Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (12,051)

Search Parameters:
Keywords = relations of power

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
28 pages, 10200 KiB  
Article
Real-Time Temperature Estimation of the Machine Drive SiC Modules Consisting of Parallel Chips per Switch for Reliability Modelling and Lifetime Prediction
by Tamer Kamel, Olamide Olagunju and Temitope Johnson
Machines 2025, 13(8), 689; https://doi.org/10.3390/machines13080689 - 5 Aug 2025
Abstract
This paper presents a new methodical procedure to monitor in real time the junction temperature of SiC Power MOSFET modules of parallel-connected chips utilized in machine drive systems to develop their reliability modelling and predict their lifetime. The paper implements the on-line measurements [...] Read more.
This paper presents a new methodical procedure to monitor in real time the junction temperature of SiC Power MOSFET modules of parallel-connected chips utilized in machine drive systems to develop their reliability modelling and predict their lifetime. The paper implements the on-line measurements of temperature-sensitive electrical parameters (TSEP) approach, particularly the quasi-threshold voltage and the on-state drain to source voltage, to estimate the junction temperature in real time. The proposed procedure firstly applied computational fluid dynamics analysis on the module under study to determine the chip which undergoes the maximum junction temperature during typical operation of the module. Then, a calibration phase, using double-pulse tests on the selected chip, is used to generate look-up tables to relate the TSEPs under study to the junction temperature. Next, the real-time estimation of junction temperature was accomplished during the on-line operation of the three-phase inverter, taking into account the induced distortion/noises due to operation of the parallel-connected chips in the module. After that, a comparison between the two TSEPs under study was provided to demonstrate their advantages/drawbacks. Finally, reliability modelling was developed to predict the lifetime of the studied module based on the estimated junction temperature under a predetermined mission profile. Full article
(This article belongs to the Special Issue Power Converters: Topology, Control, Reliability, and Applications)
Show Figures

Figure 1

19 pages, 1495 KiB  
Review
Computer Vision for Low-Level Nuclear Waste Sorting: A Review
by Tianshuo Li, Danielle E. Winckler and Zhong Li
Environments 2025, 12(8), 270; https://doi.org/10.3390/environments12080270 - 5 Aug 2025
Abstract
Nuclear power is a low-emission and economically competitive energy source, yet the effective disposal and management of its associated radioactive waste can be challenging. Radioactive waste can be categorised as high-level waste (HLW), intermediate-level waste (ILW), and low-level waste (LLW). LLW primarily comprises [...] Read more.
Nuclear power is a low-emission and economically competitive energy source, yet the effective disposal and management of its associated radioactive waste can be challenging. Radioactive waste can be categorised as high-level waste (HLW), intermediate-level waste (ILW), and low-level waste (LLW). LLW primarily comprises materials contaminated during routine clean-up, such as mop heads, paper towels, and floor sweepings. While LLW is less radioactive compared to HLW and ILW, the management of LLW poses significant challenges due to the large volume that requires processing and disposal. The volume of LLW can be significantly reduced through sorting, which is typically performed manually in a labour-intensive way. Smart management techniques, such as computer vision (CV) and machine learning (ML), have great potential to help reduce the workload and human errors during LLW sorting. This paper provides a comprehensive review of previous research related to LLW sorting and a summative review of existing applications of CV in solid waste management. It also discusses state-of-the-art CV and ML algorithms and their potential for automating LLW sorting. This review lays a foundation for and helps facilitate the applications of CV and ML techniques in LLW sorting, paving the way for automated LLW sorting and sustainable LLW management. Full article
Show Figures

