Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,263)

Search Parameters:
Keywords = redox cycle

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
43 pages, 49942 KiB  
Article
Effects of Hydrogen Peroxide on Slow- and Fast-Growing NIH/3T3-Derived Cultures: Nuclear and Cytoplasmic Aspects Related to Senescence and Transformation
by Alessandra Spano and Luigi Sciola
Cells 2025, 14(16), 1268; https://doi.org/10.3390/cells14161268 (registering DOI) - 16 Aug 2025
Abstract
Cellular senescence can occur with similar phenotypes in normal cells, during aging, and in tumor cells, spontaneously or after cytostasis. The fall or increase in proliferative activity are key aspects of the respective conditions, in which the levels of reactive oxygen species can [...] Read more.
Cellular senescence can occur with similar phenotypes in normal cells, during aging, and in tumor cells, spontaneously or after cytostasis. The fall or increase in proliferative activity are key aspects of the respective conditions, in which the levels of reactive oxygen species can vary, affecting the cellular redox homeostasis. This work aimed to study the relationships between senescence and transformation by comparing cells with different proliferative activities and phenotypes attributable to transformation (NIHs cultures) or senescence (NIHv cultures), before and after incubation with hydrogen peroxide. Both cultures were derived from the NIH/3T3 cell line, which was used here as a reference (NIHb), after the serum starvation. Our experimental model can be representative of the heterogeneity of cell subpopulations, with different degrees of transformation and senescence, found in some tumors. The characterization of the functional properties of NIHb, NIHs, and NIHv cells was performed by a morphocytometric analysis of the cell cycle progression, mitochondrial and lysosomal content/activity, and superoxide anion production. The efficiency of the lysosomal compartment was also assessed by estimating the autophagic activity and measuring lipofuscin autofluorescence. Comparisons of nuclear and cytoplasmic parameters before and after the incubation with hydrogen peroxide revealed differences in the expression and modulation of cellular senescence patterns. The treatment effects were very limited in the NIHb culture; the senescence condition was essentially maintained in the NIHv cells, while the most relevant changes were found in the NIHs cells. In the latter, the acquisition of the senescent phenotype, also demonstrated by the positivity of SA-β-galactosidase, was correlated with a decrease in proliferative activity and a change in the content/activity of the mitochondria and lysosomes, which showed similarities with the basal senescence conditions of NIHv cells. In NIHs cells, increased autophagy events and lipofuscin accumulation also indicate the establishment of cytoplasmic dynamics typical of senescence. The variable responses to hydrogen peroxide, besides depending on the different basal cytokinetic activity of the cultures examined, appeared to be related to the specific cell redox state resulting from the balance between endogenous ROS and those produced after treatment. Especially in NIHs cells, the slowing down of the cell cycle was linked to dynamic interconnections between the mitochondrial and lysosomal compartments. This would indicate that transformed cells, such as NIHs, may express morpho-functional aspects and markers typical of cellular senescence, as a consequence of the modulation of their redox state. Full article
(This article belongs to the Collection Feature Papers in 'Cell Proliferation and Division')
24 pages, 4111 KiB  
Article
Evaluation of the Performance of a Nitrogen Treatment Plant in a Continental Mediterranean Climate: A Spanish Pig Farm Case Study
by Laura Escudero-Campos, Francisco J. San José, María del Pino Pérez Álvarez-Castellanos, Adrián Jiménez-Sánchez, Berta Riaño, Raúl Muñoz and Diego Prieto-Herráez
Nitrogen 2025, 6(3), 68; https://doi.org/10.3390/nitrogen6030068 - 14 Aug 2025
Abstract
This study presents a four-year evaluation (2020–2024) of an integrated climate mitigation project on a pig farm in Ávila, Spain, at an elevation of over 1100 m above sea level with continental climate conditions. The project aimed to reduce greenhouse gas emissions (GHG) [...] Read more.
This study presents a four-year evaluation (2020–2024) of an integrated climate mitigation project on a pig farm in Ávila, Spain, at an elevation of over 1100 m above sea level with continental climate conditions. The project aimed to reduce greenhouse gas emissions (GHG) and nitrogen pollution by implementing solid–liquid filtration followed by biological treatment in a 625 m3 Sequencing Batch Reactor (SBR) operating under a nitrification–denitrification (N-DN) regime. The SBR carried out four daily cycles, alternating aerobic and anoxic phases, with 5 and 8 m3 inlets. Aeration intensity and redox potential were continuously monitored to optimize bacterial activity. Analytical parameters (pH, electrical conductivity, solids content, nitrogen, phosphorus, and potassium) were measured using ISO methods and tracked frequently. Annual emission reductions were 75% for N2O, up to 97% for NH3, and 80% for N2. In the summer months, we observed higher efficiency reduction for N2, NH3, and NO2. Additionally, there was a 75% average reduction for COD and up to 92% for total GHG emissions. This real-world case study highlights the effectiveness of SBR-based N-DN systems for nutrient removal and emission reduction in high-altitude, climate-sensitive regions, contributing to EU nitrate directive compliance and circular economy practices. Full article
Show Figures

