Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (107)

Search Parameters:
Keywords = refractive windows

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 3939 KiB  
Article
Transparent Alicyclic Polyimides Prepared via Copolymerization or Crosslinking: Enhanced Flexibility and Optical Properties for Flexible Display Cover Windows
by Hyuck-Jin Kwon, Jun Hwang, Suk-Min Hong and Chil Won Lee
Polymers 2025, 17(15), 2081; https://doi.org/10.3390/polym17152081 - 30 Jul 2025
Viewed by 87
Abstract
Transparent polyimides with excellent mechanical properties and high optical transmittance have been widely used in various optical and electrical applications. However, due to the rigidity of their aromatic structure, their flexibility is limited, making them unsuitable for applications requiring different form factors, such [...] Read more.
Transparent polyimides with excellent mechanical properties and high optical transmittance have been widely used in various optical and electrical applications. However, due to the rigidity of their aromatic structure, their flexibility is limited, making them unsuitable for applications requiring different form factors, such as flexible display cover windows. Furthermore, the refractive index of most transparent polyimides is approximately 1.57, which differs from that of the optically clear adhesives (OCAs) and window materials that have values typically around 1.5, resulting in visual distortion. This study employed 4,4′-(hexafluoroisopropylidene)diphthalic anhydride (6FDA) and 2,2′-bis(trifluoromethyl)benzidine (TFMB) as the base structure of polyimides (6T). Additionally, 1,3-bis(aminomethyl)cyclohexane (BAC) with a monocyclic structure and bis(aminomethyl)bicyclo[2,2,1]heptane (BBH) with a bicyclic structure were introduced as co-monomers or crosslinking agents to 6T. The mechanical, thermal, and optical properties of the obtained copolymers (6T-BAC and 6T-BBH series) and crosslinked polymers (6T-CL-BAC and 6T-CL-BBH series) were compared. Both the copolymer series (6T-BAC and 6T-BBH) and the crosslinked series (6T-CL-BAC and 6T-CL-BBH) exhibited improved optical properties compared to the conventional 6T, with maximum transmittance exceeding 90% and refractive indices ranging from approximately 1.53 to 1.55. Notably, the copolymer series achieved transmittance levels above 95% and exhibited lower refractive indices (~1.53), demonstrating superior optical performance relative not only to the 6T baseline but also to the crosslinked series. The alicyclic polyimides synthesized in this study exhibited mechanical flexibility, high optical transmittance, and a refractive index approaching 1.5, demonstrating their applicability for use as flexible display cover window materials. Full article
Show Figures

Graphical abstract

13 pages, 621 KiB  
Article
Influence of Sugars and Surface Properties on Wettability and Adhesion of Starch-Based Model Suspensions on Polytetrafluoroethylene (PTFE) and Polyethylene Terephthalate (PET) Surfaces
by Ana Caroline Frabetti, Jaqueline Oliveira de Moraes, Vanessa Jury, Lionel Boillereaux and João Borges Laurindo
Foods 2025, 14(12), 2033; https://doi.org/10.3390/foods14122033 - 9 Jun 2025
Viewed by 417
Abstract
In food drying processes such as cast-tape drying, refractance window, and drum drying, spreading food suspensions on hydrophobic surfaces is critical. This study investigated the effects of low-molar-mass sugars (glucose, sucrose, and fructose) on the rheology and surface tension of cassava starch suspensions, [...] Read more.
In food drying processes such as cast-tape drying, refractance window, and drum drying, spreading food suspensions on hydrophobic surfaces is critical. This study investigated the effects of low-molar-mass sugars (glucose, sucrose, and fructose) on the rheology and surface tension of cassava starch suspensions, which served as model systems. Wettability was assessed on hydrophobic surfaces, including new polytetrafluoroethylene (PTFE) and polyethylene terephthalate (PET) films, with additional testing on sandpaper-abraded PTFE (named PTFE R+) to evaluate the influence of surface roughness. PET film exhibited lower roughness (Ra = X µm) and higher surface tension (71 mN/m) compared to PTFE (surface tension 65 mN/m). Contact angles on PET (93–124°) were significantly higher than on PTFE (89–113°), indicating greater product adhesion on PET. All suspensions showed pseudoplastic behavior, and the addition of the surfactant Tween 20 slightly reduced surface tension (by ≈1–5 mN/m) but did not significantly enhance wettability. Sucrose and fructose increased wettability on PTFE R+, but the effects of the sugar varied depending on the surface. These findings suggest that PTFE surfaces reduce product sticking during drying compared to PET. Interactions between sugars, Tween 20, and hydrophobic surfaces must be considered to optimize spreading and reduce product sticking during drying. This knowledge can guide improvements in drying processes for food products. Full article
Show Figures

