Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (279)

Search Parameters:
Keywords = reflectance corrosion

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 5070 KiB  
Article
Electrochemical Noise Analysis in Passivated Martensitic Precipitation-Hardening Stainless Steels in H2SO4 and NaCl Solutions
by Facundo Almeraya-Calderon, Miguel Villegas-Tovar, Erick Maldonado-Bandala, Demetrio Nieves-Mendoza, Ce Tochtli Méndez-Ramírez, Miguel Angel Baltazar-Zamora, Javier Olguín-Coca, Luis Daimir Lopez-Leon, Griselda Santiago-Hurtado, Verónica Almaguer-Cantu, Jesus Manuel Jaquez-Muñoz and Citlalli Gaona-Tiburcio
Metals 2025, 15(8), 837; https://doi.org/10.3390/met15080837 - 26 Jul 2025
Viewed by 316
Abstract
Precipitation-hardenable stainless steels (PHSS) are widely used in various applications in the aeronautical industry such in as landing gear supports, actuators, and fasteners, among others. This research aims to study the pitting corrosion behavior of passivated martensitic precipitation-hardening stainless steel, which underwent passivation [...] Read more.
Precipitation-hardenable stainless steels (PHSS) are widely used in various applications in the aeronautical industry such in as landing gear supports, actuators, and fasteners, among others. This research aims to study the pitting corrosion behavior of passivated martensitic precipitation-hardening stainless steel, which underwent passivation for 120 min at 25 °C and 50 °C in citric and nitric acid baths before being immersed in solutions containing 1 wt.% sulfuric acid (H2SO4) and 5 wt.% sodium chloride (NaCl). Electrochemical characterization was realized employing electrochemical noise (EN), while microstructural analysis employed scanning electron microscopy (SEM). The result indicates that EN reflects localized pitting corrosion mechanisms. Samples exposed to H2SO4 revealed activation–passivation behavior, whereas those immersed in NaCl exhibited pseudo-passivation, indicative of an unstable oxide film. Current densities in both solutions ranged from 10−3 to 10−5 mA/cm2, confirming susceptibility to localized pitting corrosion in all test conditions. The susceptibility to localized attack is associated with the generation of secondary oxides on the surface. Full article
(This article belongs to the Special Issue Recent Advances in High-Performance Steel)
Show Figures

Figure 1

16 pages, 4296 KiB  
Article
Enhanced Photocathodic Protection Performance of TiO2/NiCo2S4 Composites for 304 Stainless Steel
by Honggang Liu, Hong Li, Xuan Zhang, Baizhao Xing, Zhuangzhuang Sun and Yanhui Li
Coatings 2025, 15(8), 874; https://doi.org/10.3390/coatings15080874 - 25 Jul 2025
Viewed by 324
Abstract
To address the corrosion of 304 stainless steel in marine environments, TiO2/NiCo2S4 composite photoanodes were fabricated via anodic oxidation and hydrothermal methods. X-ray diffraction, scanning electron microscope, energy-dispersive x-ray spectroscopy, and x-ray photoelectron spectroscopy analyses indicated the growth [...] Read more.
To address the corrosion of 304 stainless steel in marine environments, TiO2/NiCo2S4 composite photoanodes were fabricated via anodic oxidation and hydrothermal methods. X-ray diffraction, scanning electron microscope, energy-dispersive x-ray spectroscopy, and x-ray photoelectron spectroscopy analyses indicated the growth of hexagonal NiCo2S4 particles on anatase TiO2 nanotube arrays, forming a type-II heterojunction. Spectroscopy of ultraviolet-visible diffuse reflectance absorption showed that NiCo2S4 extended TiO2’s light absorption into the visible region. Electrochemical tests revealed that under visible light, the composite photoanode decreased the corrosion potential of 304ss to −0.7 V vs. SCE and reduced charge transfer resistance by 20% compared to pure TiO2. The enhanced performance stemmed from efficient electron-hole separation and transport enabled by the type-II heterojunction. Cyclic voltammetry tests indicated the composite’s electrochemical active surface area increased 1.8-fold, demonstrating superior catalytic activity. In conclusion, the TiO2/NiCo2S4 composite photoanode offers an effective approach for marine corrosion protection of 304ss. Full article
Show Figures

