Studies on Corrosion Initiation in Reinforced Concrete Structures Using Ground-Penetrating Radar
Abstract
:1. Introduction
1.1. Reinforcement Corrosion and Its Consequences
1.2. Methods of Corrosion Diagnosis
2. Related Work
2.1. Principle of GPR Operation
2.2. Areas of GPR Application in Construction
2.3. Analysis of Corrosion Using GPR
3. Materials and Methods
4. Results and Discussion
5. Estimation of Selected Material Properties
6. Conclusions
- In the analyzed range, the study covered two phenomena—the formation of steel corrosion products and the presence of chlorides in the concrete cover. Due to their simultaneous occurrence, it was not possible to separately characterize the impact of these factors on the parameters of the reflected wave;
- The 2 GHz antenna proved to be a useful tool for detecting reinforcement corrosion, while the 900 MHz antenna, due to its low resolution, was unable to capture corrosion phenomena;
- The amplitude of the wave reflected from the reinforcement decreased;
- The propagation time of the wave reflected from the reinforcement increased;
- The propagation time, as a measure of the progress of corrosion processes, is more predictable and can serve as a better basis for drawing conclusions.
- The development of corrosion did not affect the value of the surface wave amplitude;
- The propagation time of the surface wave increased significantly, likely as a result of the presence of chlorides in the pores of the cover;
- The propagation time of the wave reflected from the metal sheet beneath the sample increased;
- The amplitudes of the reflected wave exhibit significant unpredictability, as evidenced by the high value of the standard deviation.
- An evaluation of GPR wave parameters at more advanced stages of corrosion—expansion of corrosion products, delamination at the reinforcement–cover interface, etc.;
- An independent analysis of the impact of the presence of chlorides in the cover and corrosion products on the GPR wave parameters;
- The impact of environmental factors (e.g., concrete moisture) on the measurement results and the ability to assess the intensity of corrosion;
- Correlation of wave parameters with standard measures of corrosion progression;
- The impact of reinforcement diameter and cover thickness on the quality of results and the ability to assess corrosion;
- An analysis of the impact of wave polarization direction.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- PN-EN 1992-1-1:2008; Eurocode 2: Design of Concrete Structures—Part 1-1: General Rules and Rules for Buildings. Polish Committee for Standardization: Warszawa, Poland, 2019.
- Ściślewski, Z. Protection of Reinforced Concrete Structures, 1st ed.; Arkady: Warsaw, Poland, 1999. (In Polish) [Google Scholar]
- Baltazar-Zamora, M.A.; Márquez-Montero, S.; Landa-Ruiz, L.; Croche, R.; López-Yza, O. Effect of the type of curing on the corrosion behavior of concrete exposed to urban and marine environment. Eur. J. Eng. Res. Sci. 2020, 5, 91–95. [Google Scholar] [CrossRef]
- Verma, S.K.; Bhadauria, S.S.; Akhtar, S. Monitoring corrosion of steel bars in reinforced concrete structures. Sci. World J. 2014, 2014, 57904. [Google Scholar] [CrossRef]
- Grzmil, W. Methods for assessing the degree of concrete carbonation. In Construction Diagnostics. Selected Methods of Testing Materials, Elements and Structures, 1st ed.; Raczkiewicz, W., Ed.; Kielce University of Technology Publishing House: Kielce, Poland, 2019. (In Polish) [Google Scholar]
- Grzmil, W.; Raczkiewicz, W. Assessment of the effect of cement type on the process of concrete carbonation and reinforcement corrosion in reinforced concrete samples. Cem. Wapno Beton 2017, 22, 311–319. (In Polish) [Google Scholar]
- Melchers, R. Long-term durability of marine reinforced concrete structures. Mar. Sci. Eng. 2020, 8, 290. [Google Scholar] [CrossRef]
- Liu, J.; Jiang, Z.; Zhao, Y.; Zhou, H.; Wang, X.; Zhou, H.; Xing, F.; Li, S.; Zhu, J.; Liu, W. Chloride distribution and steel corrosion in a concrete bridge after a long-term exposure to natural marine environment. Materials 2020, 13, 3900. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Liu, C.; Li, Q.; Wu, L. Chloride ion concentration distribution characteristics within concrete covering layer considering the reinforcement bar presence. Ocean Eng. 2019, 173, 608–616. [Google Scholar] [CrossRef]