Figure 1

14 pages, 921 KiB  
Article
Numerical Insights into Wide-Angle, Phase-Controlled Optical Absorption in a Single-Layer Vanadium Dioxide Structure
by Abida Parveen, Ahsan Irshad, Deepika Tyagi, Mehboob Alam, Shakeel Ahmed, Keyu Tao and Zhengbiao Ouyang
Crystals 2025, 15(5), 450; https://doi.org/10.3390/cryst15050450 - 10 May 2025
Cited by 1 | Viewed by 357
Abstract
Vanadium dioxide (VO2) is a well-known phase-change material that exhibits a thermally driven insulator-to-metal transition (IMT) near 68 °C, leading to significant changes in its electrical and optical properties. This transition is governed by structural modifications in the VO2 crystal [...] Read more.
Vanadium dioxide (VO2) is a well-known phase-change material that exhibits a thermally driven insulator-to-metal transition (IMT) near 68 °C, leading to significant changes in its electrical and optical properties. This transition is governed by structural modifications in the VO2 crystal lattice, enabling dynamic control over absorption, reflection, and transmission. Despite its promising tunability, VO2-based optical absorbers face challenges such as a narrow IMT temperature window, intrinsic optical losses, and fabrication complexities associated with multilayer designs. In this work, we propose and numerically investigate a single-layer VO2-based optical absorber for the visible spectrum using full-wave electromagnetic simulations. The proposed absorber achieves nearly 95% absorption at 25 °C (insulating phase), which drops below 5% at 80 °C (metallic phase), demonstrating exceptional optical tunability. This behavior is attributed to VO2’s high refractive index in the insulating state, which enhances resonant light trapping. Unlike conventional multilayer absorbers, our single-layer VO2 design eliminates structural complexity, simplifying fabrication and reducing material costs. These findings highlight the potential of VO2-based crystalline materials for tunable and energy-efficient optical absorption, making them suitable for adaptive optics, smart windows, and optical switching applications. The numerical results presented in this study contribute to the ongoing development of crystal-based phase-transition materials for next-generation reconfigurable photonic and optoelectronic devices. Full article
(This article belongs to the Section Inorganic Crystalline Materials)
Show Figures

