfluorocarbon nanoemulsion (PFC NE) that demonstrated analgesic efficacy across multiple rodent pain models in both sexes. Here, we report PFC-free, biphasic nanoemulsions formulated with a biocompatible and non-immunogenic plant-based coconut oil loaded with a COX-2 inhibitor and a clinical-grade, indocyanine green (ICG) near-infrared fluorescent (NIRF) dye for parenteral theranostic analgesic nanomedicine. Methods: Critical process parameters and material attributes were identified through the FMECA (Failure, Modes, Effects, and Criticality Analysis) method and optimized using a 3 × 2 full-factorial design of experiments. We investigated the impact of the oil-to-surfactant ratio (w/w) with three different surfactant systems on the colloidal properties of NE. Small-scale (100 mL) batches were manufactured using sonication and microfluidization, and the final formulation was scaled up to 500 mL with microfluidization. The colloidal stability of NE was assessed using dynamic light scattering (DLS) and drug quantification was conducted through reverse-phase HPLC. An in vitro drug release study was conducted using the dialysis bag method, accompanied by HPLC quantification. The formulation was further evaluated for cell viability, cellular uptake, and COX-2 inhibition in the RAW 264.7 macrophage cell line. Results: Nanoemulsion droplet size increased with a higher oil-to-surfactant ratio (w/w) but was no significant impact by the type of surfactant system used. Thermal cycling and serum stability studies confirmed NE colloidal stability upon exposure to high and low temperatures and biological fluids. We also demonstrated the necessity of a solubilizer for long-term fluorescence stability of ICG. The nanoemulsion showed no cellular toxicity and effectively inhibited PGE2 in activated macrophages. Conclusions: To our knowledge, this is the first instance of a celecoxib-loaded theranostic platform developed using a plant-derived hydrocarbon oil, applying the QbD approach that demonstrated COX-2 inhibition. Full article
(This article belongs to the Special Issue Quality by Design in Pharmaceutical Manufacturing)
Show Figures

Graphical abstract

12 pages, 2241 KiB  
Article
PDE Inhibitors and Autophagy Regulators Modulate CRE-Dependent Luciferase Activity in Neuronal Cells from the Mouse Suprachiasmatic Nucleus
by Erik Maronde and Abdelhaq Rami
Molecules 2025, 30(15), 3229; https://doi.org/10.3390/molecules30153229 - 1 Aug 2025
Viewed by 169
Abstract
Background: Signaling pathways like those depending on cAMP/PKA, calcium/calmodulin/CaMK, MEK-1/MAPK or PI3K/Akt have been described to modulate suprachiasmatic nucleus (SCN) neuronal signaling via influencing transcription factors like CREB. Here, we analyzed the effect of cyclic nucleotide phosphodiesterase inhibitors and structurally similar substances commonly [...] Read more.
Background: Signaling pathways like those depending on cAMP/PKA, calcium/calmodulin/CaMK, MEK-1/MAPK or PI3K/Akt have been described to modulate suprachiasmatic nucleus (SCN) neuronal signaling via influencing transcription factors like CREB. Here, we analyzed the effect of cyclic nucleotide phosphodiesterase inhibitors and structurally similar substances commonly used as autophagy modulators on a cell line stably expressing a cyclic nucleotide element-driven luciferase reporter. Methods: We used an SCN cell line stably transfected with a CRE-luciferase reporter (SCNCRE) to evaluate signaling and vitality responses to various isoform-selective PDE inhibitors and autophagy modulators to evaluate the mechanism of action of the latter. Results: In this study the different impacts of common PDE inhibitors and autophagy modulators on CRE-luciferase activity applied alone and in combination with known CRE-luciferase activating agents showed that (1) PDE3, 4 and 5 are present in SCNCRE cells, with (2) PDE3 being the most active and (3) the autophagy inhibitor 3-Methyladenin (3-MA) displaying PDE inhibitor-like behavior. Conclusions: Experiments provide evidence that, in addition to the extracellular signaling pathways components shown before to be involved in CRE-luciferase activity regulation like cAMP analogs, adenylate cyclase activators and beta-adrenoceptor agonists, cyclic nucleotide metabolism as realized by phosphodiesterase activity, or molecule/agents influencing processes like autophagy or inflammation, modulate transcriptional CRE-dependent activity in these cells. Specifically, we provide evidence that the autophagy inhibitor 3-MA, given that PDEs are expressed, may also act as a PDE inhibitor and inducer of CRE-mediated transcriptional activity. Full article
(This article belongs to the Special Issue Exploring Bioactive Organic Compounds for Drug Discovery, 2nd Edition)
Show Figures

