Non-Destructive Ellipsometric Analysis of the Refractive Index of Historical Enamels
Abstract
:1. Introduction
2. Materials and Methods
2.1. Samples
2.2. Theoretical Calculations
2.3. Analytical Methods
3. Results and Discussion
3.1. Theoretical Calculations
3.2. Experimental Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
k | extinction coefficient |
MPEF | Multiphoton excitation fluorescence microscopy |
MSE | Mean Squared Error |
n | Refractive index |
NLOM | Nonlinear optical microscopy |
OCT | Optical coherence tomography |
THG | Third-harmonic generation microscopy |
THz-TDS | Terahertz time-domain spectroscopy |
wt.% | Weight percent |
References
- Scholze, H. Glass: Nature, Structure, and Properties; Springer: New York, NY, USA, 1991. [Google Scholar]
- Fernández Navarro, J.M. El Vidrio, 3rd ed.; Consejo Superior de Investigaciones Científicas, Sociedad Española de Cerámica y Vidrio: Madrid, Spain, 2003; ISBN 8400081587. [Google Scholar]
- Sonal; Sharma, A. Energetic Argon Beam Stimulated Growth of Plasmonic Silver Nanoparticles in Ag+-Exchanged Soda Glass: A Study on the Structural, Optical, Photoluminescence and Electrical Behavior. Mater. Sci. Eng. B 2021, 263, 114860. [Google Scholar] [CrossRef]
- Yuan, Y.; Chen, Y.; Chen, W.L.; Hong, R.J. Preparation, Durability and Thermostability of Hydrophobic Antireflective Coatings for Solar Glass Covers. Sol. Energy 2015, 118, 222–231. [Google Scholar] [CrossRef]
- Liu, G.; Mazzaro, R.; Sun, C.; Zhang, Y.; Wang, Y.; Zhao, H.; Han, G.; Vomiero, A. Role of Refractive Index in Highly Efficient Laminated Luminescent Solar Concentrators. Nano Energy 2020, 70, 104470. [Google Scholar] [CrossRef]
- Chowdhary, A.K.; Sikdar, D. Design of Electrotunable All-Weather Smart Windows. Sol. Energy Mater. Sol. Cells 2021, 222, 110921. [Google Scholar] [CrossRef]
- Liu, X.; Wu, Y. Monte-Carlo Optical Model Coupled with Inverse Adding-Doubling for Building Integrated Photovoltaic Smart Window Design and Characterisation. Sol. Energy Mater. Sol. Cells 2021, 223, 110972. [Google Scholar] [CrossRef]
- Zhang, S.; Li, K.; Pu, J.; Ni, W. Preparation and Basic Properties of Praseodymium-Neodymium-Chromium Containing Imitation Gemstone Glass. Materials 2022, 15, 7341. [Google Scholar] [CrossRef]
- Palásti, D.J.; Kopniczky, J.; Vörös, T.; Metzinger, A.; Galbács, G. Qualitative Analysis of Glass Microfragments Using the Combination of Laser-Induced Breakdown Spectroscopy and Refractive Index Data. Sensors 2022, 22, 3045. [Google Scholar] [CrossRef]
- Tennent, N.H.; Townsend, J.H. The Significance of the Refractive Index of Adhesives for Glass Repair. Stud. Conserv. 1984, 29, 205–212. [Google Scholar] [CrossRef]
- Vassas, C.D. Étude Chimique, Thermographique et Physique de Verres de Vitraux Du Moyen-Age. In Proceedings of the Ninth International Congress on Glass, Versailles, France, 27 September–2 October 1971; pp. 241–266. [Google Scholar]