Figure 1

13 pages, 2073 KiB  
Article
Hierarchical VOx@Wood Aerogel Electrodes with Tunable Valence States for Enhanced Energy Storage
by Yu Wang, Yuan Yu, Zhenle Hu, Lei Qiao, Huaiyuan Peng, Jingwen Xie, Haiyue Yang and Chengyu Wang
Nanomaterials 2025, 15(16), 1249; https://doi.org/10.3390/nano15161249 - 14 Aug 2025
Abstract
Vanadium-based electrode materials are limited in practical applications, due to their low energy density, cycling instability, and poor electrochemical stability. To address these limitations, a wood-derived vanadium oxide (VOx) electrode was developed through sol–gel assembly followed by thermal annealing, in which [...] Read more.
Vanadium-based electrode materials are limited in practical applications, due to their low energy density, cycling instability, and poor electrochemical stability. To address these limitations, a wood-derived vanadium oxide (VOx) electrode was developed through sol–gel assembly followed by thermal annealing, in which VOx aerogel formed within the vertically aligned wood channels, resulting in a continuous porous network to mitigate particle aggregation and enhance ion diffusion. After thermal annealing at 800 °C, V5+ partially converts to V4+, forming a mixed-valence heterostructure that significantly increases the density of redox-active sites and facilitates efficient charge transfer. The optimized VOx@Wood-800 °C (VOW-800) electrode exhibits a high specific capacitance of 317.8 F g−1 at 2 mA cm−2 and a specific surface area of 111.22 m−2 g−1, attributed to the synergistic effects of the mixed-valence structure and the enhanced ion accessibility provided by the wood-derived porous framework. This approach offers a promising pathway for developing vanadium-based electrodes with improved charge storage capacity and interface stability. Full article
(This article belongs to the Section 2D and Carbon Nanomaterials)
Show Figures

Graphical abstract

36 pages, 757 KiB  
Review
Oxidative Stress in the Pathophysiology of Chronic Venous Disease: An Overview
by Sonia Rațiu, Mihaela I. Mariș, Adina V. Furdui-Lința, Laurențiu V. Sima, Tiberiu I. Bratu, Adrian Sturza, Danina M. Muntean and Octavian M. Crețu
Antioxidants 2025, 14(8), 989; https://doi.org/10.3390/antiox14080989 - 12 Aug 2025
Viewed by 314
Abstract
Chronic venous disease (CVD) and its major manifestation, varicose veins (VV) of the lower limbs, is a common, multifactorial disease that affects a significant percentage of adult and elderly people worldwide. Its prevalence has been constantly increasing with the aging of the population [...] Read more.
Chronic venous disease (CVD) and its major manifestation, varicose veins (VV) of the lower limbs, is a common, multifactorial disease that affects a significant percentage of adult and elderly people worldwide. Its prevalence has been constantly increasing with the aging of the population and, particularly, with the obesity pandemic (hence, the term ‘phlebesity’). The major pathophysiological mechanisms that are potentiating each other in a vicious cycle, leading to chronic venous hypertension, are represented by endothelial dysfunction, chronic inflammation, impaired hemodynamics, and venous wall remodeling. Oxidative stress is another pathomechanism responsible for CVD and its complications, with the increased generation of reactive oxygen species and decreased antioxidant defense being reported to contribute to VV formation. Herein, we present evidence for the role of impaired redox homeostasis as pathophysiological mechanism responsible for chronic local and systemic oxidative stress in patients with CVD. Full article
Show Figures