Figure 1

23 pages, 5436 KiB  
Article
Flexural Testing of Steel-, GFRP-, BFRP-, and Hybrid Reinforced Beams
by Yazeed Elbawab, Youssef Elbawab, Zeina El Zoughby, Omar ElKadi, Mohamed AbouZeid and Ezzeldin Sayed-Ahmed
Polymers 2025, 17(15), 2027; https://doi.org/10.3390/polym17152027 - 25 Jul 2025
Viewed by 402
Abstract
The construction industry is exploring alternatives to traditional steel reinforcement in concrete due to steel’s corrosion vulnerability. Glass Fiber Reinforced Polymer (GFRP) and Basalt Fiber Reinforced Polymer (BFRP), known for their high tensile strength and corrosion resistance, are viable options. This study evaluates [...] Read more.
The construction industry is exploring alternatives to traditional steel reinforcement in concrete due to steel’s corrosion vulnerability. Glass Fiber Reinforced Polymer (GFRP) and Basalt Fiber Reinforced Polymer (BFRP), known for their high tensile strength and corrosion resistance, are viable options. This study evaluates the flexural performance of concrete beams reinforced with GFRP, BFRP, and hybrid systems combining these materials with steel, following ACI 440.1R-15 guidelines. Twelve beams were assessed under three-point bending to compare their flexural strength, ductility, and failure modes against steel reinforcement. The results indicate that GFRP and BFRP beams achieve 8% and 12% higher ultimate load capacities but 38% and 58% lower deflections at failure than steel, respectively. Hybrid reinforcements enhance both load capacity and deflection performance (7% to 17% higher load with 11% to 58% lower deflection). However, GFRP and BFRP beams show reduced energy absorption, suggesting that hybrid systems could better support critical applications like seismic and impact-prone structures by improving ductility and load handling. In addition, BFRP beams predominantly failed due to debonding and concrete crushing, while GFRP beams failed due to bar rupture, reflecting key differences in their flexural failure mechanisms. Full article
(This article belongs to the Special Issue Fibre-Reinforced Polymer Laminates: Structure and Properties)
Show Figures

Figure 1

24 pages, 6934 KiB  
Article
In Situ High-Resolution Optical Microscopy Survey of the Initial Reactivity of Multiphase ZnAlMgSi Coating on Steel
by Guilherme Adinolfi Colpaert Sartori, Oumayma Gabsi, Tiago Machado Amorim, Viacheslav Shkirskiy and Polina Volovitch
Metals 2025, 15(8), 821; https://doi.org/10.3390/met15080821 - 23 Jul 2025
Viewed by 269
Abstract
The initial reactivity of a multiphase ZnAlMgSi coating with an Al content > 30 wt.% was studied by in situ reflective microscopy under alternating applied potentials +50 mV/−50 mV vs. open-circuit potential in 5 wt.% NaCl and 5 wt.% Na2SO4 [...] Read more.
The initial reactivity of a multiphase ZnAlMgSi coating with an Al content > 30 wt.% was studied by in situ reflective microscopy under alternating applied potentials +50 mV/−50 mV vs. open-circuit potential in 5 wt.% NaCl and 5 wt.% Na2SO4 aqueous solutions. In both environments, galvanic coupling between different coating phases and the anodic behavior decreased in the order binary ZnAl > binary Zn/Zn2Mg > Zn2Mg > Al(Zn); dendrites were evidenced for the coating exposed alone as well as in galvanic coupling with steel. Contrary to the observations known for Zn-rich ZnAlMg coatings, pure Zn2Mg was less reactive than the pure ZnAl phase, underlining the importance of the microstructure for reactivity. Si-needles were systematically cathodic, and Al(Zn) dendrites have shown cathodic behavior in some couplings. In the configuration of coupling with steel, corrosion started at the interfaces “binary ZnAl/steel substrate” or “binary ZnAl/Si particle”. The distribution and nature of the corrosion products formed during the experiment were assessed using X-ray microanalysis in scanning electron microscopy and confocal Raman microscopy. In the sulfate environment, a homogenous and stable corrosion product layer formed from the first steps of the degradation; this was in contrast to the chloride environment, where no surface film formed on the dendrites. Full article
Show Figures

