Investigating a Characteristic Time Lag in the Ionospheric F-Region’s Response to Solar Flares
Abstract
1. Introduction
2. Observations and Data Selection
2.1. Solar Observations
2.2. Ionospheric Data
3. Methods
3.1. TEC Detrending
3.2. Calculation of Delay and Solar Emission Factors
4. Results
4.1. Delay Calculation
4.2. Correlation with Heliogeophysical Parameters
5. Discussion and Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
SDO | Solar Dynamics Observatory |
EVE | Extreme Ultraviolet Variability Experiment |
TEC | Total Electron Content |
EUV | Extreme Ultraviolet |
GOES | Geostationary Operational Environmental Satellite |
XRS | X-ray Sensor |
GPS | Global Positioning System |
SOPAC | Scripps Orbit and Permanent Array Center |
GNSS | Global Navigation Satellite System |
RMSE | Root Mean Square Error |
HPC | Helioprojective Cartesian Coordinates |
HEK | Heliophysics Event Knowledgebase |
References
- Mitra, A.P. Ionospheric Effects of Solar Flares; Reidel: Dordrecht, The Netherlands; Boston, MA, USA, 1974. [Google Scholar]
- de Abreu, A.J.; Roberto, M.; Alves, M.A.; Abalde, J.R.; Nogueira, P.A.B.; Venkatesh, K.; Fagundes, P.R.; de Jesus, R.; Gende, M.; Martin, I.M. Effects of X2-class solar flare events on ionospheric GPS-TEC and radio waves over Brazilian sector. Adv. Space Res. 2019, 63, 3586–3605. [Google Scholar] [CrossRef]
- Tsurutani, B.T.; Verkhoglyadova, O.P.; Mannucci, A.J.; Lakhina, G.S.; Li, G.; Zank, G.P. A brief review of “solar flare effects” on the ionosphere. Radio Sci. 2009, 44, 1–14. [Google Scholar] [CrossRef]
- Wan, W.; Liu, L.; Yuan, H.; Ning, B.; Zhang, S. The GPS measured SITEC caused by the very intense solar flare on July 14, 2000. Adv. Space Res. 2005, 36, 2465–2469. [Google Scholar] [CrossRef]
- Qian, L.; Burns, A.G.; Chamberlin, P.C.; Solomon, S.C. Variability of thermosphere and ionosphere responses to solar flares. J. Geophys. Res. Space Phys. 2011, 116, A10309. [Google Scholar] [CrossRef]
- Zhang, D.H.; Mo, X.H.; Cai, L.; Zhang, W.; Feng, M.; Hao, Y.Q.; Xiao, Z. Impact factor for the ionospheric total electron content response to solar flare irradiation. J. Geophys. Res. Space Phys. 2011, 116, A04311. [Google Scholar] [CrossRef]
- Curto, J.J.; Juan, J.M.; Timoté, C.C. Confirming geomagnetic Sfe by means of a solar flare detector based on GNSS. J. Space Weather. Space Clim. 2019, 9, A42. [Google Scholar] [CrossRef]
- Monte-Moreno, E.; Hernández-Pajares, M. Occurrence of solar flares viewed with GPS: Statistics and fractal nature. J. Geophys. Res. Space Phys. 2014, 119, 9216–9227. [Google Scholar] [CrossRef]
- Davies, K.; Hartmann, G.K. Studying the ionosphere with the Global Positioning System. Radio Sci. 1997, 32, 1695–1703. [Google Scholar] [CrossRef]
- Watanabe, K.; Jin, H.; Nishimoto, S.; Imada, S.; Kawai, T.; Kawate, T.; Otsuka, Y.; Shinbori, A.; Tsugawa, T.; Nishioka, M. Model-based reproduction and validation of the total spectra of a solar flare and their impact on the global environment at the X9.3 event of September 6, 2017. Earth Planets Space 2021, 73, 1–10. [Google Scholar] [CrossRef]
- Le, H.; Liu, L.; Chen, B.; Lei, J.; Yue, X.; Wan, W. Modeling the responses of the middle latitude ionosphere to solar flares. J. Atmos. Sol.-Terr. Phys. 2007, 69, 1587–1598. [Google Scholar] [CrossRef]