Figure 1

39 pages, 4384 KiB  
Review
Oxidative Stress-Driven Cellular Senescence: Mechanistic Crosstalk and Therapeutic Horizons
by Bojan Stojanovic, Ivan Jovanovic, Milica Dimitrijevic Stojanovic, Bojana S. Stojanovic, Vojin Kovacevic, Ivan Radosavljevic, Danijela Jovanovic, Marina Miletic Kovacevic, Nenad Zornic, Ana Azanjac Arsic, Stevan Eric, Nikola Mirkovic, Jelena Nesic, Stefan Jakovljevic, Snezana Lazarevic, Ivana Milivojcevic Bevc and Bojan Milosevic
Antioxidants 2025, 14(8), 987; https://doi.org/10.3390/antiox14080987 - 12 Aug 2025
Viewed by 331
Abstract
Cellular senescence, a state of permanent cell cycle arrest, represents a double-edged sword in biology—providing tumor-suppressive functions while contributing to tissue degeneration, chronic inflammation, and age-related diseases when senescent cells persist. A key driver of senescence is oxidative stress, primarily mediated by excessive [...] Read more.
Cellular senescence, a state of permanent cell cycle arrest, represents a double-edged sword in biology—providing tumor-suppressive functions while contributing to tissue degeneration, chronic inflammation, and age-related diseases when senescent cells persist. A key driver of senescence is oxidative stress, primarily mediated by excessive reactive oxygen species that damage mitochondrial DNA, modulate redox-sensitive signaling pathways, and trigger the senescence-associated secretory phenotype. Emerging evidence highlights the pathogenic role of SASP in promoting local inflammation, immune evasion, and senescence propagation. This review explores the intricate interplay between redox imbalance and cellular senescence, emphasizing mitochondrial dysfunction, SASP dynamics, and their implications in aging and cancer. We discuss current senotherapeutic strategies—including senolytics, senomorphics, antioxidants, gene therapy, and immunotherapy—that aim to eliminate or modulate senescent cells to restore tissue homeostasis. Understanding the heterogeneity and context-specific behavior of senescent cells remains crucial for optimizing these therapies. Future research should focus on addressing key knowledge gaps, including the standardization of senescence biomarkers such as circulating miRNAs, refinement of predictive preclinical models, and development of composite clinical endpoints. These efforts are essential to translate mechanistic insights into effective senotherapeutic interventions and enable the safe integration of senescence-targeting strategies into routine clinical practice. Full article
(This article belongs to the Special Issue Oxidative Stress in Cell Senescence)
Show Figures