Figure 1

43 pages, 7260 KiB  
Article
A Solution Method for Non-Linear Underdetermined Equation Systems in Grounding Grid Corrosion Diagnosis Based on an Enhanced Hippopotamus Optimization Algorithm
by Jinhe Chen, Jianyu Qi, Yiyang Ao, Keying Wang and Xin Song
Biomimetics 2025, 10(7), 467; https://doi.org/10.3390/biomimetics10070467 - 16 Jul 2025
Viewed by 466
Abstract
As power grids scale and aging assets edge toward obsolescence, grounding grid corrosion has become a critical vulnerability. Conventional diagnosis must fit high-dimensional electrical data to a physical model, typically yielding a nonlinear under-determined system fraught with computational burden and uncertainty. We propose [...] Read more.
As power grids scale and aging assets edge toward obsolescence, grounding grid corrosion has become a critical vulnerability. Conventional diagnosis must fit high-dimensional electrical data to a physical model, typically yielding a nonlinear under-determined system fraught with computational burden and uncertainty. We propose the Enhanced Biomimetic Hippopotamus Optimization (EBOHO) algorithm, which distills the river-dwelling hippo’s ecological wisdom into three synergistic strategies: a beta-function herd seeding that replicates the genetic diversity of juvenile hippos diffusing through wetlands, an elite–mean cooperative foraging rule that echoes the way dominant bulls steer the herd toward nutrient-rich pastures, and a lens imaging opposition maneuver inspired by moonlit water reflections that spawn mirror candidates to avert premature convergence. Benchmarks on the CEC 2017 suite and four classical design problems show EBOHO’s superior global search, robustness, and convergence speed over numerous state-of-the-art meta-heuristics, including prior hippo variants. An industrial case study on grounding grid corrosion further confirms that EBOHO swiftly resolves the under-determined equations and pinpoints corrosion sites with high precision, underscoring its promise as a nature-inspired diagnostic engine for aging power system infrastructure. Full article
Show Figures

Figure 1

19 pages, 1252 KiB  
Article
A Time-Variant Model for Chloride Ion Diffusion Coefficient in Concrete
by Hongliang Fang, Qiuwei Yang, Jiwei Ma, Xi Peng and Kangshuo Xia
Buildings 2025, 15(13), 2272; https://doi.org/10.3390/buildings15132272 - 27 Jun 2025
Viewed by 240
Abstract
When the chloride ion concentration within concrete reaches a certain threshold, it triggers corrosion of the reinforcing steel bars, severely compromising the durability of reinforced concrete structures. Accurately assessing how the chloride ion concentration in concrete evolves over time is crucial for ensuring [...] Read more.
When the chloride ion concentration within concrete reaches a certain threshold, it triggers corrosion of the reinforcing steel bars, severely compromising the durability of reinforced concrete structures. Accurately assessing how the chloride ion concentration in concrete evolves over time is crucial for ensuring structural safety and evaluating the remaining service life. This work first analyzes the advantages and disadvantages of several existing time-dependent models for chloride ion diffusion coefficients. Based on this foundation, a new time-varying model is proposed to more accurately predict the variation of chloride ion diffusion coefficient with service time. The newly proposed model can be regarded as a variant of the square-root model, incorporating only two fitting parameters. It can be readily transformed into a linear regression model for solving the fitting parameters, rendering it highly convenient to use. Using 11 sets of experimental data from the existing literature as examples, the new model consistently demonstrates the lowest mean fitting error and the highest coefficient of determination across all scenarios, showcasing its superior generality. This new model likely reflects the fundamental physical law governing the temporal variation of chloride ion diffusion coefficients. Full article
Show Figures