- Nishimoto, S.; Watanabe, K.; Jin, H.; Kawai, T.; Imada, S.; Kawate, T.; Otsuka, Y.; Shinbori, A.; Tsugawa, T.; Nishioka, M. Statistical analysis for EUV dynamic spectra and their impact on the ionosphere during solar flares. Earth Planets Space 2023, 75, 30. [Google Scholar] [CrossRef]
- Mahajan, K.K.; Lodhi, N.K.; Upadhayaya, A.K. Observations of X-ray and EUV fluxes during X-class solar flares and response of upper ionosphere. J. Geophys. Res. Space Phys. 2010, 115, A12330. [Google Scholar] [CrossRef]
- Tiwari, R.; Bhattacharya, S.; Purohit, P.K.; Gwal, A.K. Effect of TEC variation on GPS precise point at low latitude. Open Atmos. Sci. J. 2009, 3, 1–12. [Google Scholar] [CrossRef]
- ICAO. International Standards and Recommended Practices, Annex 10 to the Convention on International Civil Aviation, Volume 1, Radio Navigation Aids. 1996. Available online: https://ffac.ch/wp-content/uploads/2020/09/ICAO-Annex-10-Aeronautical-Telecommunications-Vol-I-Radio-Navigation-Aids.pdf (accessed on 1 January 2025).
- Davies, K. Ionospheric Radio; Institution of Electrical Engineers: London, UK, 1990. [Google Scholar]
- Thomson, N.R.; Clilverd, M.A. Solar flare induced ionospheric D-region enhancements from VLF amplitude observations. J. Atmos. Sol.-Terr. Phys. 2001, 63, 1729–1737. [Google Scholar] [CrossRef]
- Raulin, J.-P.; Trottet, G.; Kretzschmar, M.; Macotela, E.L.; Pacini, A.; Bertoni, F.C.P.; Dammasch, I.E. Response of the low ionosphere to X-ray and Lyman-α solar flare emissions. J. Geophys. Res. Space Phys. 2013, 118, 570–575. [Google Scholar] [CrossRef]
- Hayes, L.A.; O’Hara, O.S.D.; Murray, S.A.; Gallagher, P.T. Solar flare effects on the earth’s lower ionosphere. Sol. Phys. 2021, 296, 157. [Google Scholar] [CrossRef]
- Nina, A. Modelling of the electron density and total electron content in the quiet and solar X-ray flare perturbed ionospheric d-region based on remote sensing by VLF/LF signals. Remote Sens. 2021, 14, 54. [Google Scholar] [CrossRef]
- Bekker, S.Z.; Korsunskaya, J.A. Influence of the neutral atmosphere model on the correctness of simulation the electron and ion concentrations in the lower ionosphere. J. Geophys. Res. Space Phys. 2023, 128, e2023JA032007. [Google Scholar] [CrossRef]
- Pant, P. Relation between VLF phase deviations and solar X-ray fluxes during solar flares. Astrophys. Space Sci. 1993, 209, 297–306. [Google Scholar] [CrossRef]
- McRae, W.M.; Thomson, N.R. Solar flare induced ionospheric D-region enhancements from VLF phase and amplitude observations. J. Atmos. Sol.-Terr. Phys. 2004, 66, 77–87. [Google Scholar] [CrossRef]
- Thomson, N.R.; Rodger, C.J.; Clilverd, M.A. Large solar flares and their ionospheric D region enhancements. J. Geophys. Res. Space Phys. 2005, 110, A06306. [Google Scholar] [CrossRef]
- Selvakumaran, R.; Maurya, A.K.; Gokani, S.A.; Veenadhari, B.; Kumar, S.; Venkatesham, K.; Phanikumar, D.V.; Singh, A.K.; Siingh, D.; Singh, R. Solar flares induced D-region ionospheric and geomagnetic perturbations. J. Atmos. Sol.-Terr. Phys. 2015, 123, 102–112. [Google Scholar] [CrossRef]
- Bekker, S.Z.; Ryakhovskiy, I.A.; Korsunskaya, J.A. Modeling of the Lower Ionosphere during Solar X-ray Flares of Different Classes. J. Geophys. Res. Space Phys. 2021, 126, e2020JA028767. [Google Scholar] [CrossRef]
- Wait, J.R.; Spies, K.P. Characteristics of the Earth-Ionosphere Waveguide for VLF Radio Waves; US Department of Commerce, National Bureau of Standards: Gaithersburg, MD, USA, 1964; Volume 13.