Figure 1

17 pages, 3355 KiB  
Article
Model Design and Study of a U-Channel Photonic Crystal Fib Optic Sensor for Measuring Glucose Concentration in Blood
by Lei Zhao, Hua Yang, Tangyou Sun, Qianju Song, Zao Yi and Yougen Yi
Sensors 2025, 25(9), 2647; https://doi.org/10.3390/s25092647 - 22 Apr 2025
Viewed by 523
Abstract
This research introduces a biosensor utilizing surface plasmon resonance in a photonic crystal fiber (PCF) configuration. PCF uses fused silica as the base material, with a layer of gold placed over the U-channels in the cross-section of the fiber to create a surface [...] Read more.
This research introduces a biosensor utilizing surface plasmon resonance in a photonic crystal fiber (PCF) configuration. PCF uses fused silica as the base material, with a layer of gold placed over the U-channels in the cross-section of the fiber to create a surface plasmon resonance. There are three different sizes of internal fiber optic air hole diameters, with a larger channel circle below the u-channel for the formation of an energy leakage window. COMSOL software 6.0 assisted us in tuning the fiber optic structure and performance for the study, and the structural parameters analyzed mainly include the channel circle diameter, the channel circle spacing, the profundity measurement of the polished layer, and the nanoscale size variation of metal films. The results of the simulation study show that the optical fiber sensor achieves refractive index (RI) responsiveness across the 1.30 to 1.41 range, and in the RI interval of 1.40 to 1.41, the sensor exhibits the largest resonance peak shift, and its highest sensitivity reaches 10,200 nm/RIU, and the smallest full width at half peak (FWHM) corresponds to the RI of 1.34 with a value of 4.8 nm, and the highest figure of merit (FOM) corresponds to the RI of 1.34 with a value of 895.83 (1/RIU). COMSOL 6.0 simulation software, was used to simulate the changes in blood refractive index corresponding to different glucose concentrations, and the detection performance of the sensor for different concentrations of glucose was tested. Then, the results show that the glucose concentration in 75 mg/dL–175 mg/dL with RI detection sensitivity is 3750 nm/RIU, where the maximum refractive index sensitivity is 5455 nm/RIU. It shows that the sensor can be applied in the field of biomedical applications, with its convenience, fast response, and high sensitivity, it has great potential and development prospect in the market. Full article
Show Figures

Figure 1

12 pages, 4152 KiB  
Article
Cost-Effective Inorganic Multilayer Film for High-Performance Daytime Radiative Cooling
by Huan Liu, Yingxin Yang, Atsha Ambar, Zhiqiang Fan, Ying Sun and Cong Wang
Materials 2025, 18(8), 1729; https://doi.org/10.3390/ma18081729 - 10 Apr 2025
Cited by 1 | Viewed by 597
Abstract
Inorganic multilayer films for radiative cooling have garnered significant attention due to their exceptional resistance to photothermal degradation. However, the design and fabrication of structurally simple and cost-effective inorganic multilayer films remain challenging due to limitations in material properties and the preparation process. [...] Read more.
Inorganic multilayer films for radiative cooling have garnered significant attention due to their exceptional resistance to photothermal degradation. However, the design and fabrication of structurally simple and cost-effective inorganic multilayer films remain challenging due to limitations in material properties and the preparation process. This study develops a structurally simple inorganic multilayer film (Si3N4/SiO2/Al2O3/Si3N4/Al) for daytime radiative cooling. Instead of the conventional periodic alternation of high and low refractive indices (H-L…H-L), this work proposes a H-L-L-H symmetric multilayer film structure to achieve improved radiative cooling performance. The fabricated multilayer film demonstrates superior radiative cooling properties and lower thickness than that in the current studies using Al as the reflective layer, achieving a solar reflectance of 89.57%, an atmospheric window (8–13 μm) emissivity of 83.41%, and a net cooling power of 63.38 W·m−2. Under direct sunlight, the multilayer film demonstrated a maximum temperature reduction of approximately 3 °C compared to the reference sample. By employing a thermal treatment process for the Si3N4 layer, the poor adhesion between the Al layer and the Si3N4 layer is successfully addressed without compromising optical performance. The underlying physical mechanisms are also elucidated. This work provides an effective strategy for developing daytime radiative cooling inorganic multilayer films suitable for large-scale industrial production. Full article
(This article belongs to the Special Issue The Microstructures and Advanced Functional Properties of Thin Films)
Show Figures