- Saminpanya, S.; Bavornyospiwat, N.; Homklin, S.; Danyutthapolchai, S.; Bupparenoo, P. Physical and Chemical Properties of the Ancient Glass Beads from the Highland Log-Coffin Culture and the Lowland Areas, Thailand: Considerations on Their Colors and Technology. J. Archaeol. Sci. Rep. 2016, 8, 366–380. [Google Scholar] [CrossRef]
- Drozdov, A.; Andreev, M.; Belousov, Y.; Lobanov, A.N.; Kovalenko, K.V.; Pettinari, C. The Coloration of Smalt Produced at Ust-Ruditsa Glass Factory from 1753 to 1768. Inorganica Chim. Acta 2022, 542, 121104. [Google Scholar] [CrossRef]
- Mills, A.A. The Conservation and Restoration of Mediaeval Stained Glass Windows by “Gel-Plating”. Stud. Conserv. 1987, 32, 122. [Google Scholar] [CrossRef]
- II, J.M.M.; Lansbury, P.T. Controlling the Refractive Index of Epoxy Adhesives. J. Am. Inst. Conserv. 1989, 28, 127. [Google Scholar] [CrossRef]
- Everall, N.J. Modeling and Measuring the Effect of Refraction on the Depth Resolution of Confocal Raman Microscopy. Appl. Spectrosc. 2000, 54, 773–782. [Google Scholar] [CrossRef]
- Targowski, P.; Kowalska, M.; Sylwestrzak, M.; Iwanicka, M. OCT for Examination of Cultural Heritage Objects. In Optical Coherence Tomography and Its Non-Medical Applications; Wang, M., Ed.; IntechOpen: London, UK, 2020; pp. 147–164. [Google Scholar]
- Dal Fovo, A.; Castillejo, M.; Fontana, R. Nonlinear Optical Microscopy for Artworks Physics. Riv. Nuovo Cimento 2021, 44, 453–498. [Google Scholar] [CrossRef]
- Filippidis, G.; Tserevelakis, G.J.; Selimis, A.; Fotakis, C. Nonlinear Imaging Techniques as Non-Destructive, High-Resolution Diagnostic Tools for Cultural Heritage Studies. Appl. Phys. A 2015, 118, 417–423. [Google Scholar] [CrossRef]
- Besseling, T.H.; Jose, J.; Blaaderen, A. Van Methods to Calibrate and Scale Axial Distances in Confocal Microscopy as a Function of Refractive Index. J. Microsc. 2015, 257, 142–150. [Google Scholar] [CrossRef]
- Palomar, T.; Iwanicka, M.; Pombo Cardoso, I.; Vilarigues, M.; Targowski, P. Assessing the Decorative Techniques of Two Art Nouveau Glass Windows by Optical Coherence Tomography (OCT). Herit. Sci. 2023, 11, 203. [Google Scholar] [CrossRef]
- Kunicki-Goldfinger, J.; Targowski, P.; Góra, M.; Karaszkiewicz, P.; Dzierzanowski, P. Characterization of Glass Surface Morphology by Optical Coherence Tomography. Stud. Conserv. 2009, 54, 117–128. [Google Scholar] [CrossRef]
- Brostoff, L.B.; Ward-Bamford, C.L.; Zaleski, S.; Villafana, T.; Buechele, A.C.; Muller, I.S.; France, F.; Loew, M. Glass at Risk: A New Approach for the Study of 19th Century Vessel Glass. J. Cult. Herit. 2022, 54, 155–166. [Google Scholar] [CrossRef]
- Read, M.; Cheung, C.S.; Ling, D.; Korenberg, C.; Meek, A.; Kogou, S.; Liang, H. A Non-Invasive Investigation of Limoges Enamels Using Both Optical Coherence Tomography (OCT) and Spectral Imaging: A Pilot Study. In Proceedings of the Optics for Arts, Architecture, and Archaeology VII, Munich, Germany, 24–27 June 2019; Targowski, P., Groves, R., Liang, H., Eds.; SPIE: St Bellingham, WA, USA, 2019; Volume 11058, p. 2. [Google Scholar]