- Appleton, E.V. A note on the “sluggishness” of the ionosphere. J. Atmos. Terr. Phys. 1953, 3, 282–284. [Google Scholar] [CrossRef]
- Valnicek, B.; Ranzinger, P. X-ray emission and D-region “sluggishness”. Bull. Astron. Inst. Czechoslov. 1972, 23, 318. [Google Scholar]
- Basak, T.; Chakrabarti, S.K. Effective recombination coefficient and solar zenith angle effects on low-latitude D-region ionosphere evaluated from VLF signal amplitude and its time delay during X-ray solar flares. Astrophys. Space Sci. 2013, 348, 315–326. [Google Scholar] [CrossRef]
- Chakraborty, S.; Basak, T. Numerical analysis of electron density and response time delay during solar flares in mid-latitudinal lower ionosphere. Astrophys. Space Sci. 2020, 365, 184. [Google Scholar] [CrossRef]
- Žigman, V.; Grubor, D.; Šulić, D. D-region electron density evaluated from VLF amplitude time delay during X-ray solar flares. J. Atmos. Sol.-Terr. Phys. 2007, 69, 775–792. [Google Scholar] [CrossRef]
- Hayes, L.A.; Gallagher, P.T.; McCauley, J.; Dennis, B.R.; Ireland, J.; Inglis, A. Pulsations in the Earth’s Lower Ionosphere Synchronized With Solar Flare Emission. J. Geophys. Res. Space Phys. 2017, 122, 9841–9847. [Google Scholar] [CrossRef]
- Bekker, S.; Milligan, R.O.; Ryakhovsky, I.A. The influence of different phases of a solar flare on changes in the total electron content in the Earth’s ionosphere. Astrophys. J. 2024, 971, 188. [Google Scholar] [CrossRef]
- O’Hare, A.N.; Bekker, S.; Hayes, L.A.; Milligan, R.O. Quasi-periodic pulsations in ionospheric TEC synchronized with solar flare EUV emission. J. Geophys. Res. Space Phys. 2025, 130, e2024JA033493. [Google Scholar] [CrossRef]
- Pesnell, W.D.; Thompson, B.J.; Chamberlin, P.C. The Solar Dynamics Observatory (SDO); Springer: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- Woods, T.N.; Eparvier, F.G.; Hock, R.; Jones, A.R.; Woodraska, D.; Judge, D.; Didkovsky, L.; Lean, J.; Mariska, J.; Warren, H.; et al. Extreme Ultraviolet Variability Experiment (EVE) on the Solar Dynamics Observatory (SDO): Overview of science objectives, instrument design, data products, and model developments. In The Solar Dynamics Observatory; Springer: Berlin/Heidelberg, Germany, 2012; pp. 115–143. [Google Scholar]
- Solomon, S.C.; Qian, L. Solar extreme-ultraviolet irradiance for general circulation models. J. Geophys. Res. Space Phys. 2005, 110, A10306. [Google Scholar] [CrossRef]
- Woods, T.N.; Hock, R.; Eparvier, F.; Jones, A.R.; Chamberlin, P.C.; Klimchuk, J.A.; Didkovsky, L.; Judge, D.; Mariska, J.; Warren, H.; et al. New Solar Extreme-Ultraviolet Irradiance Observations During Flares. Astrophys. J. 2011, 739, 59. [Google Scholar] [CrossRef]