Figure 1

25 pages, 723 KiB  
Review
Quantitative Variables Derived from the Electroencephalographic Signal to Assess Depth of Anaesthesia in Animals: A Narrative Review
by Susanne Figueroa, Olivier L. Levionnois and Alessandro Mirra
Animals 2025, 15(15), 2285; https://doi.org/10.3390/ani15152285 - 5 Aug 2025
Abstract
Accurately assessing the depth of anaesthesia in animals remains a challenge, as traditional monitoring methods fail to capture subtle changes in brain activity. This review aimed to systematically map and critically evaluate the range of quantitative variables derived from electroencephalography (EEG) used to [...] Read more.
Accurately assessing the depth of anaesthesia in animals remains a challenge, as traditional monitoring methods fail to capture subtle changes in brain activity. This review aimed to systematically map and critically evaluate the range of quantitative variables derived from electroencephalography (EEG) used to monitor sedation or anaesthesia in live animals, excluding laboratory rodents, over the past 35 years. Studies were identified through comprehensive searches in major biomedical databases (PubMed, Embase, CAB Abstract). To be included, studies had to report EEG use in relation to anaesthesia or sedation in living animals. A total of 169 studies were selected after screening and data extraction. Information was charted by animal species and reported EEG-derived variables. The most frequently reported variables were spectral edge frequencies, spectral power metrics, suppression ratio, and proprietary indices, such as the Bispectral Index. Methodological variability was high, and no consensus emerged on optimal EEG measures across species. While EEG-derived quantitative variables provide valuable insights, their interpretation remains highly context-dependent. Further research is necessary to refine these methods, explore variable combinations, and improve their clinical relevance in veterinary medicine. Full article
(This article belongs to the Section Companion Animals)
Show Figures

Figure 1

16 pages, 2036 KiB  
Article
Investigating a Characteristic Time Lag in the Ionospheric F-Region’s Response to Solar Flares
by Aisling N. O’Hare, Susanna Bekker, Harry J. Greatorex and Ryan O. Milligan
Atmosphere 2025, 16(8), 937; https://doi.org/10.3390/atmos16080937 (registering DOI) - 5 Aug 2025
Abstract
X-ray and EUV solar flare emission cause increases in the Earth’s dayside ionospheric electron density. While the response of the lower ionosphere to X-rays is well studied, the delay between EUV flare emission and the response of the ionospheric F-region has not been [...] Read more.
X-ray and EUV solar flare emission cause increases in the Earth’s dayside ionospheric electron density. While the response of the lower ionosphere to X-rays is well studied, the delay between EUV flare emission and the response of the ionospheric F-region has not been investigated. Here, we calculate the delays between incident He II 304 Å emission, and the TEC response for 10 powerful solar flares, all of which exhibit delays under 1 min. We assess these delays in relation to multiple solar and geophysical factors, and find a strong negative correlation (∼−0.85) between delay and He II flux change and a moderate negative correlation (∼−0.55) with rate of increase in He II flux. Additionally, flare magnitude and the X-ray-to-He II flux ratio at peak He II emission show strong negative correlations with delay (∼−0.80 and ∼−0.75, respectively). We also identify longer delays for flares occurring closer to the summer solstice. These results may have applications in upper-ionospheric recombination rate calculations, atmospheric modelling, and other solar–terrestrial studies. We highlight the importance of incident EUV and X-ray flux parameters on the response time of the ionospheric electron content, and these findings may also have implications for mitigating disruptions in communication and navigation systems. Full article
(This article belongs to the Special Issue Feature Papers in Upper Atmosphere (2nd Edition))
Show Figures