- Brostoff, L.; Zaleski, S.; Ward-Bamford, C.L.; Montagnino, E.; Muller, I.; Buechele, A.; Loew, M.; France, F. Nineteenth Century Glass Manufacture and Its Effect on Photographic Glass Stability. J. Inst. Conserv. 2020, 43, 125–141. [Google Scholar] [CrossRef]
- Oujja, M.; Palomar, T.; Martínez-Weinbaum, M.; Martínez-Ramírez, S.; Castillejo, M. Characterization of Medieval-like Glass Alteration Layers by Laser Spectroscopy and Nonlinear Optical Microscopy. Eur. Phys. J. Plus 2021, 136, 859. [Google Scholar] [CrossRef]
- Oujja, M.; Agua, F.; Sanz, M.; Morales-Martin, D.; García-Heras, M.; Villegas, M.A.; Castillejo, M. Multiphoton Excitation Fluorescence Microscopy and Spectroscopic Multianalytical Approach for Characterization of Historical Glass Grisailles. Talanta 2021, 230, 122314. [Google Scholar] [CrossRef]
- Machado, C.; Oujja, M.; Cerqueira Alves, L.; Martínez-Weinbaum, M.; Maestro-Guijarro, L.; Carmona-Quiroga, P.M.; Castillejo, M.; Vilarigues, M.; Palomar, T. Laser-Based Techniques for the Non-Invasive Characterisation of Grisaille Paints on Stained-Glass Windows. Herit. Sci. 2023, 11, 85. [Google Scholar] [CrossRef]
- Schalm, O.; Anaf, W. Laminated Altered Layers in Historical Glass: Density Variations of Silica Nanoparticle Random Packings as Explanation for the Observed Lamellae. J. Non Cryst. Solids 2016, 442, 1–16. [Google Scholar] [CrossRef]
- Schalm, O.; Van der Linden, V.; Frederickx, P.; Luyten, S.; Van der Snickt, G.; Caen, J.; Schryvers, D.; Janssens, K.; Cornelis, E.; Van Dyck, D.; et al. Enamels in Stained Glass Windows: Preparation, Chemical Composition, Microstructure and Causes of Deterioration. Spectrochim. Acta Part B At. Spectrosc. 2009, 64, 812–820. [Google Scholar] [CrossRef]
- Machado, A.; Vilarigues, M. Cobalt Blue—Reproduction and Characterisation of Blue Enamel Recipes from The Handmaid to the Arts by Robert Dossie. Glass Technol. Eur. J. Glass Sci. Technol. Part A 2016, 57, 131–140. [Google Scholar] [CrossRef]
- Appen, A.A. Calcul des Propriétés Optiques, de la Masse Volumique et du Coefficient de Dilatation des Verres de Silicates en Fonction de Leur Composition. Dokl. Akad. Nauk. 1949, 69, 841–844. [Google Scholar]
- Scholze, H. Calculation Based on Composition. In Glass: Nature, Structure and Properties; Springer: New York, NY, USA, 1991; pp. 223–227. [Google Scholar]
- Fanderlik, I.; Skrivan, M. Utilisation de la Méthode Mathématico-Statistique des Expériences Planifiées Pour Suivre la Variation des Propriétés Physiques des Verres de Cristal Au Plomb En Fonction de Leur Composition. Verres Refract. 1972, 26, 19–23. [Google Scholar]
- Bonetti, G.; Salvagno, L. Utilizzazione di un Metodo Matematico-Statistico per il Calcolo Dell’indice di Refrazione dei Vetri “Sonoro Superiore” in Finzione della Loro Composizione Chimica. Riv. Stn. Sper. Vetro 1983, 13, 99–108. [Google Scholar]