Figure 1

9 pages, 2258 KiB  
Proceeding Paper
Transition Metal-Doped Cobalt Oxyhydroxide Catalysts with Enhanced Peroxymonosulfate Activation for Dye Decolorization
by Rina Yamamoto, Hideyuki Katsumata, Ikki Tateishi, Mai Furukawa and Satoshi Kaneco
Chem. Proc. 2025, 17(1), 8; https://doi.org/10.3390/chemproc2025017008 - 11 Aug 2025
Viewed by 160
Abstract
Sulfate radical-based advanced oxidation processes (AOPs) are effective for removing organic pollutants from wastewater. In this study, transition metal-doped cobalt oxyhydroxide (CoOOH) was synthesized as an efficient peroxymonosulfate (PMS) activator for the decolorization of rhodamine B. Doping CoOOH with transition metals enhanced its [...] Read more.
Sulfate radical-based advanced oxidation processes (AOPs) are effective for removing organic pollutants from wastewater. In this study, transition metal-doped cobalt oxyhydroxide (CoOOH) was synthesized as an efficient peroxymonosulfate (PMS) activator for the decolorization of rhodamine B. Doping CoOOH with transition metals enhanced its PMS activation performance compared with that of pure CoOOH. Notably, the reaction rate constant in the Ni-CoOOH/PMS system was approximately 4.3 times higher than that in the CoOOH/PMS system. The presence of multiple metals in the catalyst facilitated efficient Co2+/Co3+ redox cycling, resulting in improved PMS activation and more effective organic pollutant removal. This study highlights the potential of CoOOH-based materials for use in environmental remediation technologies utilizing PMS. Full article
Show Figures

Figure 1

14 pages, 1252 KiB  
Article
LC-MS Evaluation of the Redox Trypanothione Balance in Leishmania infantum Parasites
by Théo Villarubias, Jade Royo, Pierre Perio, Sandra Bourgeade-Delmas, Jan Sudor, Alexis Valentin, Anne-Dominique Terrisse and Karine Reybier
Antioxidants 2025, 14(8), 977; https://doi.org/10.3390/antiox14080977 - 8 Aug 2025
Viewed by 233
Abstract
Leishmaniases are neglected tropical diseases caused by protozoan parasites of the Leishmania genus, with a significant global health burden, particularly in low-income regions. The parasites rely on a unique thiol-based redox system centered on trypanothione, which is essential for survival under oxidative stress [...] Read more.
Leishmaniases are neglected tropical diseases caused by protozoan parasites of the Leishmania genus, with a significant global health burden, particularly in low-income regions. The parasites rely on a unique thiol-based redox system centered on trypanothione, which is essential for survival under oxidative stress encountered during their life cycle in both insect vectors and mammalian hosts. Given the absence of mammalian analogs, the trypanothione system represents an attractive target for antileishmanial drug development. However, accurate quantification of the reduced and oxidized forms of trypanothione has been challenging due to its instability and structural similarity between redox states. Here, we developed and validated a rapid, sensitive liquid chromatography–mass spectrometry (LC-MS) method for assessing the trypanothione redox state in Leishmania infantum. By incorporating N-ethylmaleimide as a thiol-blocking agent during sample preparation, the native redox state was preserved, enabling precise measurement of the reduced-to-oxidized ratio. Our approach demonstrated high sensitivity (nanomolar range), a rapid analysis time (5 min/sample), and robustness across various conditions. Moreover, we validated the method’s relevance in detecting oxidative stress and response to the trypanothione reductase inhibitor auranofin. This LC-MS technique provides a valuable tool for exploring Leishmania redox biology and supports the discovery of redox-targeting therapies against leishmaniasis. Full article
(This article belongs to the Section ROS, RNS and RSS)
Show Figures