Figure 1

20 pages, 367 KiB  
Article
Power Dynamics and Discourse Technologies in Jordanian Colloquial Arabic Allophonic Consonant Variations
by Bassel Alzboun, Raed Al Ramahi and Nisreen Abu Hanak
Languages 2025, 10(8), 190; https://doi.org/10.3390/languages10080190 - 5 Aug 2025
Abstract
Most academic papers on Jordanian colloquial Arabic allophonic consonant variants have primarily examined their influence on the social status of speakers and their role in shaping linguistic prestige. However, there is a significant lack of research exploring the potential for manipulation and establishment [...] Read more.
Most academic papers on Jordanian colloquial Arabic allophonic consonant variants have primarily examined their influence on the social status of speakers and their role in shaping linguistic prestige. However, there is a significant lack of research exploring the potential for manipulation and establishment of power through the deliberate use of consonantal variants by Jordanian speakers in Arabic. Using a variety of allophonic consonantal variants, this study investigates how speakers of Jordanian colloquial Arabic attempt to construct their discourse of power. The targeted phonemes in the current study were /q/, /θ/, /ð/, and /k/. Focus groups were used to gather data, which were then examined within the framework of Fairclough’s technologized discourse and thematic approaches. Twenty persons, 10 women and 10 men, ranging in age from 18 to 45 years, comprised each of the two groups. The duration of each focus group session was 50 min. Analysis of the data indicates that the presence of [q], [θ], [ð], and [k] allophones in Standard Arabic is restricted to particular social circumstances, such as official and scientific environments. This usage is a common trait among those who have received formal education and privileged social standing. The findings also reveal that participants strategically utilize the allophonic variants [g], [ʔ], [k], [t̪], [d̪], and [tʃ] to exert influence over interlocutors by demonstrating authority related to social identity, gender, and emotional state. This study intends to advance discussions on allophonic consonant variants in Jordanian colloquial Arabic by providing insights into their manipulative functions. Full article
15 pages, 2255 KiB  
Article
Nonnormalized Field Statistics in Coupled Reverberation Chambers
by Angelo Gifuni, Anett Kenderes and Giuseppe Grassini
Symmetry 2025, 17(8), 1239; https://doi.org/10.3390/sym17081239 - 5 Aug 2025
Abstract
In this work, we show the probability density functions (PDFs) and cumulative density functions (CDFs) of the nonnormalized field components and the associated powers received inside coupled reverberation chambers (CRCs), considering two canonical cases of single electrically small coupling apertures (ESCAs). These two [...] Read more.
In this work, we show the probability density functions (PDFs) and cumulative density functions (CDFs) of the nonnormalized field components and the associated powers received inside coupled reverberation chambers (CRCs), considering two canonical cases of single electrically small coupling apertures (ESCAs). These two cases involve one-dimensional (1D) and two-dimensional (2D) single electrically small CAs, respectively. We achieve normalized statistics from the nonnormalized ones for both field components and associated powers. We show that the comparison of the mean square values (MSVs) of the nonnormalized PDFs of the field components to the mean values (MVs) of the related nonnormalized PDFs of the powers is a proper method to corroborate the accuracy of the same achieved theoretical distributions, when they are achieved in an independent way. The achieved theoretical results are also validated by measurements. Moreover, for the sake of completeness and rigor of published results, we show two useful cases of the results from the measurements using two electrically large CAs. Full article
Show Figures

Figure 1

18 pages, 3771 KiB  
Article
Neural Correlates Underlying General and Food-Related Working Memory in Females with Overweight/Obesity
by Yazhi Pang, Yuanluo Jing, Jia Zhao, Xiaolin Liu, Wen Zhao, Yong Liu and Hong Chen
Nutrients 2025, 17(15), 2552; https://doi.org/10.3390/nu17152552 - 4 Aug 2025
Abstract
Background/Objectives: Prior research suggest that poor working memory significantly contributes to the growth of overweight and obesity. This study investigated the behavioral and neural aspects of general and food-specific working memory in females with overweight or obesity (OW/OB). Method: A total of 54 [...] Read more.
Background/Objectives: Prior research suggest that poor working memory significantly contributes to the growth of overweight and obesity. This study investigated the behavioral and neural aspects of general and food-specific working memory in females with overweight or obesity (OW/OB). Method: A total of 54 female participants, with 26 in the OW/OB group and 28 in the normal-weight (NW) group, completed a general and a food-related two-back task while an EEG was recorded. Results: In the general task, the OW/OB group showed significantly poorer performance (higher IES) than the NW group (p = 0.018, η2 = 0.10), with reduced theta power during non-target trials (p = 0.040, η2 = 0.08). No group differences were found for P2, N2, or P3 amplitudes. In the food-related task, significant group × stimulus interactions were observed. The OW/OB group showed significantly higher P2 amplitudes in high-calorie (HC) versus low-calorie (LC) food conditions (p = 0.005, η2 = 0.15). LPC amplitudes were greater in the OW/OB group for HC targets (p = 0.036, η2 = 0.09). Alpha power was significantly lower in OW/OB compared to NW in HC non-targets (p = 0.030, η2 = 0.09), suggesting a greater cognitive effort. Conclusions: These findings indicate that individuals with OW/OB exhibit deficits in general working memory and heightened neural responses to high-calorie food cues, particularly during non-target inhibition. The results suggest an interaction between reward salience and cognitive control mechanisms in obesity. Full article
(This article belongs to the Section Nutrition and Obesity)
Show Figures