Figure 1

23 pages, 4740 KiB  
Article
Facile Fabrication of CuO Modified TiO2 Heterostructure for Enhanced Photocathodic Corrosion Protection of 304 Stainless Steel
by Abinaya Radhakrishnan, Manoja Tharmaraj, Anuradha Ramani and Nagarajan Srinivasan
Electrochem 2025, 6(2), 21; https://doi.org/10.3390/electrochem6020021 - 12 Jun 2025
Viewed by 1326
Abstract
In recent years, protecting stainless steel from corrosion has become crucial, particularly in harsh environments. The present study focuses on improving the photocathodic corrosion resistance of 304 stainless steel (304SS) by fabricating TiO2/CuO composite coatings using the spin coating technique with [...] Read more.
In recent years, protecting stainless steel from corrosion has become crucial, particularly in harsh environments. The present study focuses on improving the photocathodic corrosion resistance of 304 stainless steel (304SS) by fabricating TiO2/CuO composite coatings using the spin coating technique with varying CuO weight percentages. Structural characterization through X-ray diffraction (XRD) confirmed the presence of the anatase phase of TiO2 and the successful integration of CuO. Raman spectroscopy demonstrated redshifts in the TiO2 characteristic peaks, suggesting changes in bond lengths attributed to CuO incorporation. These findings were further corroborated by Fourier-transform infrared (FTIR) spectroscopy. Surface characterization showed uniform, porous coatings with pore sizes ranging from 75 to 200 nm, which contributed to improved barrier properties. UV–visible diffuse reflectance spectroscopy (UV-DRS) demonstrated enhanced visible light absorption in the heterostructures. Mott–Schottky analysis confirmed improved charge carrier density and favorable band alignment, facilitating efficient charge separation. The electrochemical performance was evaluated in 3.5% NaCl solution under dark and light environments. The results demonstrated that the TiO2/CuO heterostructure significantly enhanced electron transfer and suppressed electron-hole recombination, providing adequate photocathodic protection. Notably, under illumination, the TiO2/CuO (0.005 g) coating achieved a corrosion potential of −255 mV vs SCE and reduced the corrosion current density to 0.460 × 10−6 mA cm−2. These findings suggest that TiO2/CuO coatings offer a promising, durable, and cost-effective solution for corrosion protection in industries such as oil, shipbuilding, and pipelines. Full article
Show Figures

Graphical abstract

21 pages, 3357 KiB  
Article
Studies on Corrosion Initiation in Reinforced Concrete Structures Using Ground-Penetrating Radar
by Wiktor Wciślik and Wioletta Raczkiewicz
Materials 2025, 18(10), 2308; https://doi.org/10.3390/ma18102308 - 15 May 2025
Viewed by 401
Abstract
The present article describes an example of the use of ground-penetrating radar (GPR) to detect early stages of reinforcement corrosion. Two series of concrete samples with reinforcing bars were tested. The first series was reference samples (without corrosion). Samples of the second series [...] Read more.
The present article describes an example of the use of ground-penetrating radar (GPR) to detect early stages of reinforcement corrosion. Two series of concrete samples with reinforcing bars were tested. The first series was reference samples (without corrosion). Samples of the second series were subjected to accelerated corrosion by immersing them in NaCl solution, while undergoing 120 freeze–thaw cycles. Unlike the commonly used electrochemical method of corrosion acceleration, in the studies discussed here, the corrosion processes were more similar to natural ones, taking into account the influence of changes in the structure of the cover under the influence of frost. GPR scanning of samples of both series indicated that all physical and chemical processes accompanying corrosion together caused a decrease in the amplitude of the reflected wave and an increase in its propagation time. The wave amplitude, due to the significant dispersion of results, was, however, a rather unreliable parameter. The wave propagation time was characterized by significantly better repeatability, which makes it a better measure of the progress of corrosion. In general, the GPR with a 2 GHz antenna proved to be an effective tool for diagnosing early stages of corrosion in reinforced concrete. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