- Raczkiewicz, W.; Koteš, P.; Konečný, P. Influence of the type of cement and the addition of an air-entraining agent on the effectiveness of concrete cover in the protection of reinforcement against corrosion. Materials 2021, 14, 4657. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Peng, L.; Zhiwu, Y. Effects of environmental factors on concrete carbonation depth and compressive strength. Materials 2018, 11, 2167. [Google Scholar] [CrossRef]
- Kuziak, J.; Woyciechowski, P.; Kobyłka, R.; Wcisło, A. The content of chlorides in blast-furnace slag cement as a factor affecting the diffusion of chloride ions in concrete. MATEC Web Conf. 2018, 163, 05007. [Google Scholar] [CrossRef]
- Hájková, K.; Šmilauer, V.; Jendele, L.; Červenka, J. Prediction of reinforcement corrosion due to chloride ingress and its effects on serviceability. Eng. Struct. 2018, 174, 768–777. [Google Scholar] [CrossRef]
- Poulsen, E.; Mejlbro, L. Diffusion of Chloride in Concrete. Theory and Application, 1st ed.; Taylor and Francis Group: Milton Park, UK, 2019. [Google Scholar]
- Raczkiewicz, W.; Wójcicki, A. Selected aspects of predicting the corrosion level of reinforcing steel in concrete using the electrochemical method. Przegląd Spaw. 2017, 89, 28–33. (In Polish) [Google Scholar]
- Marczewska, J.; Jaworska-Wędzińska, M.; Jasińska, I. The influence of fly ash on the physical properties of mortars in statistical terms. Przegląd Bud. 2024, 95, 171–174. [Google Scholar] [CrossRef]
- Bacharz, M.; Bacharz, K.; Trąmpczyński, W. The correlation between shrinkage and acoustic emission signals in early age concrete. Materials 2022, 15, 5389. [Google Scholar] [CrossRef] [PubMed]
- Trąmpczyński, W.; Goszczyńska, B.; Bacharz, M. Acoustic emission for determining early age concrete damage as an important indicator of concrete quality/condition before loading. Materials 2020, 13, 3523. [Google Scholar] [CrossRef] [PubMed]
- Drobiec, Ł.; Jasiński, R.; Piekarczyk, A. Diagnostics of Reinforced Concrete Structures. In Methodology, Field Tests, Laboratory Tests of Concrete and Steel, 1st ed.; PWN: Warsaw, Poland, 2010. (In Polish) [Google Scholar]
- Luo, D.; Li, Y.; Li, J.; Lim, K.S.; Nazal, N.A.M.; Ahmad, H. A recent progress of steel bar corrosion diagnostic techniques in RC structures. Sensors 2019, 19, 34. [Google Scholar] [CrossRef]
- Hulimka, J.; Kałuża, M. Basic chemical tests of concrete during the assessment of structure suitability—Discussion on selected industrial structures. Appl. Sci. 2020, 10, 358. [Google Scholar] [CrossRef]
- Tworzewski, P.; Raczkiewicz, W.; Czapik, P.; Tworzewska, J. Diagnostics of concrete and steel in elements of an historic reinforced concrete structure. Materials 2021, 14, 306. [Google Scholar] [CrossRef]
- Han, J.; Sun, W.; Pan, G.; Caihui, W. Monitoring the evolution of accelerated carbonation of hardened cement pastes by X-ray computed tomography. J. Mater. Civ. Eng. 2013, 25, 347–354. [Google Scholar] [CrossRef]
- Raczkiewicz, W. Non-destructive methods for assessing the corrosion risk of reinforcing steel in concrete. In Różne Aspekty Jakości Materiałów i Procesów Stosowanych w Budownictwie; Kielce University of Technology Publishing House: Kielce, Poland, 2015. (In Polish) [Google Scholar]
- Zhu, X.E.; Dai, M.X. A discuss on basing half-cell potential method for estimating steel corrosion rate in concrete. Appl. Mech. Mater. 2012, 166, 1926–1930. [Google Scholar] [CrossRef]
- Cheytani, M.; Can, S.L.I. The applicability of the Wenner method for resistivity measurement of concrete in atmospheric conditions. Case Stud. Constr. Mater. 2021, 15, e00663. [Google Scholar] [CrossRef]
- Domínguez, A.O.; Filho, R.D.T.; Gomes, J.A.D.C.P.; Silva, R.D.S.; de Souza, E.A.; Silva, A.B.D. Study of reinforced concrete with the addition of pozzolanic against the penetration of chlorides through electrochemical impedance spectroscopy. Constr. Mater. 2024, 4, 194–215. [Google Scholar] [CrossRef]
- Kroviakow, S.; Kryzhanovskyi, V.; Hedulian, D. Comparison of the corrosion resistance of fiber-reinforced concrete with steel and polypropylene fibers in an acidic environment. Constr. Mater. 2025, 5, 6. [Google Scholar] [CrossRef]
- Galva Pulse. Available online: https://www.germanninstruments.com/corrosion-rate-test-concrete-galvapulse/ (accessed on 4 March 2025).