Figure 1

30 pages, 9213 KiB  
Article
Resveratrol Impairs Insulin Signaling in Hepatic Cells via Activation of PKC and PTP1B Pathways
by Karla D. Hernández-González, Monica A. Vinchira-Lamprea, Judith Hernandez-Aranda and J. Alberto Olivares-Reyes
Int. J. Mol. Sci. 2025, 26(15), 7434; https://doi.org/10.3390/ijms26157434 - 1 Aug 2025
Viewed by 412
Abstract
Resveratrol (RSV), a polyphenol found in a variety of berries and wines, is known for its anti-inflammatory, anticancer, and antioxidant properties. It has been suggested that RSV may play a role in the regulation of metabolic disorders, including diabetes and insulin resistance. However, [...] Read more.
Resveratrol (RSV), a polyphenol found in a variety of berries and wines, is known for its anti-inflammatory, anticancer, and antioxidant properties. It has been suggested that RSV may play a role in the regulation of metabolic disorders, including diabetes and insulin resistance. However, in recent years, it has been reported to completely inhibit Akt kinase function in liver cells. Akt is a central protein involved in the metabolic function of insulin and is regulated by the phosphatidylinositol-3-kinase (PI3K) pathway. In this study, we examined the effect of RSV on insulin-induced insulin receptor (IR) phosphorylation and proteins involved in the PI3K/Akt pathway in a hepatic cell model, clone 9 (C9), and in hepatoma cells, Hepa 1-6 (H1-6). In both cell lines, RSV inhibited tyrosine phosphorylation of IR and insulin-induced activation of Akt. We also evaluated the effect of RSV on the activation of protein tyrosine phosphatase 1B (PTP1B), which is associated with IR dephosphorylation, and found that RSV increased PTP1B-Tyr152 phosphorylation in a time- and concentration-dependent manner. Furthermore, we found that the protein kinase C (PKC) inhibitors BIM and Gö6976 prevented the inhibition of Akt phosphorylation by RSV and increased the phosphorylation of Ser/Thr residues in IR, suggesting that PKC is involved in the inhibition of the insulin pathway by RSV. Thus, classical PKC isoforms impair the PI3K/Akt pathway at the IR and GSK3 and GS downstream levels; however, IRS-Tyr632 phosphorylation remains unaffected. These results suggest that RSV can lead to insulin resistance by activating PTP1B and PKC, consequently affecting glucose homeostasis in hepatic cells. Full article
(This article belongs to the Special Issue The Molecular and Cellular Aspects of Insulin Resistance)
Show Figures

