CO2 Dynamics in a Mofette: Measurement and Modeling
Abstract
1. Introduction
2. Location and Regional to Local Geological Background
3. Methodology
3.1. Experimental Setup
3.2. Data Collection
4. Modeling of the Measured Gas Flow
4.1. Numerical Implementation of the Model
4.2. Determining Model Parameters
5. Results and Discussion
5.1. Experimental Data
5.2. Modeling the Emission of the Mofette
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- The Royal Society. The Carbon Cycle: Better Understanding Carbon-Climate Feedbacks and Reducing Future Risks. 2018. Available online: https://royalsociety.org/-/media/policy/projects/climate-change-science-solutions/climate-science-solutions-carbon-cycle.pdf (accessed on 27 June 2024).
- Dogaru, G.; Motricală, M.; Bulboacă, A.; Ciumărnean, L.; Stănescu, I. The Effect of Carbonated Mineral Water and Mofette Treatment in Baile Tusnad After Ischemic Stroke—A Case Report. Balneo Res. J. 2018, 9, 11–14. [Google Scholar] [CrossRef]
- Suceveanu, M.; Suceveanu, P.; Pop, D.; Sitar Taut, A.; Zdrenghea, D.; Hăncu, N. Role of Mofette Therapy in Cardiovascular Rehabilitation—The Covasna Model. Balneo Res. J. 2015, 6, 69–74. [Google Scholar] [CrossRef]
- Roberts, J.J.; Wood, R.A.; Haszeldine, R.S. Assessing the health risks of natural CO2 seeps in Italy. Proc. Natl. Acad. Sci. USA 2011, 108, 16545–16548. [Google Scholar] [CrossRef]
- Chiodini, G.; Cioni, R.; Guidi, M.; Raco, B.; Marini, L. Soil CO2 flux measurements in volcanic and geothermal areas. Appl. Geochem. 1998, 13, 543–552. [Google Scholar] [CrossRef]
- Carapezza, M.L.; Granieri, D. CO2 soil flux at Vulcano (Italy): Comparison between active and passive methods. Appl. Geochem. 2004, 19, 73–88. [Google Scholar] [CrossRef]
- Camarda, M.; Gurrieri, S.; Valenza, M. CO2 flux measurements in volcanic areas using the dynamic concentration method: Influence of soil permeability. J. Geophys. Res. Solid Earth 2006, 111. [Google Scholar] [CrossRef]
- Diliberto, I.; Gurrieri, S.; Valenza, M. Relationships between diffuse CO2 emissions and volcanic activity on the island of Vulcano (Aeolian Islands, Italy) during the period 1984–1994. Bull. Volcanol. 2002, 64, 219–228. [Google Scholar] [CrossRef]
- Kies, A.; Hengesch, O.; Tosheva, Z.; Raschi, A.; Pfanz, H. Diurnal CO2-cycles and temperature regimes in a natural CO2 gas lake. Int. J. Greenh. Gas Control 2015, 37, 142–145. [Google Scholar] [CrossRef]
- Büchau, Y.G.; Leven, C.; Bange, J. A portable low-cost device to quantify advective gas fluxes from mofettes into the lower atmosphere: First application to Starzach mofettes (Germany). Environ. Monit. Assess. 2024, 196, 138. [Google Scholar] [CrossRef] [PubMed]
- Woith, H.; Vlček, J.; Vylita, T.; Dahm, T.; Fischer, T.; Daskalopoulou, K.; Zimmer, M.; Niedermann, S.; Stammeier, J.A.; Turjaková, V.; et al. Effect of Pressure Perturbations on CO2 Degassing in a Mofette System: The Case of Hartoušov, Czech Republic. Geosciences 2022, 13, 2. [Google Scholar] [CrossRef]
- Barnes, I.; Irwin, W.; White, D. Global distribution of carbon-dioxide discharges, and major zones of seismicity, scale 1:40,000,000. In Water Resources Investigation WRI 78-39; U.S. Geological Survey: Reston, VA, USA, 1978. [Google Scholar] [CrossRef]
- Orcutt, B.N.; Daniel, I.; Dasgupta, R. (Eds.) Deep Carbon: Past to Present; Cambridge University Press: Cambridge, UK, 2019; p. 678. [Google Scholar] [CrossRef]
- Mörner, N.A.; Etiope, G. Carbon degassing from the lithosphere. Glob. Planet. Change 2002, 33, 185–203. [Google Scholar] [CrossRef]
- D’Alessandro, W.; Brusca, L.; Kyriakopoulos, K.; Rotolo, S.; Michas, G.; Minio, M.; Papadakis, G. Diffuse and focused carbon dioxide and methane emissions from the Sousaki geothermal system, Greece. Geophys. Res. Lett. 2006, 33. [Google Scholar] [CrossRef]
- Airinei, S.; Pricajan, A. Some Geological Connections Between the Mineral Carbonic and Thermal Waters and the Post-Volcanic Manifestations Correlated with the Deep Geological Structure of the East Carpathians Territory, Romania, 1975. In Proceedings of the Lucrările Simpozionului Internațional de Ape Minerale și Termale, Eforie, Bucharest, Romania, 7–14 June 1974. [Google Scholar]