- Zima, B. Guided wave propagation in detection of partial circumferential debonding in concrete structures. Sensors 2019, 19, 2199. [Google Scholar] [CrossRef] [PubMed]
- Zima, B.; Kędra, R. Reference-free determination of debonding length in reinforced concrete beams using guided wave propagation. Constr. Build. Mater. 2019, 207, 291–303. [Google Scholar] [CrossRef]
- Zima, B.; Kędra, R. Debonding size estimation in reinforced concrete beams using guided wave-based method. Sensors 2020, 20, 389. [Google Scholar] [CrossRef] [PubMed]
- Aseem, A.; Ng, C.T. Debonding detection in rebar reinforced concrete structures using second harmonic generation of longitudinal guided wave. NDT E Int. 2021, 122, 102496. [Google Scholar] [CrossRef]
- Liao, Z.W.; Qiao, P.Z. Guided wave-based cross-scene interfacial debonding detection in reinforced concrete structures. Measurement 2023, 223, 113694. [Google Scholar] [CrossRef]
- Liao, Z.W.; Qiao, P.Z. Nonlinear harmonic wave-guided interface debonding identification in RC beams. Mech. Syst. Signal Process 2024, 212, 111312. [Google Scholar] [CrossRef]
- Tešić, K.; Baričević, A.; Serdar, M. Non-destructive corrosion inspection of reinforced concrete using ground-penetrating radar: A review. Materials 2021, 14, 975. [Google Scholar] [CrossRef]
- Rasol, M.; Pais, J.C.; Pérez-Gracia, V.; Solla, M.; Fernandez, F.M.; Fontul, S.; Ayala-Cabrera, D.; Schmidt, F.; Assadollahi, H. GPR monitoring for road transport infrastructure: A systematic review and machine learning insights. Constr. Build. Mater. 2022, 324, 126686. [Google Scholar] [CrossRef]
- Liu, H.; Yang, Z.; Yue, Y.; Meng, X.; Liu, C.; Cui, J. Asphalt pavement characterization by GPR using an air-coupled antenna array. NDT E Int. 2023, 133, 102726. [Google Scholar] [CrossRef]
- Liu, G.; Peng, Z.; Jing, G.; Wang, S.; Li, Y.; Guo, Y. Railway ballast layer inspection with different GPR antennas and frequencies. Transp. Geotech. 2022, 36, 100823. [Google Scholar] [CrossRef]
- Liu, H.; Yue, Y.; Lai, S.; Meng, X.; Du, Y.; Cui, J.; Spencer, B.F. Evaluation of the antenna parameters for inspection of hidden defects behind a reinforced shield tunnel using GPR. Tunn. Undergr. Space Technol. 2023, 140, 105265. [Google Scholar] [CrossRef]
- Hugenschmidt, J.; Mastrangelo, R. GPR inspection of concrete bridges. Cem. Concr. Compos. 2006, 28, 384–392. [Google Scholar] [CrossRef]
- Wciślik, W. GPR Survey of a Composite Bridge with Prestressed Concrete Beams. In Proceedings of the 56th Scientific Conference of the Committee of Civil and Water Engineering of the Polish Academy of Sciences and the Science Committee of the Polish Association of Engineers and Technicians, Krynica, Poland, 19–24 September 2010; pp. 459–465. (In Polish). [Google Scholar]
- Klysz, G.; Balayssac, J.P. Determination of volumetric water content of concrete using ground-penetrating radar. Cem. Concr. Res. 2007, 37, 1164–1171. [Google Scholar] [CrossRef]
- Leucci, G. Ground penetrating radar: An application to estimate volumetric water content and reinforced bar diameter in concrete structures. J. Adv. Concr. Technol. 2012, 10, 411–422. [Google Scholar] [CrossRef]
- Chen, W.; Shen, P.; Shui, Z. Determination of water content in fresh concrete mix based on relative dielectric constant measurement. Constr. Build. Mater. 2012, 34, 306–312. [Google Scholar] [CrossRef]