Figure 1

17 pages, 2369 KiB  
Article
An Automatic Ear Temperature Monitoring Method for Group-Housed Pigs Adopting Infrared Thermography
by Changzhen Zhang, Xiaoping Wu, Deqin Xiao, Xude Zhang, Xiaopeng Lei and Sicong Lin
Animals 2025, 15(15), 2279; https://doi.org/10.3390/ani15152279 - 4 Aug 2025
Abstract
The goal of this study was to develop an automated monitoring system based on infrared thermography (IRT) for the detection of group-housed pig ears temperature. The aim in the first part of the study was to recognize pigs’ ears by using neural network [...] Read more.
The goal of this study was to develop an automated monitoring system based on infrared thermography (IRT) for the detection of group-housed pig ears temperature. The aim in the first part of the study was to recognize pigs’ ears by using neural network analysis (SwinStar-YOLO). In the second part of the study, the goal was to automatically extract the maximum and average values of the temperature in the ear region using morphological image processing and a temperature matrix. Our dataset (3600 pictures, 10,812 pig ears) was processed using 5-fold cross-validation before training the ear detection model. The model recognized pigs’ ears with a precision of 93.74% related to threshold intersection over union (IoU). Correlation analysis between manually extracted and algorithm-derived ear temperatures from 400 pig ear samples showed coefficients of determination (R2) of 0.97 for maximum and 0.88 for average values. This demonstrates that our proposed method is feasible and reliable for automatic pig ear temperature monitoring, serving as a powerful tool for early health warning. Full article
(This article belongs to the Special Issue Infrared Thermography in Animals)
Show Figures

Figure 1

28 pages, 845 KiB  
Article
Place Identity and Environmental Conservation in Heritage Tourism: Extending the Theory of Planned Behavior to Iranian Rural Heritage Villages
by Zabih-Allah Torabi, Mohammad Reza Rezvani, Colin Michael Hall, Pantea Davani and Boshra Bakhshaei
Tour. Hosp. 2025, 6(3), 150; https://doi.org/10.3390/tourhosp6030150 - 4 Aug 2025
Abstract
This study examines the determinants of environmentally responsible behavior among tourists in the heritage villages of Paveh County, Iran, through an integrated theoretical framework that synthesizes place-related psychological constructs with the Theory of Planned Behavior (TPB). Employing structural equation modeling on data collected [...] Read more.
This study examines the determinants of environmentally responsible behavior among tourists in the heritage villages of Paveh County, Iran, through an integrated theoretical framework that synthesizes place-related psychological constructs with the Theory of Planned Behavior (TPB). Employing structural equation modeling on data collected from 443 tourists across three heritage villages (July–November 2024), the investigation tested comparative theoretical models with differing explanatory capacities. The baseline TPB model confirmed significant positive effects of environmental attitudes (β = 0.388), environmental norms (β = 0.398), and perceived behavioral control (β = 0.547) on behavioral intentions, which subsequently influenced environmental behavior (β = 0.561). The extended model incorporating place-related variables demonstrated enhanced explanatory power, with the R2 values increasing from 48.2% to 52.7% for behavioral intentions and from 49.2% to 54.7% for actual behavior. Notably, place identity exhibited dual psychological functions: moderating the intention–behavior relationship (β = 0.155) and mediating between place attachment and environmental behavior (β = 0.163). These findings advance sustainable tourism theory by illuminating the complex pathways through which place-based psychological connections influence environmental behavior formation in heritage contexts, suggesting that more sophisticated theoretical frameworks are required for understanding and promoting sustainable practices in culturally significant destinations. Full article
Show Figures