- Beltrán, M.; Schibille, N.; Brock, F.; Gratuze, B.; Vallcorba, O.; Pradell, T. Modernist Enamels: Composition, Microstructure and Stability. J. Eur. Ceram. Soc. 2020, 40, 1753–1766. [Google Scholar] [CrossRef]
- Beltran, M.; Schibille, N.; Gratuze, B.; Vallcorba, O.; Bonet, J.; Pradell, T. Composition, Microstructure and Corrosion Mechanisms of Catalan Modernist Enamelled Glass. J. Eur. Ceram. Soc. 2021, 41, 1707–1719. [Google Scholar] [CrossRef]
- Bansal, N.P.; Doremus, R.H. Handbook of Glass Properties; Academic Press: Orlando, FL, USA, 1986. [Google Scholar]
- Boissiere, C.; Grosso, D.; Lepoutre, S.; Nicole, L.; Bruneau, A.B.; Sanchez, C. Porosity and Mechanical Properties of Mesoporous Thin Films Assessed by Environmental Ellipsometric Porosimetry. Langmuir 2005, 21, 12362–12371. [Google Scholar] [CrossRef]
- Kaspar, T.C.; Reiser, J.T.; Ryan, J.V.; Wall, N.A. Non-Destructive Characterization of Corroded Glass Surfaces by Spectroscopic Ellipsometry. J. Non Cryst. Solids 2018, 481, 260–266. [Google Scholar] [CrossRef]
- Geller, R.F.; Bunting, E.N. The System PbO-B2O3-SiO2. J. Res. Natl. Bur. Stand. 1939, 23, 275–283. [Google Scholar] [CrossRef]
- Machado, C.; Vilarigues, M.; Palomar, T. Historical Grisailles Characterisation: A Literature Review. J. Cult. Herit. 2021, 49, 239–249. [Google Scholar] [CrossRef]
- Todorov, R.; Tasseva, J.; Lozanova, V.; Lalova, A.; Iliev, T.; Paneva, A. Ellipsometric Characterization of Thin Films from Multicomponent Chalcogenide Glasses for Application in Modern Optical Devices. Adv. Condens. Matter Phys. 2013, 2013, 308258. [Google Scholar] [CrossRef]
- Lide, D.R. CRC Handbook of Chemistry and Physics; CRC Press: Boca Raton, FL, USA, 2003. [Google Scholar]
- Hendi, A.H.Y.; Al-Kuhaili, M.F.; Durrani, S.M.A. Chemical and Optical Properties of MnO2 Thin Films Prepared by Reactive Evaporation of Manganese. Int. J. Res. Eng. Technol. 2016, 5, 320–328. [Google Scholar]
- Lind, M.A.; Hartman, J.S. Natural Aging of Soda-Lime-Silicate Glass in a Semi-Arid Environment. Sol. Energy Mater. 1980, 3, 81–95. [Google Scholar] [CrossRef]
- Casparis-Hauser, E.; Guenther, K.H.; Tiefenthaler, K. Spectrophotometric and Ellipsometric Study of Leached Layers Formed on Optical Glass by a Diffusion Process. In Proceedings of the 1983 International Technical Conference—SPIE 0401, Geneva, Switzerland, 28 November 1983; Thin Film Technologies I. Jacobsson, J.R., Ed.; SPIE: St Bellingham, WA, USA, 1983; pp. 211–215. [Google Scholar]
- Portal, S.; Sempere, R. Study of Alkali Silicate Glass Corrosion Using Spectroscopic Ellipsometry and Secondary Ion Mass Spectrometry. Phys. Chem. Glas. 2003, 44, 303–307. [Google Scholar]
Set | Sample | n Calculated | Results Ellipsometry | Main Elements of the Chemical Composition (wt.%) | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Appen | Bonetti, Salvagno | Fanderlik, Skrivan | Refractive Index | B2O3 | Na2O | MgO | Al2O3 | SiO2 | K2O | CaO | CuO | ZnO | BaO | PbO | ||
