Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (684)

Search Parameters:
Keywords = remote state estimation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 9250 KB  
Article
Deep Learning-Based Multi-Source Precipitation Forecasting in Arid Regions Using Different Optimizations: A Case Study from Konya, Turkey
by Vahdettin Demir
Forecasting 2025, 7(4), 60; https://doi.org/10.3390/forecast7040060 (registering DOI) - 18 Oct 2025
Abstract
Accurate precipitation forecasting plays a crucial role in sustainable water resource management, especially in arid regions like Konya, one of Turkey’s driest areas. Reliable forecasts support effective water budgeting, agricultural planning, and climate adaptation efforts in the region. This study investigates the performance [...] Read more.
Accurate precipitation forecasting plays a crucial role in sustainable water resource management, especially in arid regions like Konya, one of Turkey’s driest areas. Reliable forecasts support effective water budgeting, agricultural planning, and climate adaptation efforts in the region. This study investigates the performance of different deep learning training algorithms in forecasting monthly precipitation using Long Short-Term Memory (LSTM) networks, a method tailored for time-series prediction. A comprehensive dataset comprising 39 years (1984–2022) of precipitation records was utilized, obtained from the Turkish State Meteorological Service (MGM) as ground-based observations and from NASA’s POWER database as remote sensing data, and was split into 80% for training and 20% for testing. A comparative analysis of three widely used optimization algorithms, Adaptive Moment Estimation (ADAM), Root Mean Square Propagation (RMSProp), and Stochastic Gradient Descent with Momentum (SGDM), revealed that ADAM consistently outperformed the others in forecasting accuracy. Model performance was evaluated with statistical metrics, and the LSTM-ADAM combination achieved the best results. In the final phase, cross-validation was applied using MGM and NASA data sources in a crosswise manner to test model generalizability and data source independence. The best performance was observed when the model was trained with MGM data and tested with NASA data, achieving a remarkably low RMSE of 3.62 mm, MAE of 2.93 mm, R2 of 0.9966, and NSE of 0.9686. When trained with NASA data and tested with MGM data, the model still demonstrated strong performance, with an RMSE of 4.48 mm, MAE of 3.22 mm, R2 of 0.9921, and NSE of 0.9678. These results demonstrate that satellite and ground-based data can be used interchangeably under suitable conditions, while also confirming the superiority of the ADAM optimizer in LSTM-based precipitation forecasting. Full article
(This article belongs to the Section Environmental Forecasting)
Show Figures

Figure 1

21 pages, 40457 KB  
Article
Interpretable Emotion Estimation in Indoor Remote Work Environments via Environmental Sensor Data
by Yuma Toriyama, Tsumugi Isogami and Nobuyoshi Komuro
Big Data Cogn. Comput. 2025, 9(10), 243; https://doi.org/10.3390/bdcc9100243 - 23 Sep 2025
Viewed by 417
Abstract
Indoor environmental factors such as CO2 concentration, temperature, and humidity can significantly influence individuals’ emotional states and productivity. This study continuously collected environmental data using wireless sensors and emotional data from wearable devices in an office-like remote-work setting. Machine learning models, including [...] Read more.
Indoor environmental factors such as CO2 concentration, temperature, and humidity can significantly influence individuals’ emotional states and productivity. This study continuously collected environmental data using wireless sensors and emotional data from wearable devices in an office-like remote-work setting. Machine learning models, including Random Forest and Gradient Boosting Decision Tree, were developed and interpreted using SHAP (Shapley Additive Explanations). The proposed models achieved estimation accuracies above 85%. SHAP analysis revealed that CO2 concentration, temperature, and humidity were influential factors in predicting pleasant or unpleasant states. These findings demonstrate the feasibility of real-time, data-driven emotion estimation and provide insights into the design of indoor environments that foster comfort and mental well-being. Full article
Show Figures