Figure 1

23 pages, 2295 KiB  
Review
Advances in Interfacial Engineering and Structural Optimization for Diamond Schottky Barrier Diodes
by Shihao Lu, Xufang Zhang, Shichao Wang, Mingkun Li, Shuopei Jiao, Yuesong Liang, Wei Wang and Jing Zhang
Materials 2025, 18(15), 3657; https://doi.org/10.3390/ma18153657 - 4 Aug 2025
Abstract
Diamond, renowned for its exceptional electrical, physical, and chemical properties, including ultra-wide bandgap, superior hardness, high thermal conductivity, and unparalleled stability, serves as an ideal candidate for next-generation high-power and high-temperature electronic devices. Among diamond-based devices, Schottky barrier diodes (SBDs) have garnered significant [...] Read more.
Diamond, renowned for its exceptional electrical, physical, and chemical properties, including ultra-wide bandgap, superior hardness, high thermal conductivity, and unparalleled stability, serves as an ideal candidate for next-generation high-power and high-temperature electronic devices. Among diamond-based devices, Schottky barrier diodes (SBDs) have garnered significant attention due to their simple architecture and superior rectifying characteristics. This review systematically summarizes recent advances in diamond SBDs, focusing on both metal–semiconductor (MS) and metal–interlayer–semiconductor (MIS) configurations. For MS structures, we critically analyze the roles of single-layer metals (including noble metals, transition metals, and other metals) and multilayer metals in modulating Schottky barrier height (SBH) and enhancing thermal stability. However, the presence of interface-related issues such as high densities of surface states and Fermi level pinning often leads to poor control of the SBH, limiting device performance and reliability. To address these challenges and achieve high-quality metal/diamond interfaces, researchers have proposed various interface engineering strategies. In particular, the introduction of interfacial layers in MIS structures has emerged as a promising approach. For MIS architectures, functional interlayers—including high-k materials (Al2O3, HfO2, SnO2) and low-work-function materials (LaB6, CeB6)—are evaluated for their efficacy in interface passivation, barrier modulation, and electric field control. Terminal engineering strategies, such as field-plate designs and surface termination treatments, are also highlighted for their role in improving breakdown voltage. Furthermore, we emphasize the limitations in current parameter extraction from current–voltage (I–V) properties and call for a unified new method to accurately determine SBH. This comprehensive analysis provides critical insights into interface engineering strategies and evaluation protocols for high-performance diamond SBDs, paving the way for their reliable deployment in extreme conditions. Full article
Show Figures

Graphical abstract

14 pages, 3520 KiB  
Article
Design and Fabrication of Embedded Microchannel Cooling Solutions for High-Power-Density Semiconductor Devices
by Yu Fu, Guangbao Shan, Xiaofei Zhang, Lizheng Zhao and Yintang Yang
Micromachines 2025, 16(8), 908; https://doi.org/10.3390/mi16080908 (registering DOI) - 4 Aug 2025
Abstract
The rapid development of high-power-density semiconductor devices has rendered conventional thermal management techniques inadequate for handling their extreme heat fluxes. This manuscript presents and implements an embedded microchannel cooling solution for such devices. By directly integrating micropillar arrays within the near-junction region of [...] Read more.
The rapid development of high-power-density semiconductor devices has rendered conventional thermal management techniques inadequate for handling their extreme heat fluxes. This manuscript presents and implements an embedded microchannel cooling solution for such devices. By directly integrating micropillar arrays within the near-junction region of the substrate, efficient forced convection and flow boiling mechanisms are achieved. Finite element analysis was first employed to conduct thermo–fluid–structure simulations of micropillar arrays with different geometries. Subsequently, based on our simulation results, a complete multilayer microstructure fabrication process was developed and integrated, including critical steps such as deep reactive ion etching (DRIE), surface hydrophilic/hydrophobic functionalization, and gold–stannum (Au-Sn) eutectic bonding. Finally, an experimental test platform was established to systematically evaluate the thermal performance of the fabricated devices under heat fluxes of up to 1200 W/cm2. Our experimental results demonstrate that this solution effectively maintains the device operating temperature at 46.7 °C, achieving a mere 27.9 K temperature rise and exhibiting exceptional thermal management capabilities. This manuscript provides a feasible, efficient technical pathway for addressing extreme heat dissipation challenges in next-generation electronic devices, while offering notable references in structural design, micro/nanofabrication, and experimental validation for related fields. Full article
Show Figures