Figure 1

31 pages, 3929 KiB  
Article
Application of Multiplatform Mass Spectrometry to the Study of Babesia divergens Metabolism and the Pathogenesis of Human Babesiosis
by Miguel Fernández-García, Luis Miguel Gonzalez, Elena Sevilla, Aitor Gil, Henrique Santos-Oliveira, Belen Revuelta, Coral Barbas, Mª Fernanda Rey-Stolle, Estrella Montero and Antonia García
Int. J. Mol. Sci. 2025, 26(16), 7677; https://doi.org/10.3390/ijms26167677 - 8 Aug 2025
Viewed by 139
Abstract
Babesia divergens is a tick-borne apicomplexan parasite that causes human babesiosis, a malaria-like disease. B. divergens metabolism remains poorly characterized. Here, we employed a multiplatform mass spectrometry-based metabolomics approach (using CE-TOF/MS, GC-QTOF/MS, LC-QTOF/MS, and LC-QqQ/MS) to profile intra- and extracellular metabolic changes in [...] Read more.
Babesia divergens is a tick-borne apicomplexan parasite that causes human babesiosis, a malaria-like disease. B. divergens metabolism remains poorly characterized. Here, we employed a multiplatform mass spectrometry-based metabolomics approach (using CE-TOF/MS, GC-QTOF/MS, LC-QTOF/MS, and LC-QqQ/MS) to profile intra- and extracellular metabolic changes in B. divergens-infected and uninfected red blood cells (RBCs) and their supernatants. Our results indicate alterations in the metabolome caused by B. divergens infection and proliferation within RBCs. These findings are consistent with the major metabolic dependencies of B. divergens, including extracellular glucose, glutamine, and arginine, accompanied by the accumulation of glycolytic and TCA cycle intermediates. We identified altered nucleotide metabolism, pentose phosphate pathway activity, and redox imbalance. Depletion of lysoglycerophospholipids, glucose, arginine, and glutamine, and accumulation of free heme and sphingolipids suggested pathogenic effects. Growth experiments indicate that glucose and glutamine, but not hypoxanthine, are required for parasite growth. We additionally discovered a phosphorylated HEPES derivative (PEPES) produced upon B. divergens infection of RBCs in vitro. Collectively, these findings and their global interpretation provide insights into B. divergens metabolism and metabolic dependencies and host–parasite metabolic interactions and outline potential directions for future studies on human babesiosis diagnosis, prognosis assessment, and treatment. Full article
(This article belongs to the Special Issue Research Progress of Metabolomics in Health and Disease)
Show Figures

Figure 1

25 pages, 15062 KiB  
Article
Power Allocation and Capacity Optimization Configuration of Hybrid Energy Storage Systems in Microgrids Using RW-GWO-VMD
by Honghui Liu, Donghui Li, Zhong Xiao, Qiansheng Qiu, Xinjie Tao, Qifeng Qian, Mengxin Jiang and Wei Yu
Energies 2025, 18(16), 4215; https://doi.org/10.3390/en18164215 - 8 Aug 2025
Viewed by 217
Abstract
Optimizing the power allocation and capacity configuration of hybrid energy storage systems (HESS) is crucial for enhancing grid stability, power quality and renewable energy utilization in wind–solar complementary microgrids. However, the conventional configuration methods exhibit inaccuracy and low reliability. To achieve the optimal [...] Read more.
Optimizing the power allocation and capacity configuration of hybrid energy storage systems (HESS) is crucial for enhancing grid stability, power quality and renewable energy utilization in wind–solar complementary microgrids. However, the conventional configuration methods exhibit inaccuracy and low reliability. To achieve the optimal capacity configuration of HESS in wind–solar complementary microgrids, a power allocation strategy and a capacity optimization configuration model for HESS consisting of vanadium redox flow batteries (VRBs) and supercapacitors (SCs) were proposed based on parameter-optimized variational mode decomposition (VMD). Firstly, the number of mode decomposition (K) and the penalty factor (α) of VMD were optimized using the random walk grey wolf optimizer (RW-GWO) algorithm, and the HESS power signal was decomposed by RW-GWO-VMD. Secondly, an optimal capacity configuration model was formulated, taking into account the whole life cycle cost of HESS, and particle swarm optimization (PSO) algorithm was applied to optimize HESS capacity while satisfying operational constraints on charge/discharge power, state of charge (SOC) range, and permissible rates of load deficit and energy loss. Thirdly, the optimal capacity allocation was obtained by minimizing the whole life cycle cost of HESS, with the frequency division threshold N serving as the optimization parameter. Finally, comprehensive comparison and analysis of proposed methods were conducted through simulation experiments. The results demonstrated that the whole life cycle cost of RW-GWO-VMD was 7.44% lower than that of EMD, 1.00% lower than that of PSO-VMD, 0.72% lower than that of AOA-VMD, and 0.27% lower than that of GWO-VMD. Full article
Show Figures