Figure 1

25 pages, 4073 KB  
Article
Evaluating Country-Scale Irrigation Demand Through Parsimonious Agro-Hydrological Modeling
by Nike Chiesa Turiano, Marta Tuninetti, Francesco Laio and Luca Ridolfi
Hydrology 2025, 12(9), 240; https://doi.org/10.3390/hydrology12090240 - 18 Sep 2025
Viewed by 420
Abstract
Climate change is expected to reduce water availability during cropping season, while growing populations and rising living standards will increase the global water demand. This creates an urgent need for national water management tools to optimize water allocation. In particular, agriculture requires targeted [...] Read more.
Climate change is expected to reduce water availability during cropping season, while growing populations and rising living standards will increase the global water demand. This creates an urgent need for national water management tools to optimize water allocation. In particular, agriculture requires targeted approaches to improve efficiency. Alongside field measurements and remote sensing, agro-hydrological models have emerged as a particularly valuable resource for assessing and managing agricultural water demand. This study introduces WaterCROPv2, a state-of-the-art agro-hydrological model designed to estimate national-scale irrigation water demand while effectively balancing accuracy with practical data requirements. WaterCROPv2 incorporates innovative features such as hourly time-step computations, advanced rainwater canopy interception modeling, detailed soil-dependent leakage dynamics, and localized daily evapotranspiration patterns based on meteorological data. Through comprehensive analyses, WaterCROPv2 demonstrates significantly enhanced reliability in estimating irrigation water needs across various climatic regions, particularly under contrasting dry and wet conditions. Validation against independent data from the Italian National Institute of Statistics (ISTAT) for maize cultivation in Italy in 2010 confirms the model’s accuracy and underscores its potential for broader international applications. A spatial analysis further reveals that the estimation errors align closely with regional precipitation patterns: the model tends to slightly underestimate irrigation needs in the wetter northern regions, whereas it somewhat overestimates demand in the drier southern areas. WaterCROPv2 has also been used to analyze irrigation water requirements for maize cultivation in Italy from 2005 to 2015, highlighting its significant potential as a strategic decision-support tool. The model identifies optimal cultivation areas, such as the Pianura Padana, where the irrigation requirements do not exceed 200 mm for the entire maize growing period, and unsuitable regions, such as Salentino, where over 500 mm per season are required due to the local climatic conditions. In addition, estimates of the water volumes required for the current extent of maize cultivation show that the Pianura Padana region demands nearly three times the amount of water used in the Salentino area. The model has also been used to identify regions where adopting efficient irrigation technologies could lead to substantial water savings. With micro-irrigation currently covering less than 18% of irrigated land, simulations suggest that a complete transition to this system could reduce the national water demand by 21%. Savings could reach 30–40% in traditionally water-rich regions that rely on inefficient irrigation practices but are expected to be increasingly exposed to temperature increases and precipitation shifts. The analysis shows that those regions currently lacking adequate irrigation infrastructure stand to gain the most from targeted irrigation system investments but also highlights how incentives where micro-irrigation is already widespread can provide further 5–10% savings. Full article
Show Figures

Figure 1

15 pages, 22039 KB  
Article
CO2 Dynamics in a Mofette: Measurement and Modeling
by Attila Gergely, Alexandru Szakács, Ágnes Gál and Zoltán Néda
Geosciences 2025, 15(9), 368; https://doi.org/10.3390/geosciences15090368 - 17 Sep 2025
Viewed by 355
Abstract
We investigated the CO2 emissions in a mofette gas pool located in Covasna, Romania. Using a custom-built remote multi-sensor device, we monitored the gas concentrations, temperature, and pressure for seven months. The measurements showed both diurnal cycles and short-term bursts of CO [...] Read more.
We investigated the CO2 emissions in a mofette gas pool located in Covasna, Romania. Using a custom-built remote multi-sensor device, we monitored the gas concentrations, temperature, and pressure for seven months. The measurements showed both diurnal cycles and short-term bursts of CO2 emissions along with instances of erratic yield anomalies. We employed the convection–diffusion equation to estimate gas flow rates without altering the natural state of the mofette. Additionally, we developed a model that uses the measured pressure and temperature to predict the CO2 outflow yield. The model’s overall predictions approximate well the observed CO2 flux. However, the subtle mismatches between these two suggest that subsurface geological processes, which require further investigation, may also influence the gas flow. This research provides insights into the dynamics of focused CO2 emissions, with potential applications in environmental monitoring and therapeutic practices. Full article
Show Figures