Figure 1

24 pages, 4441 KiB  
Article
Simulation of Trip Chains in a Metropolitan Area to Evaluate the Energy Needs of Electric Vehicles and Charging Demand
by Pietro Antonio Centrone, Giuseppe Brancaccio and Francesco Deflorio
World Electr. Veh. J. 2025, 16(8), 435; https://doi.org/10.3390/wevj16080435 - 4 Aug 2025
Abstract
The typical ranges available for electric vehicles (EVs) may be considered by users to be inadequate when compared to long, real-life trips, and charging operations may need to be planned along journeys. To evaluate the compatibility between vehicle features and charging options for [...] Read more.
The typical ranges available for electric vehicles (EVs) may be considered by users to be inadequate when compared to long, real-life trips, and charging operations may need to be planned along journeys. To evaluate the compatibility between vehicle features and charging options for realistic journeys performed by car, a simulation approach is proposed here, using travel data collected from real vehicles to obtain trip chains for multiple consecutive days. Car travel activities, including stops with the option of charging, were simulated by applying an agent-based approach. Charging operations can be integrated into trip chains for user activities, assuming that they remain unchanged in the event that vehicles switch to electric. The energy consumption of the analyzed trips, disaggregated by vehicle type, was estimated using the average travel speed, which is useful for capturing the main route features (ranging from urban to motorways). Data were recorded for approximately 25,000 vehicles in the Turin Metropolitan Area for six consecutive days. Market segmentation of the vehicles was introduced to take into consideration different energy consumption rates and charging times, given that the electric power, battery size, and consumption rate can be related to the vehicle category. Charging activities carried out using public infrastructure during idle time between consecutive trips, as well as those carried out at home or work, were identified in order to model different needs. Full article
Show Figures

Figure 1

18 pages, 797 KiB  
Article
On Becoming a Senior Staff Nurse in Taiwan: A Narrative Study
by Yu-Jen Hsieh and Yu-Tzu Dai
Healthcare 2025, 13(15), 1896; https://doi.org/10.3390/healthcare13151896 - 4 Aug 2025
Abstract
Background/Objectives: Senior nurses in Taiwan shoulder layered responsibilities shaped by professional roles, gendered expectations, and family duty. Although Taiwan faces a persistent shortage of experienced clinical nurses, limited research has explored how long-serving nurses sustain identity and commitment across decades of caregiving. [...] Read more.
Background/Objectives: Senior nurses in Taiwan shoulder layered responsibilities shaped by professional roles, gendered expectations, and family duty. Although Taiwan faces a persistent shortage of experienced clinical nurses, limited research has explored how long-serving nurses sustain identity and commitment across decades of caregiving. This study examines how senior staff nurses understand their journeys of becoming—and remaining—nurses within a culturally and emotionally complex landscape. Methods: Interviews were conducted between May 2019 and September 2023 in locations chosen by participants, with most sessions face-to-face and others undertaken via video conferencing during COVID-19. This narrative inquiry involved in-depth, multi-session interviews with five female senior staff nurses born in the 1970s to early 1980s. Each participant reflected on her life and career, supported by co-constructed “nursing life lines.” Thematic narrative analysis was conducted using McCormack’s five-lens framework and Riessman’s model, with ethical rigor ensured through reflexive journaling and participant validation. Results: Three overarching themes emerged: (1) inner strength and endurance, highlighting silent resilience and the ethical weight of caregiving; (2) support and responsibility in relationships, revealing the influence of family, faith, and relational duty; and (3) role navigation and professional identity, showing how nurses revisit meaning, self-understanding, and tensions across time. Participants described emotionally powerful moments, identity re-connection, and cultural values that shaped their paths. Conclusions: These narratives offer a relational and culturally embedded understanding of what it means to sustain a career in nursing. Narrative inquiry created space for reflection, meaning-making, and voice in a system where such voices are often unheard. Identity was not static—it was lived, reshaped, and held in story. Full article
Show Figures