23 pages, 10361 KiB  
Article
Analysis of the Material and Coating of the Nameplate of Vila D. Bosco in Macau
by Liang Zheng, Jianyi Zheng, Xiyue He and Yile Chen
Materials 2025, 18(10), 2190; https://doi.org/10.3390/ma18102190 - 9 May 2025
Viewed by 659
Abstract
This study focuses on the nameplate of Vila D. Bosco, a modern building in Macau from the time of Portuguese rule, and looks at the types of metal materials and surface coatings used, as well as how they corrode due to the tropical [...] Read more.
This study focuses on the nameplate of Vila D. Bosco, a modern building in Macau from the time of Portuguese rule, and looks at the types of metal materials and surface coatings used, as well as how they corrode due to the tropical marine climate affecting the building’s metal parts. The study uses different techniques, such as X-ray fluorescence spectroscopy (XRF), scanning electron microscopy/energy dispersive spectroscopy (SEM-EDS), X-ray diffraction (XRD), attenuated total internal reflectance Fourier transform infrared spectroscopy (ATR-FTIR), and cross-sectional microscopic analysis, to carefully look at the metal, corrosion products, and coating of the nameplate. The results show that (1) the nameplate matrix is a resulfurized steel with a high sulfur content (Fe up to 97.3% and S up to 1.98%), and the sulfur element is evenly distributed inside, which is one of the internal factors that induce corrosion. (2) Rust is composed of polycrystalline iron oxides such as goethite (α-FeOOH), hematite (α-Fe2O3), and magnetite (Fe3O4) and has typical characteristics of atmospheric oxidation. (3) The white and yellow-green coatings on the nameplate are oil-modified alkyd resin paints, and the color pigments are TiO2, PbCrO4, etc. The surface layer of the letters is protected by a polyvinyl alcohol layer. The paint application process leads to differences in the thickness of the paint in different regions, which directly affects the anti-rust performance. The study reveals the deterioration mechanism of resulfurized steel components in a subtropical polluted environment and puts forward repair suggestions that consider both material compatibility and reversibility, providing a reference for the protection practice of modern and contemporary architectural metal heritage in Macau and even in similar geographical environments. Full article
(This article belongs to the Special Issue Materials in Cultural Heritage: Analysis, Testing, and Preservation)
Show Figures

Figure 1

15 pages, 6553 KiB  
Article
A Wood-Carved and Painted Chest from Epirus, Greece: Analysis Prior to Preservation
by Asimina Bellou, Christos Karydis, Maria Filopoulou, Artemios Oikonomou and Stamatis Boyatzis
Heritage 2025, 8(5), 154; https://doi.org/10.3390/heritage8050154 - 28 Apr 2025
Viewed by 688
Abstract
Folk art includes objects that are items for everyday use and, at the same time, gracefully reflect the Greek artistic point of view, drawing its inspiration from life itself, the environment and its beauties, and local tradition. An 18th c. wood-carved and painted [...] Read more.
Folk art includes objects that are items for everyday use and, at the same time, gracefully reflect the Greek artistic point of view, drawing its inspiration from life itself, the environment and its beauties, and local tradition. An 18th c. wood-carved and painted chest coming from the famous wood-carved centers of Epirus in Greece is presented in this study. As the number of studies and the general bibliographical references are limited for these kinds of items, prior to interventive conservation, a protocol of analysis was followed to identify the damages, the construction materials, and previous alterations. The main goal of this study is to identify the component materials using non-destructive techniques. The methodology followed for the documentation of the artifact includes the following: a. digital microscopy to identify damage from insects, different cracks and losses on the gesso and paint surface, corrosion products, etc.; b. 3D imaging using a polycam, with special attention given to the inside decoration of the cap; c. IR and UV photography to identify any previous alterations or signs of alterations in the varnish layers; d. and XRF analysis to identify the three (3) main colors of the chest, such as the blue used extensively as a background, red, and white. Nevertheless, the Greek folklore painting palette is limited, and for this reason, this study can be a foundation for research on similar artifacts. Full article
(This article belongs to the Section Museum and Heritage)
Show Figures