Figure 1

16 pages, 495 KB  
Article
Slomads Rising: Structural Shifts in U.S. Airbnb Stay Lengths During and After the Pandemic (2019–2024)
by Harrison Katz and Erica Savage
Tour. Hosp. 2025, 6(4), 182; https://doi.org/10.3390/tourhosp6040182 - 17 Sep 2025
Viewed by 693
Abstract
Background. Length of stay, operationalized here as nights per booking (NPB), is a first-order driver of yield, labor planning, and environmental pressure. The COVID-19 pandemic and the rise of long-stay remote workers (often labeled “slomads”, a slow-travel subset of digital nomads) plausibly altered [...] Read more.
Background. Length of stay, operationalized here as nights per booking (NPB), is a first-order driver of yield, labor planning, and environmental pressure. The COVID-19 pandemic and the rise of long-stay remote workers (often labeled “slomads”, a slow-travel subset of digital nomads) plausibly altered stay-length distributions, yet national, booking-weighted evidence for the United States remains scarce. Purpose. This study quantifies COVID-19 pandemic-era and post-pandemic shifts in U.S. Airbnb stay lengths, and identifies whether higher averages reflect (i) more long stays or (ii) longer long stays. Methods. Using every U.S. Airbnb reservation created between 1 January 2019 and 31 December 2024 (collapsed to booking-count weights), the analysis combines: weighted descriptive statistics; parametric density fitting (Gamma, log-normal, Poisson–lognormal); weighted negative-binomial regression with month effects; a two-part (logit + NB) model for ≥28-night stays; and a monthly SARIMA(0,1,1)(0,1,1)12 with COVID-19 pandemic-phase indicators. Results. Mean NPB rose from 3.68 pre-COVID-19 to 4.36 during restrictions and then stabilized near 4.07 post-2021 (≈10% above 2019); the booking-weighted median shifted permanently from 2 to 3 nights. A two-parameter log-normal fits best by wide AIC/BIC margins, consistent with a heavy-tailed distribution. Negative-binomial estimates imply post-vaccine bookings are 6.5% shorter than restriction-era bookings, while pre-pandemic bookings are 16% shorter. In a two-part (threshold) model at 28 nights, the booking share of month-plus stays rose from 1.43% (pre) to 2.72% (restriction) and settled at 2.04% (post), whereas the conditional mean among long stays was in the mid-to-high 50 s (≈55–60 nights) and varied modestly across phases. Hence, a higher average NPB is driven primarily by a greater prevalence of month-plus bookings. A seasonal ARIMA model with pandemic-phase dummies improves fit over a dummy-free specification (likelihood-ratio = 8.39, df = 2, p = 0.015), indicating a structural level shift rather than higher-order dynamics. Contributions. The paper provides national-scale, booking-weighted evidence that U.S. short-term-rental stays became durably longer and more heavy-tailed after 2020, filling a gap in the tourism and revenue-management literature. Implications. Heavy-tailed pricing and inventory policies, and explicit regime indicators in forecasting, are recommended for practitioners; destination policy should reflect the larger month-plus segment. Full article
Show Figures

Figure 1

23 pages, 10375 KB  
Article
Extraction of Photosynthetic and Non-Photosynthetic Vegetation Cover in Typical Grasslands Using UAV Imagery and an Improved SegFormer Model
by Jie He, Xiaoping Zhang, Weibin Li, Du Lyu, Yi Ren and Wenlin Fu
Remote Sens. 2025, 17(18), 3162; https://doi.org/10.3390/rs17183162 - 12 Sep 2025
Viewed by 513
Abstract
Accurate monitoring of the coverage and distribution of photosynthetic (PV) and non-photosynthetic vegetation (NPV) in the grasslands of semi-arid regions is crucial for understanding the environment and addressing climate change. However, the extraction of PV and NPV information from Unmanned Aerial Vehicle (UAV) [...] Read more.
Accurate monitoring of the coverage and distribution of photosynthetic (PV) and non-photosynthetic vegetation (NPV) in the grasslands of semi-arid regions is crucial for understanding the environment and addressing climate change. However, the extraction of PV and NPV information from Unmanned Aerial Vehicle (UAV) remote sensing imagery is often hindered by challenges such as low extraction accuracy and blurred boundaries. To overcome these limitations, this study proposed an improved semantic segmentation model, designated SegFormer-CPED. The model was developed based on the SegFormer architecture, incorporating several synergistic optimizations. Specifically, a Convolutional Block Attention Module (CBAM) was integrated into the encoder to enhance early-stage feature perception, while a Polarized Self-Attention (PSA) module was embedded to strengthen contextual understanding and mitigate semantic loss. An Edge Contour Extraction Module (ECEM) was introduced to refine boundary details. Concurrently, the Dice Loss function was employed to replace the Cross-Entropy Loss, thereby more effectively addressing the class imbalance issue and significantly improving both the segmentation accuracy and boundary clarity of PV and NPV. To support model development, a high-quality PV and NPV segmentation dataset for Hengshan grassland was also constructed. Comprehensive experimental results demonstrated that the proposed SegFormer-CPED model achieved state-of-the-art performance, with a mIoU of 93.26% and an F1-score of 96.44%. It significantly outperformed classic architectures and surpassed all leading frameworks benchmarked here. Its high-fidelity maps can bridge field surveys and satellite remote sensing. Ablation studies verified the effectiveness of each improved module and its synergistic interplay. Moreover, this study successfully utilized SegFormer-CPED to perform fine-grained monitoring of the spatiotemporal dynamics of PV and NPV in the Hengshan grassland, confirming that the model-estimated fPV and fNPV were highly correlated with ground survey data. The proposed SegFormer-CPED model provides a robust and effective solution for the precise, semi-automated extraction of PV and NPV from high-resolution UAV imagery. Full article
Show Figures