Figure 1

13 pages, 2308 KiB  
Article
A Large-Scale Preparation Approach for Daytime Radiative Cooling Using SiO2 Hollow Microsphere Composite Film
by Changhai Li, Xiaojie Sun, Yuting Yang, Baojian Liu, Haotian Zhang, Rong He, Rongjun Zhang, Yuxiang Zheng, Songyou Wang, Young-Pak Lee and Liangyao Chen
Coatings 2025, 15(3), 340; https://doi.org/10.3390/coatings15030340 - 14 Mar 2025
Viewed by 821
Abstract
Radiative cooling is a passive cooling strategy that dissipates heat externally through the atmospheric window (8–13 μm). This study presents a radiative cooling film with a simple and cost-effective fabrication process. The film was fabricated by mixing SiO2 hollow microspheres with a [...] Read more.
Radiative cooling is a passive cooling strategy that dissipates heat externally through the atmospheric window (8–13 μm). This study presents a radiative cooling film with a simple and cost-effective fabrication process. The film was fabricated by mixing SiO2 hollow microspheres with a UV-curable resin, employing a photopolymerization-induced phase separation method. The resulting gradient refractive index structure enhanced thermal radiation emissivity. At an optimal silica-to-resin mass ratio of 1:1.5 and a film thickness of 1.1 mm, the film achieved a solar reflectivity of 85% and an emissivity of 91% within the atmospheric window. Outdoor experiments conducted in both summer and winter demonstrated stable cooling performance. Under a solar irradiance of 796.9 W/m2 (summer), the film reduced surface temperature by 10 °C compared to ambient air and 20 °C compared to an uncoated glass substrate, achieving a radiative cooling power of 76.7 W/m2. In winter (solar irradiance of 588.8 W/m2), the film maintained a significant cooling effect, though with reduced efficiency due to lower solar exposure. Furthermore, long-term stability tests over six months showed that the film retained high solar reflectivity and infrared emissivity, indicating good durability. Overall, the developed radiative cooling films demonstrate excellent optical properties, structural stability, and cooling efficiency, making it a promising candidate for real-world radiative cooling applications. Further studies on environmental resilience and optimization under diverse climatic conditions are necessary for broader deployment. Full article
Show Figures

Figure 1

20 pages, 6264 KiB  
Article
A Study on the Impact of Vanadium Doping on the Structural, Optical, and Optoelectrical Properties of ZnS Thin Films for Optoelectronic Applications
by H. Y. S. Al-Zahrani, I. M. El Radaf and A. Lahmar
Micromachines 2025, 16(3), 337; https://doi.org/10.3390/mi16030337 - 14 Mar 2025
Viewed by 660
Abstract
This study details the manufacture of vanadium-doped ZnS thin films via a cost-effective spray pyrolysis technique at varying concentrations of vanadium (4, 8, and 12 wt.%). The XRD data demonstrate the hexagonal structure of the vanadium-doped ZnS layers. The analysis of their structural [...] Read more.
This study details the manufacture of vanadium-doped ZnS thin films via a cost-effective spray pyrolysis technique at varying concentrations of vanadium (4, 8, and 12 wt.%). The XRD data demonstrate the hexagonal structure of the vanadium-doped ZnS layers. The analysis of their structural properties indicates that the crystallite size (D) of the vanadium-doped ZnS films decreased as the vanadium concentration rose. The strain and dislocation density of the analyzed films were enhanced by increasing the vanadium content from 4 to 12 wt.%. The linear optical results of the vanadium-doped ZnS films revealed that the refractive index values were improved from 2.31 to 3.49 by increasing the vanadium concentration in the analyzed samples. Further, the rise in vanadium content enhanced the absorption coefficient. The energy gap (Eg) study indicates that the vanadium-doped ZnS films exhibited direct optical transitions, with the Eg values diminishing from 3.74 to 3.15 eV as the vanadium concentration increased. The optoelectrical analysis shows that the rise in vanadium concentration increases the dispersion energy from 9.48 to 12.76 eV and reduces the oscillator energy from 3.69 to 2.17 eV. The optical carrier concentration of these layers was improved from 1.49 × 1053 to 2.15 × 1053, while the plasma frequency was decreased from 4.34 × 1013 to 3.67 × 1013 by boosting the vanadium concentration from 4 to 12 wt.%. Simultaneously, the increase in vanadium content improves the nonlinear optical parameters of the vanadium-doped ZnS films. The hot probe method identifies these samples as n-type semiconductors. The findings suggest that these samples serve as an innovative window layer. Full article
Show Figures