Figure 1

18 pages, 10080 KiB  
Article
SCC Susceptibility of Polystyrene/TiO2 Nanocomposite-Coated Thin-Sheet Aluminum Alloy 2024—T3 in 3.5% NaCl
by Cheng-fu Chen, Brian Baart, John Halford and Junqing Zhang
Eng 2025, 6(4), 83; https://doi.org/10.3390/eng6040083 - 21 Apr 2025
Viewed by 507
Abstract
The effectiveness of polystyrene (PS)/TiO2 nanocomposite coatings in reducing stress–corrosion cracking (SCC) susceptibility of aluminum alloy 2024-T3 (AA2024-T3) was evaluated using an accelerated stress–corrosion test. Polystyrene (PS)-based coatings incorporating TiO2 nanoparticles with three different aspect ratios (ARs) were compared to a [...] Read more.
The effectiveness of polystyrene (PS)/TiO2 nanocomposite coatings in reducing stress–corrosion cracking (SCC) susceptibility of aluminum alloy 2024-T3 (AA2024-T3) was evaluated using an accelerated stress–corrosion test. Polystyrene (PS)-based coatings incorporating TiO2 nanoparticles with three different aspect ratios (ARs) were compared to a bare polystyrene coating. A compact tension (CT) specimen (5 mm thick) was coated for testing in a synergistic stress–corrosion environment. A slow constant displacement rate of 1.25 nm/s was applied in the load-line direction of the specimen to gradually open the crack mouth, while the crack tip was periodically dosed with a 3.5 wt.% NaCl solution. Load-displacement data were recorded and analyzed to calculate the J-integral, according to Standard ASTM E1820, for each coated specimen tested under laboratory-controlled SCC conditions. The fracture toughness, stress intensity, and six other SCC susceptibility indices were further developed to compare the performance of each coating in enhancing SCC resistance. The results revealed a strong dependence of SCC resistance on the nanoparticle aspect ratio, with the nanocomposite coating featuring an AR of 1 performing the best. The SCC behavior was reflected in the fractography of the fractured halves of a specimen, where cleavage was observed during the very slow, stable cracking stage, and dimples formed as a result of fast, unstable cracking toward the end of testing. These findings highlight the potential of tailored nanocomposite coatings to enhance the durability of aerospace-grade aluminum alloys. Full article
(This article belongs to the Section Materials Engineering)
Show Figures

Figure 1

30 pages, 8435 KiB  
Article
SC-AttentiveNet: Lightweight Multiscale Feature Fusion Network for Surface Defect Detection on Copper Strips
by Zeteng Li, Guo Zhang, Qi Yang and Liqiong Yin
Electronics 2025, 14(7), 1422; https://doi.org/10.3390/electronics14071422 - 1 Apr 2025
Viewed by 597
Abstract
Small defects on the surface of copper strips have a significant impact on key properties such as electrical conductivity and corrosion resistance, and existing inspection techniques struggle to meet the demand in terms of accuracy and generalisability. Although there have been some studies [...] Read more.
Small defects on the surface of copper strips have a significant impact on key properties such as electrical conductivity and corrosion resistance, and existing inspection techniques struggle to meet the demand in terms of accuracy and generalisability. Although there have been some studies on metal surface defect detection, there is a relative lack of research on highly reflective copper strips. In this paper, a lightweight and efficient copper strip defect detection algorithm, SC-AttentiveNet, is proposed, aiming to solve the problems of the large model size, slow speed, insufficient accuracy and poor generalisability of existing models. The algorithm is based on ConvNeXt V2, and combines the SCDown module and group normalisation to design the SCGNNet feature extraction network, which significantly reduces the computational overhead while maintaining excellent feature extraction capability. In addition, the algorithm introduces the SPPF-PSA module to enhance the multi-scale feature extraction capability, and constructs a new neck feature fusion network via the HD-CF Fusion Block module, which further enhances the feature diversity and fine granularity. The experimental results show that SC-AttentiveNet has a mAP of 90.11% and 64.14% on the KUST-DET and VOC datasets, respectively, with a parameter count of only 6.365 MB and a computational complexity of 14.442 GFLOPs. Tests on the NEU-DET dataset show that the algorithm has an excellent generalisation performance, with a mAP of 76.41% and a detection speed of 78 FPS, demonstrating a wide range of practical application potential. Full article
(This article belongs to the Section Artificial Intelligence)
Show Figures