Graphical abstract

23 pages, 7046 KB  
Article
Atmospheric Scattering Prior Embedded Diffusion Model for Remote Sensing Image Dehazing
by Shanqin Wang and Miao Zhang
Atmosphere 2025, 16(9), 1065; https://doi.org/10.3390/atmos16091065 - 10 Sep 2025
Viewed by 631
Abstract
Remote sensing image dehazing presents substantial challenges in balancing physical fidelity with generative flexibility, particularly under complex atmospheric conditions and sensor-specific degradation patterns. Traditional physics-based methods often struggle with nonlinear haze distributions, while purely data-driven approaches tend to lack interpretability and physical consistency. [...] Read more.
Remote sensing image dehazing presents substantial challenges in balancing physical fidelity with generative flexibility, particularly under complex atmospheric conditions and sensor-specific degradation patterns. Traditional physics-based methods often struggle with nonlinear haze distributions, while purely data-driven approaches tend to lack interpretability and physical consistency. To bridge this gap, we propose the Atmospheric Scattering Prior embedded Diffusion Model (ASPDiff), a novel framework that seamlessly integrates atmospheric physics into the diffusion-based generative restoration process. ASPDiff establishes a closed-loop feedback mechanism by embedding the atmospheric scattering model as a physics-driven regularization throughout both the forward degradation simulation and the reverse denoising trajectory. The framework operates through the following three synergistic components: (1) an Atmospheric Prior Estimation Module that uses the Dark Channel Prior to generate initial estimates of the transmission map and global atmospheric light, which are then refined through learnable adjustment networks; (2) a Diffusion Process with Atmospheric Prior Embedding, where the refined priors serve as conditional guidance during the reverse diffusion sampling, ensuring physical plausibility; and (3) a Haze-Aware Refinement Module that adaptively enhances structural details and compensates for residual haze via frequency-aware decomposition and spatial attention. Extensive experiments on both synthetic and real-world remote sensing datasets demonstrate that ASPDiff significantly outperforms existing methods, achieving state-of-the-art performance while maintaining strong physical interpretability. Full article
(This article belongs to the Section Atmospheric Techniques, Instruments, and Modeling)
Show Figures