- The SunPy Community; Barnes, W.T.; Bobra, M.G.; Christe, S.D.; Freij, N.; Hayes, L.A.; Ireland, J.; Mumford, S.; Perez-Suarez, D.; Ryan, D.F.; et al. The SunPy Project: Open Source Development and Status of the Version 1.0 Core Package. Astrophys. J. 2020, 890, 68. [Google Scholar] [CrossRef]
- Hurlburt, N.; Cheung, M.; Schrijver, C.; Chang, L.; Freel, S.; Green, S.; Heck, C.; Jaffey, A.; Kobashi, A.; Schiff, D.; et al. Heliophysics event knowledgebase for the Solar Dynamics Observatory (SDO) and beyond. In The Solar Dynamics Observatory; Springer: New York, NY, USA, 2012; pp. 67–78. [Google Scholar]
- Hofmann-Wellenhof, B.; Lichtenegger, H.; Collins, J. Global Positioning System; Springer: New York, NY, USA, 1992. [Google Scholar]
- Schober, P.; Boer, C.; Schwarte, L.A. Correlation coefficients: Appropriate use and interpretation. Anesth. Analg. 2018, 126, 1763–1768. [Google Scholar] [CrossRef] [PubMed]
- Papageorgiou, S.N. On correlation coefficients and their interpretation. J. Orthod. 2022, 49, 359–361. [Google Scholar] [CrossRef] [PubMed]
- Bekker, S.Z.; Ryakhovsky, I.A. Estimation of the Contribution of the Ionospheric D Region to the TEC Value During a Series of Solar Flares in September 2017. J. Geophys. Res. Space Phys. 2024, 129, e2024JA032577. [Google Scholar] [CrossRef]
- Sreeraj, M.S.; Sumod, S.G.; Kavya, E.M.; Mildred, S.; Pant, T.K.; Hari, P. Global Ionospheric Response to X-Class Flares During the Solar Cycle 24: An Investigation Using IGS Network. J. Geophys. Res. Space Phys. 2025, 130, e2024JA033290. [Google Scholar] [CrossRef]
- Hanser, F.A.; Sellers, F.B. Design and calibration of the GOES-8 solar x-ray sensor: The XRS. GOES-8 Beyond 1996, 2812, 344–352. [Google Scholar]
- Le, H.; Liu, L.; Chen, Y.; Wan, W. Statistical analysis of ionospheric responses to solar flares in the solar cycle 23. J. Geophys. Res. Space Phys. 2013, 118, 576–582. [Google Scholar] [CrossRef]
- Saharan, S.; Maurya, A.K.; Dube, A.; Patil, O.M.; Singh, R.; Sharma, H. Low latitude ionospheric TEC response to the solar flares during the peak of solar cycle 24. Adv. Space Res. 2023, 72, 3890–3902. [Google Scholar] [CrossRef]
- Le, H.; Liu, L.; He, H.; Wan, W. Statistical analysis of solar EUV and X-ray flux enhancements induced by solar flares and its implication to upper atmosphere. J. Geophys. Res. Space Phys. 2011, 116, A11301. [Google Scholar] [CrossRef]
- Hazarika, R.; Kalita, B.R.; Bhuyan, P.K. Ionospheric response to X-class solar flares in the ascending half of the subdued solar cycle 24. J. Earth Syst. Sci. 2016, 125, 1235–1244. [Google Scholar] [CrossRef]
- Ryakhovsky, I.A.; Poklad, Y.V.; Gavrilov, B.G.; Bekker, S.Z. Estimation of the Ionospheric D-Region Ionization Caused by X-Class Solar Flares Based on VLF Observations. J. Geophys. Res. Space Phys. 2024, 129. [Google Scholar] [CrossRef]