Graphical abstract

14 pages, 5700 KiB  
Article
The Design of Diatomite/TiO2/MoS2/Nitrogen-Doped Carbon Nanofiber Composite Separators for Lithium–Sulfur Batteries
by Wei Zhong, Wenjie Xiao, Jianfei Liu, Chuxiao Yang, Sainan Liu and Zhenyang Cai
Materials 2025, 18(15), 3654; https://doi.org/10.3390/ma18153654 - 4 Aug 2025
Viewed by 422
Abstract
Severe polysulfide shuttling and sluggish redox kinetics critically hinder lithium–sulfur (Li-S) battery commercialization. In this study, a multifunctional diatomite (DE)/TiO2/MoS2/N-doped carbon nanofiber (NCNF) composite separator was fabricated via hydrothermal synthesis, electrospinning, and carbonization. DE provides dual polysulfide suppression, encompassing [...] Read more.
Severe polysulfide shuttling and sluggish redox kinetics critically hinder lithium–sulfur (Li-S) battery commercialization. In this study, a multifunctional diatomite (DE)/TiO2/MoS2/N-doped carbon nanofiber (NCNF) composite separator was fabricated via hydrothermal synthesis, electrospinning, and carbonization. DE provides dual polysulfide suppression, encompassing microporous confinement and electrostatic repulsion. By integrating synergistic catalytic effects from TiO2 and MoS2 nanoparticles, which accelerate polysulfide conversion, and conductive NCNF networks, which facilitate rapid charge transfer, this hierarchical design achieves exceptional electrochemical performance: a 1245.6 mAh g−1 initial capacity at 0.5 C and 65.94% retention after 200 cycles. This work presents a rational multi-component engineering strategy to suppress shuttle effects in high-energy-density Li-S batteries. Full article
Show Figures

Figure 1

14 pages, 2597 KiB  
Article
Chemical and Isotopic Investigation of Abiotic Oxidation of Lactate Substrate in the Presence of Varied Electron Acceptors and Under Circumneutral Anaerobic Conditions
by Tsigabu A. Gebrehiwet and R. V. Krishnamurthy
Water 2025, 17(15), 2308; https://doi.org/10.3390/w17152308 - 3 Aug 2025
Viewed by 313
Abstract
Abiotic processes have ramifications in wastewater treatment, in situ degradation of organic matter, and cycling of nutrients in wetland ecosystems. Experiments were conducted to investigate abiotic oxidation of organic compounds (lactate) as a function of electron acceptors (ferric citrate and hydrous ferric oxide [...] Read more.
Abiotic processes have ramifications in wastewater treatment, in situ degradation of organic matter, and cycling of nutrients in wetland ecosystems. Experiments were conducted to investigate abiotic oxidation of organic compounds (lactate) as a function of electron acceptors (ferric citrate and hydrous ferric oxide (HFO), media composition, and pH under anaerobic conditions, using sodium bicarbonate as the buffering agent. Dissolved inorganic carbon (DIC) was used as a proxy for the oxidation of substrates. HFO media generated more DIC compared to ferric citrate containing media. Light and pH had major roles in the oxidation of lactate in the presence of ferric iron. Under dark conditions in the presence or absence of Fe(III), the DIC produced was low in all pH conditions. Inhibition of DIC production was also observed upon photo exposure when Fe (III) was absent. Isotopically, the system showed initial mixing between the bicarbonate and the carbon dioxide produced from oxidation later being dominated by carbon isotope value of lactate used. These redox conditions align with previous studies suggesting cleavage of organic compounds by hydroxyl radicals. The slower redox processes observed here, compared to previous studies, could be due to the scavenging effect of chloride ion on the hydroxyl radical. Full article
Show Figures