Figure 1

21 pages, 14861 KB  
Article
Feature Equalization and Hierarchical Decoupling Network for Rotated and High-Aspect-Ratio Object Detection
by Wenbin Gao, Jinda Ji and Donglin Jing
Symmetry 2025, 17(9), 1491; https://doi.org/10.3390/sym17091491 - 9 Sep 2025
Viewed by 526
Abstract
Current mainstream remote sensing target detection algorithms mostly estimate the rotation angle of targets by designing different bounding box descriptions and loss functions. However, they fail to consider the symmetry–asymmetry duality anisotropy in the distribution of key features required for target localization. Moreover, [...] Read more.
Current mainstream remote sensing target detection algorithms mostly estimate the rotation angle of targets by designing different bounding box descriptions and loss functions. However, they fail to consider the symmetry–asymmetry duality anisotropy in the distribution of key features required for target localization. Moreover, the equivalent feature extraction mode of shared convolutional kernels may lead to difficulties in accurately predicting parameters with different attributes, thereby reducing the performance of the detector. In this paper, we propose the Feature Equalization and Hierarchical Decoupling Network (FEHD-Net), which comprises three core components: a Symmetry-Enhanced Parallel Interleaved Convolution Module (PICM), a Parameter Decoupling Module (PDM), and a Critical Feature Matching Loss Function (CFM-Loss). PICM captures diverse spatial features over long distances by integrating square convolution and multi-branch continuous orthogonal large kernel strip convolution sequences, thereby enhancing the network’s capability in processing long-distance spatial information. PDM decomposes feature maps with different properties and assigns them to different regression branches to estimate the parameters of the target’s rotating bounding box. Finally, to stabilize the training of anchors with different qualities that have captured the key features required for detection, CFM-Loss utilizes the intersection ratio between anchors and true value labels, as well as the uncertainty of convolutional regression during training, and designs an alignment criterion (symmetry-aware alignment) to evaluate the regression ability of different anchors. This enables the network to fine-tune the processing of templates with different qualities, achieving stable training of the network. A large number of experiments demonstrate that compared with existing methods, FEHD-Net can achieve state-of-the-art performance on DOTA, HRSC2016, and UCAS-AOD datasets. Full article
(This article belongs to the Special Issue Symmetry and Asymmetry Study in Object Detection)
Show Figures

Figure 1

21 pages, 3679 KB  
Article
Impacts of Adjacent Pixels on Retrieved Urban Surface Temperature
by Liping Feng, Jinxin Yang, Lili Zhu, Xiaoying Ouyang, Qian Shi, Yong Xu and Massimo Menenti
Remote Sens. 2025, 17(17), 3077; https://doi.org/10.3390/rs17173077 - 4 Sep 2025
Viewed by 857
Abstract
Accurate estimation of urban land surface temperature (ULST) is critical for studying urban heat islands, but complex three-dimensional (3D) structures and materials in urban areas introduce significant adjacency effects into remote sensing retrievals. To investigate the influence of different factors on the adjacency [...] Read more.
Accurate estimation of urban land surface temperature (ULST) is critical for studying urban heat islands, but complex three-dimensional (3D) structures and materials in urban areas introduce significant adjacency effects into remote sensing retrievals. To investigate the influence of different factors on the adjacency effects, this study employed the DART model to quantify brightness temperature differences (ΔTb) of urban pixels by comparing their simulated radiance in two scenarios: (1) an isolated state (no adjacent buildings) and (2) an adjacent state (with surrounding buildings). ΔTb, representing the adjacency effect, was systematically analyzed across spatial resolutions (1–120 m), building geometry (building height BH, roof area index λp, adjacent obstruction degree SVFObs.), and material reflectance (reflectance R = 0.05, 0.1, 0.15) to determine key influencing factors. The results demonstrate that (1) adjacency effects intensify significantly with higher spatial resolution (mean ΔTb ≈ 5 K at 1 m vs. ≈2 K at 30 m), with 60–90 m identified as the critical resolution range where the adjacency-induced error is attenuated to a level (ΔTb < 1 K) that is commensurate with the intrinsic uncertainty of current mainstream ULST algorithms; (2) increased building height, reduced density (λp), and greater adjacent obstruction (SVFObs.) exacerbate adjacency effects; (3) material emissivity (ε = 1 − R) is the dominant factor, where low-ε materials (high R) exhibit markedly stronger adjacency effects than geometric influences (e.g., ΔTb at R = 0.15 is approximately three times higher than at R = 0.05); and (4) temperature differences among surface components exert minimal influence on adjacency effects (ΔTb < 0.5 K). This study clarifies key factors driving adjacency effects in high-resolution ULST retrieval and defines the critical spatial resolution for simplifying inversions, providing essential insights for accurate urban temperature estimation. Full article
Show Figures