Figure 1

19 pages, 6309 KiB  
Article
Coupled Resonance Fiber-Optic SPR Sensor Based on TRIZ
by Cuilan Zhu, Haodi Zhai, Yonghao Wang, Xiangru Suo, Tianyu Zhu and Shuowei Jin
Photonics 2025, 12(3), 244; https://doi.org/10.3390/photonics12030244 - 9 Mar 2025
Viewed by 726
Abstract
This paper aims to enhance the sensitivity of fiber-optic surface plasmon resonance (SPR) sensors by innovatively applying TRIZ (Theory of Inventive Problem Solving). To identify the key challenges faced by current SPR sensors, methods such as functional analysis, causal analysis, and the Nine-Window [...] Read more.
This paper aims to enhance the sensitivity of fiber-optic surface plasmon resonance (SPR) sensors by innovatively applying TRIZ (Theory of Inventive Problem Solving). To identify the key challenges faced by current SPR sensors, methods such as functional analysis, causal analysis, and the Nine-Window method are employed. Utilizing TRIZ tools, including Technical Contradiction, Physical Contradiction, the Smart Little Man method, and object–field analysis, innovative solutions are proposed, involving transparent indium tin oxide (ITO) thin films, an asymmetric photonic crystal fiber structure with elliptical pores, and titanium dioxide (TiO2) thin films. Experimental results reveal a significant improvement in sensitivity, with an average of 9961.90 nm/RIU and a peak of 12,503.56 nm/RIU within the refractive index range of 1.33061 to 1.40008, representing a 456% increase compared to the original gold-film fiber-optic SPR sensor. These findings have potential applications in biosensing, environmental monitoring, and food safety. Full article
Show Figures

Figure 1

13 pages, 1816 KiB  
Article
Non-Destructive Ellipsometric Analysis of the Refractive Index of Historical Enamels
by Teresa Palomar, Trinitat Pradell and Jadra Mosa
Materials 2025, 18(5), 1137; https://doi.org/10.3390/ma18051137 - 3 Mar 2025
Viewed by 682
Abstract
The refractive index is an important parameter for the restoration of historical cultural heritage and for non-destructive optical techniques. In this study, different mathematical models for lead glasses were assessed in order to analyze their feasibility to calculate the theoretical refractive index of [...] Read more.
The refractive index is an important parameter for the restoration of historical cultural heritage and for non-destructive optical techniques. In this study, different mathematical models for lead glasses were assessed in order to analyze their feasibility to calculate the theoretical refractive index of the historical enamels in stained-glass windows. The models selected were those specifically developed for lead glasses: the Appen method (1949), the Fanderlik and Skrivan model (1972), and the Bonetti and Salvagno method (1983). The results of the mathematical methods were compared with the real values analyzed via ellipsometry. The historical enamels were determined on non-prepared samples, taking into account the Cauchy model in order to avoid damaging the historical pieces. We show that the measured refractive indices of the historical enamels (1.59–1.66) are higher than the values of the lead glasses in the literature (1.55–1.57). The PbO and B2O3 were the compounds that most influenced the value of the refractive index; nevertheless, the presence of metallic elements increased their value compared to pure lead glasses. In addition, the presence of a thin layer of grisaille on the historical enamels and the formation of alteration layers could also modify the real value of the refractive index. As far as theoretical calculations are concerned, the mathematical model of Bonetti and Salvagno (1983) seems to be the most accurate model for this material, with errors < 0.04 units. None of the three models work for glasses with >60% PbO, which is not common in cultural heritage. Full article
(This article belongs to the Special Issue Materials in Cultural Heritage: Analysis, Testing, and Preservation)
Show Figures