Figure 1

15 pages, 5007 KiB  
Article
In Situ Construction of Thiazole-Linked Covalent Organic Frameworks on Cu2O for High-Efficiency Photocatalytic Tetracycline Degradation
by Zhifang Jia, Tingxia Wang, Zhaoxia Wu, Shumaila Razzaque, Zhixiang Zhao, Jiaxuan Cai, Wenao Xie, Junli Wang, Qiang Zhao and Kewei Wang
Molecules 2025, 30(15), 3233; https://doi.org/10.3390/molecules30153233 - 1 Aug 2025
Viewed by 251
Abstract
The strategic construction of heterojunctions through a simple and efficient strategy is one of the most effective means to boost the photocatalytic activity of semiconductor materials. Herein, a thiazole-linked covalent organic framework (TZ-COF) with large surface area, well-ordered pore structure, and high stability [...] Read more.
The strategic construction of heterojunctions through a simple and efficient strategy is one of the most effective means to boost the photocatalytic activity of semiconductor materials. Herein, a thiazole-linked covalent organic framework (TZ-COF) with large surface area, well-ordered pore structure, and high stability was developed. To further boost photocatalytic activity, the TZ-COF was synthesized in situ on the surface of Cu2O through a simple multicomponent reaction, yielding an encapsulated composite material (Cu2O@TZ-COF-18). In this composite, the outermost COF endows the material with abundant redox active sites and mass transfer channels, while the innermost Cu2O exhibits unique photoelectric properties. Notably, the synthesized Cu2O@TZ-COF-18 was proven to have the heterojunction structure, which can efficiently restrain the recombination of photogenerated electron–hole pairs, thereby enhancing the photocatalytic performance. The photocatalytic degradation of tetracycline demonstrated that 3-Cu2O@TZ-COF-18 had the highest photocatalytic efficiency, with the removal rate of 96.3% within 70 min under visible light, which is better than that of pristine TZ-COF-18, Cu2O, the physical mixture of Cu2O and TZ-COF-18, and numerous reported COF-based composite materials. 3-Cu2O@TZ-COF-18 retained its original crystallinity and removal efficiency after five cycles in photodegradation reaction, displaying high stability and excellent cycle performance. Full article
Show Figures

Graphical abstract

13 pages, 3774 KiB  
Article
Design of TEMPO-Based Polymer Cathode Materials for pH-Neutral Aqueous Organic Redox Flow Batteries
by Yanwen Ren, Qianqian Zheng, Cuicui He, Jingjing Nie and Binyang Du
Materials 2025, 18(15), 3624; https://doi.org/10.3390/ma18153624 - 1 Aug 2025
Viewed by 327
Abstract
Aqueous organic redox flow batteries (AORFBs) represent an advancing class of electrochemical energy storage systems showing considerable promise for large-scale grid integration due to their unique aqueous organic chemistry. However, the use of small-molecule active materials in AORFBs is significantly limited by the [...] Read more.
Aqueous organic redox flow batteries (AORFBs) represent an advancing class of electrochemical energy storage systems showing considerable promise for large-scale grid integration due to their unique aqueous organic chemistry. However, the use of small-molecule active materials in AORFBs is significantly limited by the issue of stability and crossover. To address these challenges, we designed a high-water-solubility polymer cathode material, P-T-S, which features a polyvinylimidazole backbone functionalized with 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO) and sulfonate groups. P-T-S exhibits a solubility of 34 Ah L−1 in water and 31 Ah L−1 in 1.0 M NaCl aqueous solution (NaClaq). When paired with methyl viologen to assemble a pH-neutral AORFB with a theoretical capacity of 15 Ah L−1, the system exhibits a material utilization rate of 92.0%, an average capacity retention rate of 99.74% per cycle (99.74% per hour), and an average Coulombic efficiency of 98.69% over 300 consecutive cycles at 30 mA cm−2. This work provides a new design strategy for polymer materials for high-performance AORFBs. Full article
Show Figures