Figure 1

22 pages, 261573 KB  
Article
A Continuous Low-Rank Tensor Approach for Removing Clouds from Optical Remote Sensing Images
by Dong-Lin Sun, Teng-Yu Ji, Siying Li and Zirui Song
Remote Sens. 2025, 17(17), 3001; https://doi.org/10.3390/rs17173001 - 28 Aug 2025
Viewed by 799
Abstract
Optical remote sensing images are often partially obscured by clouds due to the inability of visible light to penetrate cloud cover, which significantly limits their subsequent applications. Most existing cloud removal methods formulate the problem using low-rank and sparse priors within a discrete [...] Read more.
Optical remote sensing images are often partially obscured by clouds due to the inability of visible light to penetrate cloud cover, which significantly limits their subsequent applications. Most existing cloud removal methods formulate the problem using low-rank and sparse priors within a discrete representation framework. However, these approaches typically rely on manually designed regularization terms, which fail to accurately capture the complex geostructural patterns in remote sensing imagery. In response to this issue, we develop a continuous blind cloud removal model. Specifically, the cloud-free component is represented using a continuous tensor function that integrates implicit neural representations with low-rank tensor decomposition. This representation enables the model to capture both global correlations and local smoothness. Furthermore, a band-wise sparsity constraint is employed to represent the cloud component. To preserve the information in regions not covered by clouds during reconstruction, a box constraint is incorporated. In this constraint, cloud detection is performed using an adaptive thresholding strategy, and a morphological erosion function is employed to ensure accurate detection of cloud boundaries. To efficiently handle the developed model, we formulate an alternating minimization algorithm that decouples the optimization into three interpretable subproblems: cloud-free reconstruction, cloud component estimation, and cloud detection. Our extensive evaluations on both synthetic and real-world data reveal that the proposed method performs competitively against state-of-the-art cloud removal methods. Full article
Show Figures

Figure 1

10 pages, 4885 KB  
Proceeding Paper
Enhancing Rainfall Measurement Using Remote Sensing Data in Sparse Rain Gauge Networks: A Case Study in White Nile State, Sudan
by Abdelbagi Y. F. Adam, Zoltán Gribovszki and Péter Kalicz
Eng. Proc. 2025, 94(1), 19; https://doi.org/10.3390/engproc2025094019 - 26 Aug 2025
Viewed by 1661
Abstract
Monitoring rainfall is essential to understanding hydrological processes, managing water resources, and mitigating drought and flood risks. Many regions, particularly in developing countries, have sparse rain gauge networks, which limit spatial coverage and result in inaccurate rainfall estimates. By combining remote sensing data [...] Read more.
Monitoring rainfall is essential to understanding hydrological processes, managing water resources, and mitigating drought and flood risks. Many regions, particularly in developing countries, have sparse rain gauge networks, which limit spatial coverage and result in inaccurate rainfall estimates. By combining remote sensing data with rain gauge measurements, rainfall estimates can be improved, and spatial coverage can be enhanced. Remote sensing techniques provide a valuable resource for supplementing and enhancing rainfall monitoring in such areas. This study leverages Global Precipitation Measurement (GPM) satellite data to enhance rainfall estimation in White Nile State, Sudan, where only two rain gauge stations are operational and the state’s total area is 39.600 km2. GPM data, well-known for its high temporal and spatial resolution, offers a promising alternative to mitigate the limitations of sparse ground-based networks. The study integrates GPM satellite data with ground-based measurements through statistical and geostatistical techniques, as well as validation, to improve rainfall accuracy. The results show that, on average, GPM data and rain gauge measurements exhibit a strong correlation of 0.87, with an annual RMSE of 10.23 mm and an AME of 8.25 mm. These findings demonstrate that GPM data effectively complements traditional rain gauge observations by accurately capturing spatial rainfall distributions and extreme precipitation events. The findings underscore the potential of remote sensing to provide reliable rainfall information in data-scarce regions, contributing to better water resource management and disaster risk reduction strategies. Full article
Show Figures