Figure 1

13 pages, 3606 KiB  
Article
A High-Sensitivity Graphene Metasurface and Four-Frequency Switch Application Based on Plasmon-Induced Transparency Effects
by Aijun Zhu, Mengyi Zhang, Weigang Hou, Lei Cheng, Cong Hu and Chuanpei Xu
Photonics 2025, 12(3), 218; https://doi.org/10.3390/photonics12030218 - 28 Feb 2025
Cited by 1 | Viewed by 729
Abstract
In this paper, we propose the use of a monolayer graphene metasurface to achieve various excellent functions, such as sensing, slow light, and optical switching through the phenomenon of plasmon-induced transparency (PIT). The designed structure of the metasurface consists of a diamond-shaped cross [...] Read more.
In this paper, we propose the use of a monolayer graphene metasurface to achieve various excellent functions, such as sensing, slow light, and optical switching through the phenomenon of plasmon-induced transparency (PIT). The designed structure of the metasurface consists of a diamond-shaped cross and a pentagon graphene resonator. We conducted an analysis of the electric field distribution and utilized Lorentz resonance theory to study the PIT window that is generated by the coupling of bright-bright modes. Additionally, by adjusting the Fermi level of graphene, we were able to achieve tunable dual frequency switching modulators. Furthermore, the metasurface also demonstrates exceptional sensing performance, with sensitivity and figure of merit (FOM) reaching values of 3.70 THz/RIU (refractive index unit) and 22.40 RIU-1, respectively. As a result, our numerical findings hold significant guiding significance for the design of outstanding terahertz sensors and photonic devices. Full article
(This article belongs to the Special Issue Photonics Metamaterials: Processing and Applications)
Show Figures

Figure 1

18 pages, 1852 KiB  
Article
Impact of Advanced Impregnation Technologies on the Bioactivity, Bioaccessibility, and Quality of a Hydrolyzed Collagen-Enriched Apple Snack
by Helena Nuñez, Rodrigo Retamal, Aldonza Jaques, Marlene Pinto, Pedro Valencia, Mónika Valdenegro, Cristian Ramirez, Sergio Almonacid and Andrés Córdova
Foods 2025, 14(5), 817; https://doi.org/10.3390/foods14050817 - 27 Feb 2025
Viewed by 931
Abstract
The increasing demand for functional foods with added health benefits has driven the development of innovative food products. This study aimed to develop a functional snack made from Granny Smith apples enriched with hydrolyzed collagen using impregnation technologies, including vacuum impregnation (VI), ultrasound [...] Read more.
The increasing demand for functional foods with added health benefits has driven the development of innovative food products. This study aimed to develop a functional snack made from Granny Smith apples enriched with hydrolyzed collagen using impregnation technologies, including vacuum impregnation (VI), ultrasound (US), and moderate electric field (MEF), and pretreatment with CO2 laser microperforations (MPs) combined with drying methods, including conventional drying (CD) and refractance window drying (RW). The collagen content increased significantly across treatments, with MP-I achieving the highest retention (79.86 g/100 g db). Compared with VI-CD (3.8 mg GAE/g db), MP-RW drying resulted in more total polyphenols (up to 7.2 mg GAE/g db), which was attributed to its shorter drying time (55 min vs. 160 min). The RW treatments also better-preserved color quality, with higher a* (red tones) and b* (yellow tones) values, especially in the MP-RW and US-RW treatments, highlighting their advantages in maintaining visual appeal. Texture analysis revealed that RW drying produced slices with reduced hardness and increased crispness, with MP-RW resulting in the highest sensory crispness score (8.3). In vitro digestion demonstrated that the (VI) treatment resulted in the highest degree of collagen bioaccessibility (~90%), underscoring the effectiveness of this method in improving nutrient delivery compared with the 65% MP, ~70% US, and ~74% methods. The ~90% bioaccessibility is particularly noteworthy, as it indicates that a significant portion of the impregnated collagen remains available for absorption, reinforcing the potential of VI as a strategy for developing functional foods with enhanced nutritional benefits. Full article
(This article belongs to the Section Food Engineering and Technology)
Show Figures