- Kaplanvural, I. Volumetric water content estimation of concrete by particle swarm optimization of GPR data. Constr. Build. Mater. 2023, 375, 130995. [Google Scholar] [CrossRef]
- Rodríguez-Abad, I.; Klysz, G.; Martínez-Sala, R.; Balayssac, J.P.; Mené-Aparicio, J. Application of ground-penetrating radar technique to evaluate the waterfront location in hardened concrete. Geosci. Instrum. Methods Data Syst. 2016, 5, 567–574. [Google Scholar] [CrossRef]
- Hugenschmidt, J.; Loser, R. Detection of chlorides and moisture in concrete structures with ground penetrating radar. Mater. Struct. 2008, 41, 785–792. [Google Scholar] [CrossRef]
- Jamil, N.; Hassan, M.K.; Al-Mattarneh, H.M.A.; Zain, M.F.M. Concrete dielectric properties investigation using microwave nondestructive techniques. Mater. Struct. 2013, 46, 77–87. [Google Scholar] [CrossRef]
- du Plooy, R.; Villain, G.; Palma Lopes, S.; Ihamouten, A.; Dérobert, X.; Thauvin, B. Electromagnetic non-destructive evaluation techniques for the monitoring of water and chloride ingress into concrete: A comparative study. Mater. Struct. 2015, 48, 369–386. [Google Scholar] [CrossRef]
- Senin, S.F.; Hamid, R. Ground penetrating radar wave attenuation models for estimation of moisture and chloride content in concrete slab. Constr. Build. Mater. 2016, 106, 659–669. [Google Scholar] [CrossRef]
- Chang, C.W.; Tsai, C.A.; Shiau, Y.C. Inspection of steel bars corrosion in reinforced concrete structures by nondestructive ground penetrating radar. Appl. Sci. 2022, 12, 5567. [Google Scholar] [CrossRef]
- Faris, N.; Zayed, T.; Abdelkader, E.M.; Fares, A. Corrosion assessment using ground penetrating radar in reinforced concrete structures: Influential factors and analysis methods. Autom. Constr. 2023, 156, 105130. [Google Scholar] [CrossRef]
- Tešić, K.; Baričević, A.; Serdar, M.; Gucunski, N. Characterization of ground penetrating radar signal during simulated corrosion of concrete reinforcement. Autom. Constr. 2022, 143, 104548. [Google Scholar] [CrossRef]
- Hubbard, S.; Zhang, J.; Monteiro, P.J.M.; Peterson, J.E.; Rubin, Y. Experimental detection of reinforcing bar corrosion using nondestructive geophysical techniques. ACI Mater. J. 2003, 100, 501–510. [Google Scholar]
- Sossa, V.; Pérez-Gracia, V.; Gonzáles-Drigo, R.; Rasol, M.A. Lab non destructive test to analyze the effect of corrosion on ground penetrating radar scans. Remote Sens. 2019, 11, 2814. [Google Scholar] [CrossRef]
- Raju, R.K.; Hasan, M.I.; Yazdani, N. Quantitative relationship involving reinforcing bar corrosion and ground-penetrating radar amplitude. ACI Mater. J. 2018, 115, 449–457. [Google Scholar] [CrossRef]
- Zaki, A.; Johari, M.A.M.; Hussin, W.M.A.W.; Jusman, Y. Experimental assessment of rebar corrosion in concrete slab using ground penetrating radar (GPR). Int. J. Corros. 2018, 2018, 389829. [Google Scholar] [CrossRef]
- Liu, H.; Zhong, J.; Ding, F.; Meng, X.; Liu, C.; Cui, J. Detection of early-stage rebar corrosion using a polarimetric ground penetrating radar system. Constr. Build. Mater. 2022, 317, 125768. [Google Scholar] [CrossRef]
- Hong, S.; Chen, D.; Dong, B. Numerical simulation and mechanism analysis of GPR-based reinforcement corrosion detection. Constr. Build. Mater. 2022, 317, 125913. [Google Scholar] [CrossRef]
- Eisenmann, D.; Margetan, F.J.; Ellis, S. On the use of ground penetrating radar to detect rebar corrosion in concrete structures. AIP Conf. Proc. 2018, 1949, 030009. [Google Scholar]