Figure 1

14 pages, 1990 KiB  
Article
Optimizing UV Photodegradation of Chlorothalonil with Reflective Materials (Silver-White Aluminium Foil)
by Jingfeng Xue, Siyu Chen, Xin Ma, Taozhong Shi, Huiting Wu, Zhaowen Liu, Rimao Hua and Youkun Huang
Water 2025, 17(7), 1032; https://doi.org/10.3390/w17071032 - 31 Mar 2025
Viewed by 447
Abstract
This study investigated the photocatalytic degradation of chlorothalonil under a range of ultraviolet lamp configurations, and studied the improvement in the photocatalytic degradation efficiency of a reflective material (silver-white aluminium foil). Increasing the number of UV lamps significantly enhanced degradation efficiency, reducing the [...] Read more.
This study investigated the photocatalytic degradation of chlorothalonil under a range of ultraviolet lamp configurations, and studied the improvement in the photocatalytic degradation efficiency of a reflective material (silver-white aluminium foil). Increasing the number of UV lamps significantly enhanced degradation efficiency, reducing the half-life from 29.95 min with one lamp to 8.15 min with four in a 20 cm enamel bucket. The use of silvery-white aluminium foil further decreased the half-life to 3.86 min, improving degradation rates by up to 262.9%. In larger containers, degradation efficiency increased by up to 414.7% with aluminium foil. Comparisons with black aluminium foil confirmed that silver-white aluminium foil enhanced degradation by reflecting and redistributing UV light, increasing intensity by 252% and reducing the CTL half-life from 150.36 min to 22.9 min in a controlled light box. Further tests confirmed that silver-white aluminium foil amplified UV irradiation, increasing degradation efficiency by up to 555.1%. These improvements might suggest that aluminium foil enhances UV utilisation through direct reflection, refraction, and diffuse reflection, effectively redirecting photons that would otherwise escape the system. Experiments with natural water sources showed similar trends, with half-lives of 55.23 min in ultrapure water, 12.63 min in pond water, and 16.36 min in paddy field water. The addition of silver-white aluminium foil further reduced these times to 23.92 min, 7.13 min, and 12.34 min, respectively. These findings demonstrate that silvery-white aluminium foil significantly enhances CTL photodegradation without increasing energy consumption. While effective, the method faces challenges in acidic or alkaline wastewater due to potential corrosion of system components. Future research should focus on identifying stable, high-reflectivity materials for long-term applications. This study offers practical insights into the optimisation of photodegradation processes, which contributes to improved water treatment strategies and environmental pollution mitigation. Full article
(This article belongs to the Special Issue Physical–Chemical Wastewater Treatment Technologies)
Show Figures