Figure 1

38 pages, 2064 KiB  
Systematic Review
Humulus lupulus (Hop)-Derived Chemical Compounds Present Antiproliferative Activity on Various Cancer Cell Types: A Meta-Regression Based Panoramic Meta-Analysis
by Georgios Tsionkis, Elisavet M. Andronidou, Panagiota I. Kontou, Ioannis A. Tamposis, Konstantinos Tegopoulos, Panagiotis Pergantas, Maria E. Grigoriou, George Skavdis, Pantelis G. Bagos and Georgia G. Braliou
Pharmaceuticals 2025, 18(8), 1139; https://doi.org/10.3390/ph18081139 - 31 Jul 2025
Viewed by 349
Abstract
Background/Objectives: Humulus lupulus (hops) are a perennial, dioecious plant widely cultivated for beer production, used for their distinguishing aroma and bitterness—traits that confer high added value status. Various hop-derived compounds have been reported to exhibit antioxidant, antimicrobial, antiproliferative and other bioactive effects. [...] Read more.
Background/Objectives: Humulus lupulus (hops) are a perennial, dioecious plant widely cultivated for beer production, used for their distinguishing aroma and bitterness—traits that confer high added value status. Various hop-derived compounds have been reported to exhibit antioxidant, antimicrobial, antiproliferative and other bioactive effects. This systematic review and meta-analysis assesses the impact of hop compounds on the viability of diverse cancer cell lines. Methods: A comprehensive literature search was performed following PRISMA guidelines. Data were synthesized via multivariate meta-analysis and meta-regression, using IC50 values as the effect size. Key variables included assay type (SRB, tetrazolium salt-based, crystal violet), exposure duration (24, 48, 72 h), specific hop compound and cancer cell line. Results: Of 622 articles identified, 61 met eligibility criteria, yielding 354 individual experiments. Meta-regression of xanthohumol (XN) IC50 values across SRB, tetrazolium and crystal violet assays revealed no statistically significant differences at 24 h (p = 0.77), 48 h (p = 0.35) and 72 h (p = 0.70), supporting the interchangeability of the methods. Meta-analysis confirmed that hop constituents inhibit cancer cell proliferation; XN emerged as the most potent flavonoid (IC50 = 16.89 μM at 72 h), while lupulone was the strongest compound overall (IC50 = 5.00 μM at 72 h). Crude hop extracts demonstrated greater antiproliferative selectivity for cancer versus non-cancer cells (IC50 = 35.23 vs. 43.80 μg/mL at 72 h). Conclusions: Hop compounds, and particularly bitter acids, demonstrate promising antiproliferative activity against cancer cells with comparatively low toxicity to healthy cells. Furthermore, our analysis confirms the comparability of SRB, tetrazolium-based and crystal violet assays, supporting the robust integration of antiproliferative data. Full article
Show Figures

Figure 1

19 pages, 3826 KiB  
Article
Circular RNA circ_0001591 Contributes to Melanoma Cell Migration Through AXL and FRA1 Proteins by Targeting miR-20a-3p and miR-34a-5p
by Elisa Orlandi, Elisa De Tomi, Francesca Belpinati, Marta Menegazzi, Macarena Gomez-Lira, Maria Grazia Romanelli and Elisabetta Trabetti
Genes 2025, 16(8), 921; https://doi.org/10.3390/genes16080921 - 30 Jul 2025
Viewed by 267
Abstract
Background/Objectives: Different risk factors are involved in the initiation and progression of melanoma. In particular, genetic and epigenetic pathways are involved in all stages of melanoma and are exploited in therapeutic approaches. This study investigated the role of circular RNA circ_0001591 in melanoma [...] Read more.
Background/Objectives: Different risk factors are involved in the initiation and progression of melanoma. In particular, genetic and epigenetic pathways are involved in all stages of melanoma and are exploited in therapeutic approaches. This study investigated the role of circular RNA circ_0001591 in melanoma cell migration. Methods: Three different melanoma cell lines were transfected with siRNA targeting circ_0001591 and with mimic or inhibitor molecules for miR-20a-3p and miR-34a-5p. Gene and protein expression levels were analyzed by RT-qPCR and Western blot, respectively. Dual luciferase reporter assays were performed to confirm the direct interaction of miR-20a-3p and miR-34a-5p with circ_0001591, as well as with the 3’UTRs of AXL (for both miRNAs) and FOSL1 (miR-34a-5p only). Wound healing assays were conducted to assess cell migration velocity. Results: The silencing of circ_0001591 significantly reduces the migration ability of melanoma cell lines. This downregulation was associated with an increased expression of miR-20a-3p and miR-34a-5p. Dual luciferase reporter assays confirmed the direct binding of both miRNAs to circ_0001591, supporting its role as a molecular sponge. The same assays also verified that miR-20a-3p directly targets the 3’UTR of AXL, while miR-34a-5p binds the 3’UTRs of both AXL and FOSL1. Western blot analysis showed that the modulation of this axis affects the expression levels of the AXL and FRA1 oncoproteins. Conclusions: Our findings demonstrate that circ_0001591 promotes melanoma migration by sponging miR-20a-3p and miR-34a-5p, thereby indirectly modulating the expression of AXL and FRA1 oncoprotein. Further investigations of this new regulatory network are needed to better understand its role in melanoma progression and to support the development of targeted therapies. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Figure 1