- Wong, P.T.; Lai, W.W.; Poon, C. Classification of concrete corrosion states by GPR with machine learning. Constr. Build. Mater. 2023, 402, 132855. [Google Scholar] [CrossRef]
- Faris, N.; Zayed, T.; Fares, A.; Abdelkhalek, S.; Abdelkader, E.M. Automated rebar recognition and corrosion assessment of concrete bridge decks using ground penetrating radar. Autom. Constr. 2024, 166, 105631. [Google Scholar] [CrossRef]
Ingredient | Quantity per 1 m3 |
---|---|
Portland cement CEM I (42.5 N-MSR/NA) | 384 kg |
Mine sand | 680 kg |
Basalt aggregate 2–8 | 600 kg |
Basalt aggregate 8–16 | 650 kg |
Tap water | 166 L |
Plasticizer ADVA Flow 440 (BV/FM) | 0.5% (per 1 kg of cement) |
Air entrainer Darex AEAW (LP) | 0.2% (per 1 kg of cement) |
Non-Corroded Samples | Corroded Samples | |||
---|---|---|---|---|
Value | Std. Deviation | Value | Std. Deviation | |
Amplitude Ad+ [V] | 1.730 | 0.092 | 1.732 | 0.110 |
Time tAd+ [ns] | 1.151 | 0.032 | 1.325 | 0.108 |
Amplitude Ad− [V] | −3.113 | 0.280 | −2.988 | 0.353 |
Time tAd− [ns] | 1.418 | 0.035 | 1.585 | 0.110 |
Amplitude Ar+ [V] | 3.095 | 0.335 | 2.859 | 0.363 |
Time tAr+ [ns] | 1.625 | 0.036 | 1.790 | 0.123 |
Amplitude Ar− [V] | −2.467 | 0.281 | −2.319 | 0.391 |
Time tAr− [ns] | 1.823 | 0.043 | 2.014 | 0.156 |
Amplitude Ap+ [V] | 2.609 | 0.304 | 2.634 | 0.370 |
Time tAp+ [ns] | 3.907 | 0.034 | 4.039 | 0.042 |
Non-Corroded Samples | Corroded Samples | |||
---|---|---|---|---|
Value | Std. Deviation | Value | Std. Deviation | |
Amplitude Ad+ [V] | 7.695 | 0.420 | 7.664 | 0.586 |
Time tAd+ [ns] | 4.218 | 0.085 | 4.216 | 0.017 |
Amplitude Ad− [V] | −5.897 | 0.957 | −5.825 | 1.345 |
Time tAd− [ns] | 4.618 | 0.055 | 4.634 | 0.057 |
Amplitude Ar+ [V] | 7.656 | 0.608 | 7.540 | 0.998 |
Time tAr+ [ns] | 5.014 | 0.047 | 5.006 | 0.050 |
Amplitude Ar− [V] | −7.384 | 0.476 | −7.558 | 0.446 |
Time tAr− [ns] | 5.743 | 0.020 | 5.752 | 0.030 |
Amplitude Ap+ [V] | 2.919 | 0.747 | 4.182 | 1.884 |
Time tAp+ [ns] | 6.094 | 0.021 | 6.096 | 0.007 |
Non-Corroded Samples | Corroded Samples | |||
---|---|---|---|---|
Value | Std. Deviation | Value | Std. Deviation | |
Wave velocity v [cm/ns] | 10.56 | 0.82 | 8.61 | 0.78 |
Wave attenuation relative to the reference sample αref [dB/m] | - | - | −25.5 | 45.8 |
Wave attenuation relative to the metal sheet αplate [dB/m] | −55.89 | 38.38 | −80.88 | 45.8 |
Dielectric constant | 8.14 | 1.25 | 12.33 | 2.25 |
Dielectric constant | 7.97 | 1.03 | 7.81 | 1.23 |
Dielectric constant | 8.14 | 1.25 | 12.33 | 2.25 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wciślik, W.; Raczkiewicz, W. Studies on Corrosion Initiation in Reinforced Concrete Structures Using Ground-Penetrating Radar. Materials 2025, 18, 2308. https://doi.org/10.3390/ma18102308
Wciślik W, Raczkiewicz W. Studies on Corrosion Initiation in Reinforced Concrete Structures Using Ground-Penetrating Radar. Materials. 2025; 18(10):2308. https://doi.org/10.3390/ma18102308
Chicago/Turabian StyleWciślik, Wiktor, and Wioletta Raczkiewicz. 2025. "Studies on Corrosion Initiation in Reinforced Concrete Structures Using Ground-Penetrating Radar" Materials 18, no. 10: 2308. https://doi.org/10.3390/ma18102308
APA StyleWciślik, W., & Raczkiewicz, W. (2025). Studies on Corrosion Initiation in Reinforced Concrete Structures Using Ground-Penetrating Radar. Materials, 18(10), 2308. https://doi.org/10.3390/ma18102308