Figure 1

14 pages, 3240 KiB  
Article
Phase, Chemical, Thermal, and Morphological Analyses of Thermoplastic Polyurethane (TPU) Nanocomposites Reinforced with Jute Cellulose Nanofibers (CNFs)
by Siti Syazwani Nordi, Ervina Efzan Mhd Noor, Chee Kuang Kok, Nurhidayatullaili Muhd Julkapli and Mirza Farrukh Baig
Polymers 2025, 17(7), 899; https://doi.org/10.3390/polym17070899 - 27 Mar 2025
Cited by 2 | Viewed by 958
Abstract
In response to the growing demand for high-performance materials in industries such as automotive, aerospace, and construction, this study investigates the impact of jute cellulose nanofibers (CNFs) on the chemical, thermal, and morphological properties of thermoplastic polyurethane (TPU) nanocomposites. Jute CNFs were extracted [...] Read more.
In response to the growing demand for high-performance materials in industries such as automotive, aerospace, and construction, this study investigates the impact of jute cellulose nanofibers (CNFs) on the chemical, thermal, and morphological properties of thermoplastic polyurethane (TPU) nanocomposites. Jute CNFs were extracted using a chemo-mechanical method and incorporated into TPU through melt blending. Fourier transform infrared (FTIR) spectroscopy revealed notable changes in the chemical structure of the nanocomposites, including intensified O-H stretching vibrations and reduced C-H stretching vibrations upon the addition of 2 wt% and 4 wt% jute CNFs. Strong interfacial interactions between the jute CNFs and the TPU matrix were observed, particularly influencing the absorbance bands related to the -NH, C=O, and N-H groups. X-ray diffraction (XRD) analysis demonstrated enhanced crystallinity in the TPU nanocomposites, with new diffraction peaks and increased crystallite size correlating with higher jute CNF content. Field emission scanning electron microscopy (FESEM) revealed a uniform dispersion of the jute CNFs within the TPU matrix, contributing to improved interfacial adhesion and enhanced structural integrity. Thermal analysis using differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) showed an increase in the thermal stability, with the onset of degradation occurring at higher temperatures in the TPU/jute CNF nanocomposites. The glass transition temperature (Tg) and melting temperature (Tm) exhibited minor shifts, reflecting improved thermal performance. These findings suggest that the incorporation of jute CNFs significantly enhances the crystallinity, thermal stability, and structural organization of TPU, offering a sustainable approach for developing robust materials with potential applications in structural, corrosion-resistant, and high-performance fields. Full article
(This article belongs to the Section Biobased and Biodegradable Polymers)
Show Figures

Figure 1

15 pages, 2669 KiB  
Article
Mapping Bronze Disease Onset by Multispectral Reflectography
by Daniela Porcu, Silvia Innocenti, Jana Striova, Emiliano Carretti and Raffaella Fontana
Minerals 2025, 15(3), 252; https://doi.org/10.3390/min15030252 - 28 Feb 2025
Viewed by 739
Abstract
The early detection of bronze disease is a significant challenge not only in conservation science but also in various industrial fields that utilize copper alloys (i.e., shipbuilding and construction). Due to the aggressive nature of this corrosion pathway, developing methods for its early [...] Read more.
The early detection of bronze disease is a significant challenge not only in conservation science but also in various industrial fields that utilize copper alloys (i.e., shipbuilding and construction). Due to the aggressive nature of this corrosion pathway, developing methods for its early detection is pivotal. The presence of copper trihydroxychlorides is the main key indicator of the ongoing autocatalytic process. Commonly used for pigment identification, reflectance imaging spectroscopy (RIS) or fiber optics reflectance spectroscopy (FORS) was recently employed for mapping atacamite distribution in extended bronze corrosion patinas. In this work, we detected the onset of bronze disease using visible–near-infrared (VIS-NIR) multispectral reflectography, which allowed for disclosing features that were poorly detectable to the naked eye. The image cube was analyzed using the spectral correlation mapper (SCM) algorithm to map the distribution of copper trihydroxychlorides. FORS and Raman spectroscopy were employed to characterize the patina composition and validate RIS data. A set of bronze samples, representative of Florentine Renaissance workshops, was specifically realized for the present study and artificially aged at different corrosion stages. Full article
(This article belongs to the Special Issue Spectral Behavior of Mineral Pigments, Volume II)
Show Figures

Graphical abstract

Back to TopTop