Graphical abstract

37 pages, 7777 KiB  
Review
Cement-Based Electrochemical Systems for Structural Energy Storage: Progress and Prospects
by Haifeng Huang, Shuhao Zhang, Yizhe Wang, Yipu Guo, Chao Zhang and Fulin Qu
Materials 2025, 18(15), 3601; https://doi.org/10.3390/ma18153601 - 31 Jul 2025
Viewed by 468
Abstract
Cement-based batteries (CBBs) are an emerging category of multifunctional materials that combine structural load-bearing capacity with integrated electrochemical energy storage, enabling the development of self-powered infrastructure. Although previous reviews have explored selected aspects of CBB technology, a comprehensive synthesis encompassing system architectures, material [...] Read more.
Cement-based batteries (CBBs) are an emerging category of multifunctional materials that combine structural load-bearing capacity with integrated electrochemical energy storage, enabling the development of self-powered infrastructure. Although previous reviews have explored selected aspects of CBB technology, a comprehensive synthesis encompassing system architectures, material strategies, and performance metrics remains insufficient. In this review, CBB systems are categorized into two representative configurations: probe-type galvanic cells and layered monolithic structures. Their structural characteristics and electrochemical behaviors are critically compared. Strategies to enhance performance include improving ionic conductivity through alkaline pore solutions, facilitating electron transport using carbon-based conductive networks, and incorporating redox-active materials such as zinc–manganese dioxide and nickel–iron couples. Early CBB prototypes demonstrated limited energy densities due to high internal resistance and inefficient utilization of active components. Recent advancements in electrode architecture, including nickel-coated carbon fiber meshes and three-dimensional nickel foam scaffolds, have achieved stable rechargeability across multiple cycles with energy densities surpassing 11 Wh/m2. These findings demonstrate the practical potential of CBBs for both energy storage and additional functionalities, such as strain sensing enabled by conductive cement matrices. This review establishes a critical basis for future development of CBBs as multifunctional structural components in infrastructure applications. Full article
Show Figures

Figure 1

14 pages, 3688 KiB  
Article
Oxygen-Vacancy Engineered SnO2 Dots on rGO with N-Doped Carbon Nanofibers Encapsulation for High-Performance Sodium-Ion Batteries
by Yue Yan, Bingxian Zhu, Zhengzheng Xia, Hui Wang, Weijuan Xu, Ying Xin, Qingshan Zhao and Mingbo Wu
Molecules 2025, 30(15), 3203; https://doi.org/10.3390/molecules30153203 - 30 Jul 2025
Viewed by 333
Abstract
The widespread adoption of sodium-ion batteries (SIBs) remains constrained by the inherent limitations of conventional anode materials, particularly their inadequate electronic conductivity, limited active sites, and pronounced structural degradation during cycling. To overcome these limitations, we propose a novel redox engineering approach to [...] Read more.
The widespread adoption of sodium-ion batteries (SIBs) remains constrained by the inherent limitations of conventional anode materials, particularly their inadequate electronic conductivity, limited active sites, and pronounced structural degradation during cycling. To overcome these limitations, we propose a novel redox engineering approach to fabricate oxygen-vacancy-rich SnO2 dots anchored on reduced graphene oxide (rGO), which are encapsulated within N-doped carbon nanofibers (denoted as ov-SnO2/rGO@N-CNFs) through electrospinning and subsequent carbonization. The introduction of rich oxygen vacancies establishes additional sodium intercalation sites and enhances Na+ diffusion kinetics, while the conductive N-doped carbon network effectively facilitates charge transport and mitigates SnO2 aggregation. Benefiting from the well-designed architecture, the hierarchical ov-SnO2/rGO@N-CNFs electrode achieves remarkable reversible specific capacities of 351 mAh g−1 after 100 cycles at 0.1 A g−1 and 257.3 mAh g−1 after 2000 cycles at 1.0 A g−1 and maintains 177 mAh g−1 even after 8000 cycles at 5.0 A g−1, demonstrating exceptional long-term cycling stability and rate capability. This work offers a versatile design strategy for developing high-performance anode materials through synergistic interface engineering for SIBs. Full article
Show Figures

Graphical abstract

Back to TopTop