Set 1. Produced enamels [31] | R6B2Z | 1.65 | 1.62 | 1.62 | 1.616 ± 0.004 | 10.9 | 4.7 | - | - | 22.4 | 15.8 | - | - | - | - | 40.8 |
R6B2S | 1.67 | 1.62 | 1.62 | 1.610 ± 0.011 | 11 | 4.7 | - | - | 22.6 | 16.3 | - | - | - | - | 40.9 | |
R8B1S | 1.45 | 1.59 | 1.59 | 1.604 ± 0.006 | - | 3.7 | - | 0.2 | 34.3 | 17.9 | - | - | - | - | 38.2 | |
R8B2S | 1.6 | 1.59 | 1.59 | 1.597 ± 0.011 | 5.1 | 2.2 | - | 0.2 | 34.1 | 17.2 | - | - | - | - | 35.8 | |
R8B3S | 1.36 | 1.49 | 1.47 | 1.489 ± 0.009 | 1.3 | 4.3 | - | 0.2 | 71.2 | 17.3 | - | - | - | - | - | |
R10B3S | 1.18 | 1.49 | 1.46 | 1.554 ± 0.063 | 1.1 | 3.8 | - | 0.1 | 59.4 | 14.6 | - | 16.3 | - | - | - | |
Set 2. Replica enamels [36] | E3 | 1.68 | 1.63 | 1.67 | 1.613 ± 0.003 | 7 | 5.1 | 0.1 | 0.3 | 30.4 | 0.1 | 2.6 | - | - | - | 53 |
E14 | 1.73 | 1.67 | 1.71 | 1.638 ± 0.004 | 21.1 | 2.1 | 0.1 | 0.3 | 8.6 | 0.2 | 0.9 | - | 11.2 | - | 53.2 | |
E23 | 1.63 | 1.63 | 1.67 | 1.652 ± 0.007 | 16.6 | 0.8 | - | 0.3 | 9.3 | 0.1 | 0.5 | - | 14.0 | - | 40.8 | |
E107 | 1.73 | 1.67 | 1.72 | 1.645 ± 0.003 | 19.8 | 0.9 | - | 0.2 | 8.9 | 0.3 | 0.6 | - | 13.8 | - | 52.6 | |
E119 | 1.74 | 1.67 | 1.72 | 1.652 ± 0.003 | 20.4 | 1.1 | - | 0.2 | 8.2 | 0.3 | 0.5 | - | 13.9 | - | 53.4 | |
E131 | 1.73 | 1.67 | 1.71 | 1.684 ± 0.002 | 21.3 | 1.5 | 0.1 | 0.5 | 9.3 | 0.1 | 0.7 | - | 12.9 | - | 52.0 | |
Set 3. Historical 20th cent. stained-glass windows [37] | BC3B blue | 1.59 | 1.61 | 1.65 | 1.591 ± 0.008 | 5.2 | 4.9 | 0.1 | 3.6 | 28.3 | 0.1 | 1.2 | - | 8.1 | 0.2 | 42.2 |
BC3C green | 1.58 | 1.62 | 1.66 | 1.645 ± 0.003 | 7.5 | 6.3 | 0.1 | 1.9 | 26.5 | 0.2 | 7.1 | 1.6 | 2.2 | 0.1 | 40.5 | |
PG2C bluish | 1.55 | 1.6 | 1.64 | 1.644 ± 0.006 | 4.5 | 5.5 | 0.1 | 2.1 | 32.9 | 0.1 | 7.2 | 1.9 | 3.7 | 0.4 | 35.9 | |
PG2C purple | 1.46 | 1.57 | 1.59 | 1.593 ± 0.005 | 3.5 | 6.7 | 0.2 | 0.7 | 41.6 | 0.3 | 5.8 | - | 0.2 | 0.4 | 27.9 | |
EN1A green | 1.71 | 1.66 | 1.7 | 1.641 ± 0.015 | 15.7 | 1.4 | - | 0.8 | 15.8 | 0.1 | 0.8 | 1.6 | 1.9 | - | 61.3 | |
EN1C yellow | 1.75 | 1.66 | 1.71 | 1.693 ± 0.029 | 14.5 | 1.5 | - | 0.5 | 15 | 0.1 | 1.0 | - | 7.5 | - | 58.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Palomar, T.; Pradell, T.; Mosa, J. Non-Destructive Ellipsometric Analysis of the Refractive Index of Historical Enamels. Materials 2025, 18, 1137. https://doi.org/10.3390/ma18051137
Palomar T, Pradell T, Mosa J. Non-Destructive Ellipsometric Analysis of the Refractive Index of Historical Enamels. Materials. 2025; 18(5):1137. https://doi.org/10.3390/ma18051137
Chicago/Turabian StylePalomar, Teresa, Trinitat Pradell, and Jadra Mosa. 2025. "Non-Destructive Ellipsometric Analysis of the Refractive Index of Historical Enamels" Materials 18, no. 5: 1137. https://doi.org/10.3390/ma18051137
APA StylePalomar, T., Pradell, T., & Mosa, J. (2025). Non-Destructive Ellipsometric Analysis of the Refractive Index of Historical Enamels. Materials, 18(5), 1137. https://doi.org/10.3390/ma18051137