Figure 1

26 pages, 4926 KB  
Article
Integrating Multi-Temporal Landsat and Sentinel Data for Enhanced Oil Palm Plantation Mapping and Age Estimation in Malaysia
by Caihui Li, Bangqian Chen, Xincheng Wang, Meilina Ong-Abdullah, Zhixiang Wu, Guoyu Lan, Kamil Azmi Tohiran, Bettycopa Amit, Hongyan Lai, Guizhen Wang, Ting Yun and Weili Kou
Remote Sens. 2025, 17(16), 2908; https://doi.org/10.3390/rs17162908 - 20 Aug 2025
Viewed by 1154
Abstract
Mapping the oil palm (Elaeis guineensis), the globally leading oil-bearing crop and a crucial industrial commodity, is of vital importance for food security and raw material supply. However, existing remote sensing approaches for oil palm mapping present several methodological challenges including [...] Read more.
Mapping the oil palm (Elaeis guineensis), the globally leading oil-bearing crop and a crucial industrial commodity, is of vital importance for food security and raw material supply. However, existing remote sensing approaches for oil palm mapping present several methodological challenges including temporal resolution constraints, suboptimal feature parameterization, and limitations in age structure assessment. This study addresses these gaps by systematically optimizing temporal, spatial, and textural parameters for enhanced oil palm mapping and age structure analysis through integration of Landsat 4/5/7/8/9, Sentinel-2 multispectral, and Sentinel-1 radar data (LSMR). Analysis of oil palm distribution and dynamics in Malaysia revealed several key insights: (1) Methodological optimization: The integrated LSMR approach achieved 94% classification accuracy through optimal parameter configuration (3-month temporal interval, 3-pixel median filter, and 3 × 3 GLCM window), significantly outperforming conventional single-sensor approaches. (2) Age estimation capabilities: The adapted LandTrendr algorithm enabled precise estimation of the plantation establishment year with an RMSE of 1.14 years, effectively overcoming saturation effects that limit traditional regression-based methods. (3) Regional expansion patterns: West Malaysia exhibits continued plantation expansion, particularly in Johor and Pahang states, while East Malaysia shows significant contraction in Sarawak (3.34 × 105 hectares decline from 2019–2023), with both regions now converging toward similar topographic preferences (100–120 m elevation, 6–7° slopes). (4) Age structure concerns: Analysis identified a critical “replanting gap” with 13.3% of plantations exceeding their 25-year optimal lifespan and declining proportions of young plantations (from 60% to 47%) over the past five years. These findings provide crucial insights for sustainable land management strategies, offering policymakers an evidence-based framework to balance economic productivity with environmental conservation while addressing the identified replanting gap in one of the world’s most important agricultural commodities. Full article
Show Figures

Figure 1

22 pages, 5692 KB  
Article
RiceStageSeg: A Multimodal Benchmark Dataset for Semantic Segmentation of Rice Growth Stages
by Jianping Zhang, Tailai Chen, Yizhe Li, Qi Meng, Yanying Chen, Jie Deng and Enhong Sun
Remote Sens. 2025, 17(16), 2858; https://doi.org/10.3390/rs17162858 - 16 Aug 2025
Viewed by 1009
Abstract
The accurate identification of rice growth stages is critical for precision agriculture, crop management, and yield estimation. Remote sensing technologies, particularly multimodal approaches that integrate high spatial and hyperspectral resolution imagery, have demonstrated great potential in large-scale crop monitoring. Multimodal data fusion offers [...] Read more.
The accurate identification of rice growth stages is critical for precision agriculture, crop management, and yield estimation. Remote sensing technologies, particularly multimodal approaches that integrate high spatial and hyperspectral resolution imagery, have demonstrated great potential in large-scale crop monitoring. Multimodal data fusion offers complementary and enriched spectral–spatial information, providing novel pathways for crop growth stage recognition in complex agricultural scenarios. However, the lack of publicly available multimodal datasets specifically designed for rice growth stage identification remains a significant bottleneck that limits the development and evaluation of relevant methods. To address this gap, we present RiceStageSeg, a multimodal benchmark dataset captured by unmanned aerial vehicles (UAVs), designed to support the development and assessment of segmentation models for rice growth monitoring. RiceStageSeg contains paired centimeter-level RGB and 10-band multispectral (MS) images acquired during several critical rice growth stages, including jointing and heading. Each image is accompanied by fine-grained, pixel-level annotations that distinguish between the different growth stages. We establish baseline experiments using several state-of-the-art semantic segmentation models under both unimodal (RGB-only, MS-only) and multimodal (RGB + MS fusion) settings. The experimental results demonstrate that multimodal feature-level fusion outperforms unimodal approaches in segmentation accuracy. RiceStageSeg offers a standardized benchmark to advance future research in multimodal semantic segmentation for agricultural remote sensing. The dataset will be made publicly available on GitHub v0.11.0 (accessed on 1 August 2025). Full article
Show Figures