25 pages, 6142 KiB  
Article
Cancer Chemopreventive Potential of Claoxylon longifolium Grown in Southern Thailand: A Bioassay-Guided Isolation of Vicenin 1 as the Active Compound and In Silico Studies on Related C-Glycosyl Flavones
by Chuanchom Khuniad, Lutfun Nahar, Anupam D. Talukdar, Rajat Nath, Kenneth J. Ritchie and Satyajit D. Sarker
Molecules 2025, 30(15), 3173; https://doi.org/10.3390/molecules30153173 - 29 Jul 2025
Viewed by 337
Abstract
Claoxylon longifolium (Euphorbiaceae) is an indigenous vegetable that has been used in southern Thai traditional medicine and cuisine. A bioassay-guided approach was adopted to investigate the phytochemicals and chemopreventive potential of C. longifolium leaves and stems. Phytochemical investigation of the active MeOH fractions [...] Read more.
Claoxylon longifolium (Euphorbiaceae) is an indigenous vegetable that has been used in southern Thai traditional medicine and cuisine. A bioassay-guided approach was adopted to investigate the phytochemicals and chemopreventive potential of C. longifolium leaves and stems. Phytochemical investigation of the active MeOH fractions afforded six known compounds, including caffeic acid (1), isovitexin (2), and vicenins 1–3 (3–5) from leaves and hexadecanoic acid methyl ester (6) from stems. Their structures were determined by spectroscopic means. Ten constituents were tentatively identified from the oily fractions of stems by GC-MS. Non-cytotoxic concentrations of compounds 16 were identified using the MTT cell viability assay. The ability of compounds 16 at non-cytotoxic concentrations to induce Nrf2 activation, correlating to their potential chemopreventive properties, was determined using a luciferase reporter assay in the AREc32 cell line. Only vicenin 1 (3) was considered to be a potent chemopreventive compound, as it increased luciferase activity by 2.3-fold. In silico studies on compounds 25 and vitexin (16) revealed the potential of these compounds as cancer chemopreventive and chemotherapeutic agents. This study provides the first report on the chemopreventive properties of C. longifolium. All identified and isolated compounds are reported here for the first time from this species. Full article
Show Figures