- Ferguson, J.A. Ionospheric model validation at VLF and LF. Radio Sci. 1995, 30, 775–782. [Google Scholar] [CrossRef]
- Thomson, N.R. Experimental daytime VLF ionospheric parameters. J. Atmos. Terr. Phys. 1993, 55, 173–184. [Google Scholar] [CrossRef]
Number | Date | Event Peak Time (UT) | GOES Class | HPC Coords (Arcsec) |
---|---|---|---|---|
1 | 9 March 2011 | 23:23 | X2.14 | (183, 253) |
2 | 6 September 2011 | 22:20 | X3.03 | (287, 118) |
3 | 25 December 2011 | 18:16 | M5.77 | (398, −335) |
4 | 9 March 2012 | 03:53 | M9.15 | (49, 367) |
5 | 10 March 2012 | 17:44 | X1.22 | (377, 388) |
6 | 9 May 2012 | 12:32 | M6.81 | (−478, 259) |
7 | 9 May 2012 | 21:05 | M5.91 | (−409, 245) |
8 | 23 October 2012 | 03:17 | X2.37 | (−798, −262) |
9 | 28 October 2013 | 04:41 | M7.37 | (910, 110) |
10 | 5 November 2013 | 22:12 | X4.93 | (−659, −247) |
Number | Number of Station–Satellite Pairs | Avg. SZA (°) | Avg. Lat. (°) | Avg. Long. (°) |
---|---|---|---|---|
1 | 1310 | 45.80 | 2.22 | 199.72 |
2 | 4573 | 47.19 | 38.00 | 235.36 |
3 | 1202 | 43.95 | 1.43 | 273.96 |
4 | 624 | 46.64 | −17.84 | 145.18 |
5 | 4719 | 49.88 | 36.27 | 249.25 |
6 | 995 | 43.18 | 30.09 | 133.66 |
7 | 6995 | 31.75 | 38.90 | 242.27 |
8 | 666 | 43.13 | −22.37 | 148.58 |
9 | 449 | 33.56 | −5.86 | 115.24 |
10 | 537 | 35.70 | −21.24 | 182.08 |
Delay vs. | |||||
---|---|---|---|---|---|
FHe II | FHe II/t | SZA | FXR/FHe II | GOES Class | |
Pearson | −0.84 | −0.59 | −0.31 | −0.78 | −0.77 |
p-value | 0.0025 | 0.071 | 0.39 | 0.0077 | 0.0087 |
Spearman | −0.87 | −0.54 | −0.30 | −0.71 | −0.82 |
p-value | 0.0012 | 0.11 | 0.40 | 0.022 | 0.0038 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
O’Hare, A.N.; Bekker, S.; Greatorex, H.J.; Milligan, R.O. Investigating a Characteristic Time Lag in the Ionospheric F-Region’s Response to Solar Flares. Atmosphere 2025, 16, 937. https://doi.org/10.3390/atmos16080937
O’Hare AN, Bekker S, Greatorex HJ, Milligan RO. Investigating a Characteristic Time Lag in the Ionospheric F-Region’s Response to Solar Flares. Atmosphere. 2025; 16(8):937. https://doi.org/10.3390/atmos16080937
Chicago/Turabian StyleO’Hare, Aisling N., Susanna Bekker, Harry J. Greatorex, and Ryan O. Milligan. 2025. "Investigating a Characteristic Time Lag in the Ionospheric F-Region’s Response to Solar Flares" Atmosphere 16, no. 8: 937. https://doi.org/10.3390/atmos16080937
APA StyleO’Hare, A. N., Bekker, S., Greatorex, H. J., & Milligan, R. O. (2025). Investigating a Characteristic Time Lag in the Ionospheric F-Region’s Response to Solar Flares. Atmosphere, 16(8), 937. https://doi.org/10.3390/atmos16080937