Figure 1

23 pages, 5458 KB  
Article
Global Prior-Guided Distortion Representation Learning Network for Remote Sensing Image Blind Super-Resolution
by Guanwen Li, Ting Sun, Shijie Yu and Siyao Wu
Remote Sens. 2025, 17(16), 2830; https://doi.org/10.3390/rs17162830 - 14 Aug 2025
Viewed by 2991
Abstract
Most existing deep learning-based super-resolution (SR) methods for remote sensing images rely on predefined degradation assumptions (e.g., bicubic downsampling). However, when real-world degradations deviate from these assumptions, their performance deteriorates significantly. Moreover, explicit degradation estimation approaches based on iterative schemes inevitably lead to [...] Read more.
Most existing deep learning-based super-resolution (SR) methods for remote sensing images rely on predefined degradation assumptions (e.g., bicubic downsampling). However, when real-world degradations deviate from these assumptions, their performance deteriorates significantly. Moreover, explicit degradation estimation approaches based on iterative schemes inevitably lead to accumulated estimation errors and time-consuming processes. In this paper, instead of explicitly estimating degradation types, we first innovatively introduce an MSCN_G coefficient to capture global prior information corresponding to different distortions. Subsequently, distortion-enhanced representations are implicitly estimated through contrastive learning and embedded into a super-resolution network equipped with multiple distortion decoders (D-Decoder). Furthermore, we propose a distortion-related channel segmentation (DCS) strategy that reduces the network’s parameters and computation (FLOPs). We refer to this Global Prior-guided Distortion-enhanced Representation Learning Network as GDRNet. Experiments on both synthetic and real-world remote sensing images demonstrate that our GDRNet outperforms state-of-the-art blind SR methods for remote sensing images in terms of overall performance. Under the experimental condition of anisotropic Gaussian blurring without added noise, with a kernel width of 1.2 and an upscaling factor of 4, the super-resolution reconstruction of remote sensing images on the NWPU-RESISC45 dataset achieves a PSNR of 28.98 dB and SSIM of 0.7656. Full article
Show Figures

Figure 1

27 pages, 9197 KB  
Data Descriptor
A Six-Year, Spatiotemporally Comprehensive Dataset and Data Retrieval Tool for Analyzing Chlorophyll-a, Turbidity, and Temperature in Utah Lake Using Sentinel and MODIS Imagery
by Kaylee B. Tanner, Anna C. Cardall and Gustavious P. Williams
Data 2025, 10(8), 128; https://doi.org/10.3390/data10080128 - 13 Aug 2025
Viewed by 707
Abstract
Data from earth observation satellites provide unique and valuable information about water quality conditions in freshwater lakes but require significant processing before they can be used, even with the use of tools like Google Earth Engine. We use imagery from Sentinel 2 and [...] Read more.
Data from earth observation satellites provide unique and valuable information about water quality conditions in freshwater lakes but require significant processing before they can be used, even with the use of tools like Google Earth Engine. We use imagery from Sentinel 2 and MODIS and in situ data from the State of Utah Ambient Water Quality Management System (AQWMS) database to develop models and to generate a highly accessible, easy-to-use CSV file of chlorophyll-a (which is an indicator of algal biomass), turbidity, and water temperature measurements on Utah Lake. From a collection of 937 Sentinel 2 images spanning the period from January 2019 to May 2025, we generated 262,081 estimates each of chlorophyll-a and turbidity, with an additional 1,140,777 data points interpolated from those estimates to provide a dataset with a consistent time step. From a collection of 2333 MODIS images spanning the same time period, we extracted 1,390,800 measurements each of daytime water surface temperature and nighttime water surface temperature and interpolated or imputed an additional 12,058 data points from those estimates. We interpolated the data using piecewise cubic Hermite interpolation polynomials to preserve the original distribution of the data and provide the most accurate estimates of measurements between observations. We demonstrate the processing steps required to extract usable, accurate estimates of these three water quality parameters from satellite imagery and format them for analysis. We include summary statistics and charts for the resulting dataset, which show the usefulness of this data for informing Utah Lake management issues. We include the Jupyter Notebook with the implemented processing steps and the formatted CSV file of data as supplemental materials. The Jupyter Notebook can be used to update the Utah Lake data or can be easily modified to generate similar data for other waterbodies. We provide this method, tool set, and data to make remotely sensed water quality data more accessible to researchers, water managers, and others interested in Utah Lake and to facilitate the use of satellite data for those interested in applying remote sensing techniques to other waterbodies. Full article
(This article belongs to the Collection Modern Geophysical and Climate Data Analysis: Tools and Methods)
Show Figures

Graphical abstract

Back to TopTop