Graphical abstract

20 pages, 5588 KiB  
Article
Rapid and Robust Generation of Homozygous Fluorescent Reporter Knock-In Cell Pools by CRISPR-Cas9
by Jicheng Yang, Fusheng Guo, Hui San Chin, Gao Bin Chen, Ziyan Zhang, Lewis Williams, Andrew J. Kueh, Pierce K. H. Chow, Marco J. Herold and Nai Yang Fu
Cells 2025, 14(15), 1165; https://doi.org/10.3390/cells14151165 - 29 Jul 2025
Viewed by 367
Abstract
Conventional methods for generating knock-out or knock-in mammalian cell models using CRISPR-Cas9 genome editing often require tedious single-cell clone selection and expansion. In this study, we develop and optimise rapid and robust strategies to engineer homozygous fluorescent reporter knock-in cell pools with precise [...] Read more.
Conventional methods for generating knock-out or knock-in mammalian cell models using CRISPR-Cas9 genome editing often require tedious single-cell clone selection and expansion. In this study, we develop and optimise rapid and robust strategies to engineer homozygous fluorescent reporter knock-in cell pools with precise genome editing, circumventing clonal variability inherent to traditional approaches. To reduce false-positive cells associated with random integration, we optimise the design of donor DNA by removing the start codon of the fluorescent reporter and incorporating a self-cleaving T2A peptide system. Using fluorescence-assisted cell sorting (FACS), we efficiently identify and isolate the desired homozygous fluorescent knock-in clones, establishing stable cell pools that preserve parental cell line heterogeneity and faithfully reflect endogenous transcriptional regulation of the target gene. We evaluate the knock-in efficiency and rate of undesired random integration in the electroporation method with either a dual-plasmid system (sgRNA and donor DNA in two separate vectors) or a single-plasmid system (sgRNA and donor DNA combined in one vector). We further demonstrate that coupling our single-plasmid construct with an integrase-deficient lentivirus vector (IDLV) packaging system efficiently generates fluorescent knock-in reporter cell pools, offering flexibility between electroporation and lentivirus transduction methods. Notably, compared to the electroporation methods, the IDLV system significantly minimises random integration. Moreover, the resulting reporter cell lines are compatible with most of the available genome-wide sgRNA libraries, enabling unbiased CRISPR screens to identify key transcriptional regulators of a gene of interest. Overall, our methodologies provide a powerful genetic tool for rapid and robust generation of fluorescent reporter knock-in cell pools with precise genome editing by CRISPR-Cas9 for various research purposes. Full article
(This article belongs to the Special Issue CRISPR-Based Genome Editing Approaches in Cancer Therapy)
Show Figures

Figure 1

16 pages, 3286 KiB  
Article
Poxvirus K3 Orthologs Regulate NF-κB-Dependent Inflammatory Responses by Targeting the PKR–eIF2α Axis in Multiple Species
by Huibin Yu, Mary Eloise L. Fernandez, Chen Peng, Dewi Megawati, Greg Brennan, Loubna Tazi and Stefan Rothenburg
Vaccines 2025, 13(8), 800; https://doi.org/10.3390/vaccines13080800 - 28 Jul 2025
Viewed by 306
Abstract
Background: Protein kinase R (PKR) inhibits general mRNA translation by phosphorylating the alpha subunit of eukaryotic translation initiation factor 2 (eIF2). PKR also modulates NF-κB signaling during viral infections, but comparative studies of PKR-mediated NF-κB responses across mammalian species and their regulation by [...] Read more.
Background: Protein kinase R (PKR) inhibits general mRNA translation by phosphorylating the alpha subunit of eukaryotic translation initiation factor 2 (eIF2). PKR also modulates NF-κB signaling during viral infections, but comparative studies of PKR-mediated NF-κB responses across mammalian species and their regulation by viral inhibitors remain largely unexplored. This study aimed to characterize the conserved antiviral and inflammatory roles of mammalian PKR orthologs and investigate their modulation by poxviral inhibitors. Methods: Using reporter gene assays and quantitative RT-PCR, we assessed the impact of 17 mammalian PKR orthologs on general translation inhibition, stress-responsive translation, and NF-κB-dependent induction of target genes. Congenic human and rabbit cell lines infected with a myxoma virus strain lacking PKR inhibitors were used to compare the effects of human and rabbit PKR on viral replication and inflammatory responses. Site-directed mutagenesis was employed to determine key residues responsible for differential sensitivity to the viral inhibitor M156. Results: All 17 mammalian PKR orthologs significantly inhibited general translation, strongly activated stress-responsive ATF4 translation, and robustly induced NF-κB target genes. Inhibition of these responses was specifically mediated by poxviral K3 orthologs that effectively suppressed PKR activation. Comparative analyses showed human and rabbit PKRs similarly inhibited virus replication and induced cytokine transcripts. Amino acid swaps between rabbit PKRs reversed their sensitivity to viral inhibitor M156 and NF-κB activation. Conclusions: Our data show that the tested PKR orthologs exhibit conserved dual antiviral and inflammatory regulatory roles, which can be antagonized by poxviral K3 orthologs that exploit eIF2α mimicry to modulate the PKR-NF-κB axis. Full article
(This article belongs to the Special Issue Antiviral Immunity and Vaccine Development)
Show Figures