Figure 1

16 pages, 5534 KiB  
Article
Femtosecond Laser Textured Surfaces for Radiative Cooling: Black Metals
by Nan Zheng, Ričardas Buividas, Hsin-Hui Huang, Dominyka Stonytė, Suresh Palanisamy, De Ming Zhu, Tomas Katkus, Maciej Kretkowski, Yoshiaki Nishijima, Lina Grineviciute, Paul R. Stoddart and Saulius Juodkazis
Appl. Sci. 2025, 15(4), 2076; https://doi.org/10.3390/app15042076 - 16 Feb 2025
Cited by 3 | Viewed by 1038
Abstract
There is a growing need for novel methods to modify the surfaces of a wide range of materials over large areas. Here, we demonstrate the creation of low-reflectance (R<2%) surfaces in the near-to-mid infrared (IR) spectral window of [...] Read more.
There is a growing need for novel methods to modify the surfaces of a wide range of materials over large areas. Here, we demonstrate the creation of low-reflectance (R<2%) surfaces in the near-to-mid infrared (IR) spectral window of 2–20 μm by ablating W, Al, and Cu with high average intensity 20–120 TW/cm2, 200 fs laser pulses at 1030 nm wavelength. The chemical modifications of the surfaces by laser ablation under ambient room conditions were analyzed using X-ray photoelectron spectroscopy (XPS). The results show a consistent decrease in the metallic component, accompanied by an increase in metal oxides. Energy dispersive spectroscopy (EDS) showed a similar increase in oxygen content over a micrometer depth scale. The reduced refractive index of the metal oxides compared to the corresponding metals contributes to the reduction in IR reflectance, combined with the formation of 3D hierarchically textured surface structures. These IR-black metals exhibit great potential for radiative cooling at elevated temperatures relevant to industrial and space applications. Full article
(This article belongs to the Section Optics and Lasers)
Show Figures

Figure 1

19 pages, 2637 KiB  
Article
Development and Characterization of Refractance Window-Dried Curcuma longa Powder Fortified with NaFeEDTA and Folic Acid: A Study on Thermal, Morphological, and In Vitro Bio Accessibility Properties
by Preetisagar Talukdar, Kamal Narayan Baruah, Pankaj Jyoti Barman, Sonu Sharma and Ramagopal V. S. Uppaluri
Foods 2025, 14(4), 658; https://doi.org/10.3390/foods14040658 - 15 Feb 2025
Viewed by 811
Abstract
Curcuma longa powder was prepared by refractance window drying (RWD) and was fortified. Fortification of dried turmeric powder with folic acid and NaFeEDTA, along with its characterization, was achieved. Characterization techniques, such as FTIR, XRD, TGA, DSC, FESEM, and particle size analysis, have [...] Read more.
Curcuma longa powder was prepared by refractance window drying (RWD) and was fortified. Fortification of dried turmeric powder with folic acid and NaFeEDTA, along with its characterization, was achieved. Characterization techniques, such as FTIR, XRD, TGA, DSC, FESEM, and particle size analysis, have been considered to study the morphological, thermal, and crystalline properties of the resulting fortified turmeric. In vitro digestion studies were carried out to determine the retention of nutrients after fortification. The RW-dried and fortified turmeric powder exhibited a stable average particle size and PDI values in the range of 1500–1600 nm, for 0.25–0.29, respectively. The fortified turmeric powder exhibited enhanced crystalline properties with sharp and high intensity peaks for NaFeEDTA-fortified turmeric powder. In vitro digestion studies affirmed the bio-accessibility of the novel fortified turmeric powder at 9.77 mg/100 g and 12.74 mg/100 g for folic acid and NaFeEDTA fortification cases, respectively. Thus, the findings confirmed that there was no significant influence of fortification on the characteristics of folic acid and the NaFeEDTA-fortified RW-dried turmeric powder product. Full article
(This article belongs to the Section Food Physics and (Bio)Chemistry)
Show Figures