- Vaselli, O.; Minissale, A.; Tassi, F.; Magro, G.; Seghedi, I.; Ioane, D.; Szakacs, A. A geochemical traverse across the Eastern Carpathians (Romania): Constraints on the origin and evolution of the mineral water and gas discharges. Chem. Geol. 2002, 182, 637–654. [Google Scholar] [CrossRef]
- Kis, B.M.; Caracausi, A.; Palcsu, L.; Baciu, C.; Ionescu, A.; Futó, I.; Sciarra, A.; Harangi, S. Noble Gas and Carbon Isotope Systematics at the Seemingly Inactive Ciomadul Volcano (Eastern-Central Europe, Romania): Evidence for Volcanic Degassing. Geochem. Geophys. Geosyst. 2019, 20, 3019–3043. [Google Scholar] [CrossRef]
- Kis, B.M.; Baciu, C.; Zsigmond, A.R.; Kékedy-Nagy, L.; Kármán, K.; Palcsu, L.; Máthé, I.; Harangi, S. Constraints on the hydrogeochemistry and origin of the CO2-rich mineral waters from the Eastern Carpathians—Transylvanian Basin boundary (Romania). J. Hydrol. 2020, 591, 125311. [Google Scholar] [CrossRef]
- Kis, B.M.; Ionescu, A.; Cardellini, C.; Harangi, S.; Baciu, C.; Caracausi, A.; Viveiros, F. Quantification of carbon dioxide emissions of Ciomadul, the youngest volcano of the Carpathian-Pannonian Region (Eastern-Central Europe, Romania). J. Volcanol. Geotherm. Res. 2017, 341, 119–130. [Google Scholar] [CrossRef]
- Lange, T.; Palcsu, L.; Szakács, A.; Kovágó, A.; Gelencsér, O.; Gál, A.; Gyila, S.; Tóth, T.M.; Maţenco, L.; Krézsek, C.; et al. The link between lithospheric scale deformations and deep fluid emanations: Inferences from the Southeastern Carpathians, Romania. Evol. Earth 2023, 1, 100013. [Google Scholar] [CrossRef]
- Néda, T.; Szakács, A.; Cosma, C.; Mócsy, I. Radon concentration measurements in mofettes from Harghita and Covasna Counties, Romania. J. Environ. Radioact. 2008, 99, 1819–1824. [Google Scholar] [CrossRef] [PubMed]
- Matenco, L.; Bertotti, G.; Leever, K.; Cloetingh, S.; Schmid, S.M.; Tărăpoancă, M.; Dinu, C. Large-scale deformation in a locked collisional boundary: Interplay between subsidence and uplift, intraplate stress, and inherited lithospheric structure in the late stage of the SE Carpathians evolution. Tectonics 2007, 26. [Google Scholar] [CrossRef]
- Kovács, I.J.; Liptai, N.; Koptev, A.; Cloetingh, S.A.; Lange, T.P.; Maţenco, L.; Szakács, A.; Radulian, M.; Berkesi, M.; Patkó, L.; et al. The ‘pargasosphere’ hypothesis: Looking at global plate tectonics from a new perspective. Glob. Planet. Change 2021, 204, 103547. [Google Scholar] [CrossRef]
- Sensirion AG. STC31 CO2 Sensor Datasheet. 2020. Available online: https://sensirion.com/media/documents/7B1D0EA7/61652CD0/Sensirion_Thermal_Conductivity_Datasheet_STC31_D1_1.pdf (accessed on 27 June 2024).
- Adafruit Industries LLC. DHT11 Humidity and Temperature Sensor Datasheet. 2020. Available online: https://cdn-learn.adafruit.com/downloads/pdf/dht.pdf (accessed on 27 June 2024).
- Bosch Sensortec GmbH. BMP280 Barometric Pressure Sensor Datasheet. 2018. Available online: https://www.bosch-sensortec.com/media/boschsensortec/downloads/product_flyer/bst-bmp280-fl000.pdf (accessed on 27 June 2024).
- Gergely, A. Supplementary Materials for Research Programs and Data. 2024. Available online: http://comodi.phys.ubbcluj.ro:8087/supplementary/ (accessed on 27 June 2024).
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gergely, A.; Szakács, A.; Gál, Á.; Néda, Z. CO2 Dynamics in a Mofette: Measurement and Modeling. Geosciences 2025, 15, 368. https://doi.org/10.3390/geosciences15090368
Gergely A, Szakács A, Gál Á, Néda Z. CO2 Dynamics in a Mofette: Measurement and Modeling. Geosciences. 2025; 15(9):368. https://doi.org/10.3390/geosciences15090368
Chicago/Turabian StyleGergely, Attila, Alexandru Szakács, Ágnes Gál, and Zoltán Néda. 2025. "CO2 Dynamics in a Mofette: Measurement and Modeling" Geosciences 15, no. 9: 368. https://doi.org/10.3390/geosciences15090368
APA StyleGergely, A., Szakács, A., Gál, Á., & Néda, Z. (2025). CO2 Dynamics in a Mofette: Measurement and Modeling. Geosciences, 15(9), 368. https://doi.org/10.3390/geosciences15090368