Figure 1

24 pages, 2618 KiB  
Article
Effects of Postcure and Degradation in Wet Layup Carbon/Epoxy Composites Using Shear-Based Metrics
by Rabina Acharya and Vistasp M. Karbhari
J. Compos. Sci. 2025, 9(8), 411; https://doi.org/10.3390/jcs9080411 - 3 Aug 2025
Viewed by 29
Abstract
Non-autoclave-cured wet layup composites are used extensively in applications ranging from civil and marine infrastructure to offshore components and in transmission power systems. In many of these applications the composites can be exposed to elevated temperatures for extended periods of time. While residual [...] Read more.
Non-autoclave-cured wet layup composites are used extensively in applications ranging from civil and marine infrastructure to offshore components and in transmission power systems. In many of these applications the composites can be exposed to elevated temperatures for extended periods of time. While residual tensile characteristics have been used traditionally to assess the integrity of the composite after a thermal event/exposure, it is emphasized that fiber-dominated characteristics such as longitudinal tensile strength are not affected as much as those associated with shear. This paper reports on the investigation of shear related characteristics through off-axis and short-beam shear testing after exposure to temperatures between 66 °C and 260 °C for periods of time up to 72 h. It is shown that the use of shear test results in conjunction with tensile tests enables better assessment of the competing effects of postcure, which results in an increase in performance, and thermal degradation, which causes drops in performance. Off-axis-to-tensile strength and short-beam shear strength-to-tensile strength ratios are used to determine zones of influence and mechanisms. It is shown that temperatures up to 149 °C can lead to advantageous postcure related increases in performance whereas temperatures above 232 °C can lead to significant deterioration at time periods as low as 4 h. The use of shear tests is shown to provide data critical to performance integrity showing trends otherwise obscured by just the use of longitudinal tensile tests. A phenomenological model developed based on effects of the competing mechanisms and grouping based on phenomenon dominance and temperature regimes is shown to model data well providing a useful context for deign thresholds and determination of remaining structural integrity. Full article
Show Figures

Figure 1

22 pages, 3304 KiB  
Article
The Mechanism by Which Colour Patch Characteristics Influence the Visual Landscape Quality of Rhododendron simsii Landscape Recreational Forests
by Yan Liu, Juyang Liao, Yaqi Huang, Qiaoyun Li, Linshi Wu, Xinyu Yi, Ling Wang and Chan Chen
Horticulturae 2025, 11(8), 898; https://doi.org/10.3390/horticulturae11080898 (registering DOI) - 3 Aug 2025
Viewed by 56
Abstract
Landscape quality and the productivity of Rhododendron simsii are directly related to the maintenance of ecological functions in the alpine region. The specific relationship between the spatial pattern of colour patches and the visual quality of R. simsii landscape recreational forests has been [...] Read more.
Landscape quality and the productivity of Rhododendron simsii are directly related to the maintenance of ecological functions in the alpine region. The specific relationship between the spatial pattern of colour patches and the visual quality of R. simsii landscape recreational forests has been insufficiently explored. In this study, we constructed a model of the relationship between landscape colour patches and the aesthetic value of such a forest, analysing the key factors driving changes in its landscape quality. A total of 1549 participants were asked to assess 16 groups of landscape photographs. The results showed that variations in perceived aesthetic quality were stimulated by colour patch dynamics and spatial heterogeneity. Utilising structural equation modelling (SEM), we identified key indicators synergistically influencing aesthetic quality, including the area percentage, shape, and distribution of colour patches, which demonstrated strong explanatory power (R2 = 0.83). The SEM also revealed that the red patch area, mean perimeter area ratio, and separation index are critical latent variables with standardised coefficients of 0.54, 0.65, and 0.62, respectively. These findings provide actionable design strategies: (1) optimising chromatic contrast through high-saturation patches, (2) controlling geometric complexity, and (3) improving spatial coherence. These results advance the theoretical framework for landscape aesthetic evaluation and offer practical guidance for landscape recreational forest management. Full article
(This article belongs to the Section Floriculture, Nursery and Landscape, and Turf)
Show Figures

Figure 1

Back to TopTop