Figure 1

15 pages, 5530 KiB  
Article
Regulation and Liquid Sensing of Electromagnetically Induced Transparency-like Phenomena Implemented in a SNAP Microresonator
by Chenxiang Liu, Minggang Chai, Chenglong Zheng, Chengfeng Xie, Chuanming Sun, Jiulin Shi, Xingdao He and Mengyu Wang
Sensors 2024, 24(21), 7069; https://doi.org/10.3390/s24217069 - 2 Nov 2024
Viewed by 1034
Abstract
Optical microresonators supporting whispering-gallery modes (WGMs) have become a versatile platform for achieving electromagnetically induced transparency-like (EIT-like) phenomena. We theoretically and experimentally demonstrated the tunable coupled-mode induced transparency based on the surface nanoscale axial photonics (SNAP) microresonator. Single-EIT-like and double-EIT-like (DEIT-like) effects with [...] Read more.
Optical microresonators supporting whispering-gallery modes (WGMs) have become a versatile platform for achieving electromagnetically induced transparency-like (EIT-like) phenomena. We theoretically and experimentally demonstrated the tunable coupled-mode induced transparency based on the surface nanoscale axial photonics (SNAP) microresonator. Single-EIT-like and double-EIT-like (DEIT-like) effects with one or more transparent windows are achieved due to dense mode families and tunable resonant frequencies. The experimental results can be well-fitted by the coupled mode theory. An automatically adjustable EIT-like effect is discovered by immersing the sensing region of the SNAP microresonator into an aqueous environment. The sharp lineshape and high slope of the transparent window allow us to achieve a liquid refractive index sensitivity of 2058.8 pm/RIU. Furthermore, we investigated a displacement sensing phenomenon by monitoring changes in the slope of the transparent window. We believe that the above results pave the way for multi-channel all-optical switching devices, multi-channel optical communications, and biochemical sensing processing. Full article
(This article belongs to the Special Issue Research Progress in Optical Microcavity-Based Sensing)
Show Figures

Figure 1

22 pages, 1826 KiB  
Article
Determination of Drying Characteristics and Physicochemical Properties of Mint (Mentha spicata L.) Leaves Dried in Refractance Window
by Mohammad Kaveh, Shahin Zomorodi, Szymanek Mariusz and Agata Dziwulska-Hunek
Foods 2024, 13(18), 2867; https://doi.org/10.3390/foods13182867 - 10 Sep 2024
Cited by 10 | Viewed by 2104
Abstract
Drying is one of the most common and effective techniques for preserving the quantitative and qualitative characteristics of medicinal plants in the post-harvest phase. Therefore, in this research, the effect of the new refractance window (RW) technology on the kinetics, thermodynamics, greenhouse gasses, [...] Read more.
Drying is one of the most common and effective techniques for preserving the quantitative and qualitative characteristics of medicinal plants in the post-harvest phase. Therefore, in this research, the effect of the new refractance window (RW) technology on the kinetics, thermodynamics, greenhouse gasses, color indices, bioactive properties, and percentage of mint leaf essential oil was investigated in five different water temperatures in the form of a completely randomized design. This process was modeled by the methods of mathematical models and artificial neural networks (ANNs) with inputs (drying time and water temperature) and an output (moisture ratio). The results showed that with the increase in temperature, the rate of moisture removal from the samples increased and as a result, the drying time, specific energy consumption, CO2, NOx, enthalpy, and entropy decreased significantly (p < 0.05). In addition, the drying water temperature had a significant effect on the rehydration ratio, color indices, bioactive properties, and essential oil percentage of the samples (p < 0.05). The highest value of rehydration ratio was obtained at 80 °C. By increasing temperature, the main color indices such as b*, a*, L*, and Chroma decreased significantly compared to the control (p < 0.05). However, with the increase in temperature, the overall color changes (ΔE) and L* first had a decreasing trend and then an increasing trend, and this trend was the opposite for the rest of the indicators. The application of drying water temperature from 50 to 70 °C increased antioxidant, phenol content, and flavonoid content, and higher drying temperatures led to a significant decrease in these parameters (p < 0.05). On the other hand, the efficiency of the essential oil of the samples was in the range of 0.82 to 2.01%, and the highest value was obtained at the water temperature of 80 °C. Based on the analysis performed on the modeled data, a perceptron artificial neural network with 2-15-14-1 structure with explanation coefficient (0.9999) and mean square error (8.77 × 10−7) performs better than the mathematical methods for predicting the moisture ratio of mint leaves. Full article
(This article belongs to the Section Food Engineering and Technology)
Show Figures

Figure 1

Back to TopTop