Figure 1

14 pages, 3376 KiB  
Case Report
Clinicopathologic Features, Surgical Treatment, and Pathological Characterization of Canine Dacryops with Different Localization
by Barbara Lamagna, Luigi Navas, Francesco Prisco, Dario Costanza, Valeria Russo, Francesco Lamagna, Cristina Di Palma, Valeria Uccello, Giuseppina Mennonna, Orlando Paciello, Flaviana La Peruta, Giovanni Flauto and Giovanni Della Valle
Vet. Sci. 2025, 12(8), 705; https://doi.org/10.3390/vetsci12080705 - 28 Jul 2025
Viewed by 205
Abstract
Lacrimal cysts (dacryops), which involve lacrimal tissue, are uncommon in dogs with an obscure/unclear pathogenesis. Compared to the current available literature, this report describes the clinicopathologic and immunohistochemical features of two cases of unusual dacryops in brachycephalic dogs. A three-year-old male Cane Corso [...] Read more.
Lacrimal cysts (dacryops), which involve lacrimal tissue, are uncommon in dogs with an obscure/unclear pathogenesis. Compared to the current available literature, this report describes the clinicopathologic and immunohistochemical features of two cases of unusual dacryops in brachycephalic dogs. A three-year-old male Cane Corso was referred with a 1-month history of swelling ventromedial to the left eye associated with blepharospasm and epiphora. Furthermore, a severe lower and upper eyelid entropion and a deep corneal ulcer were present. B-mode ultrasonography and a CT scan revealed a subcutaneous cyst, closely adherent to the maxillary bone. Surgical removal and the correction of entropion were performed. No recurrence and/or complication was detected by seven-year follow-up. Histopathology revealed a cystic structure with single- to double-cell-layered, nonciliated, cuboidal epithelia. Alcian blue stain revealed rare, disseminated goblet cells admixed with epithelial cells. The epithelium was strongly Cytokeratin-positive by immunohistochemistry and appeared lined by several layers of smooth muscle actin (SMA)-positive myoepithelial cells. A 1-year-old male French Bulldog with a 3-month lesion of the third eyelid of the right eye. The lesion (15 mm × 7 mm) beneath the conjunctiva appeared pale-pink, smooth, and multilobulated. Excision was performed by blunt dissection through the conjunctiva on the palpebral surface of the third eyelid. Recovery was uncomplicated, and no recurrence has been noted at three-year follow-up. Cytology of the cystic fluid and histopathology and immunohistochemistry of the cyst wall revealed findings for case 1. To further characterize the SMA-positive spindle cells located directly beneath the cyst-lining epithelium, double-color immunofluorescence for SMA and p63 (a myoepithelial cell marker) was performed on the sample from case 2. The analysis revealed that the SMA-positive cells lacked p63 expression, indicating a non-myoepithelial phenotype. The histological findings in our cases are consistent with previous reports of canine dacryops. The positivity of immunohistochemical staining for SMA in cells directly beneath the epithelium of dacryops in the cases here described in two brachycephalic dogs is consistent with previous reports in dogs and horses but in contrast with a retrospective study about a human dacryops. These results support the conclusion that the pathogenesis of dacryops in dogs should exclude failure of ductular “neuromuscular” contractility. Full article
(This article belongs to the Special Issue Spotlight on Ophthalmologic Pathology in Animals)
Show Figures

Figure 1

Back to TopTop