Oxygen-Vacancy Engineered SnO2 Dots on rGO with N-Doped Carbon Nanofibers Encapsulation for High-Performance Sodium-Ion Batteries
Abstract
1. Introduction
2. Results and Discussion
3. Experimental
3.1. Preparation of Ov-SnO2/rGO@N-CNFs
3.2. Material Characterization
3.3. Electrochemical Measurements
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yang, S.; Cheng, K.; Cao, Z. Status and strategies of electrolyte engineering for low-temperature sodium-ion batteries. J. Mater. Chem. A 2024, 12, 13059–13080. [Google Scholar] [CrossRef]
- Huang, X.; Wang, R.; Wu, L.; Zhang, H.; Liu, J. All-Climate Long-Life and Fast-Charging Sodium-Ion Battery using Co3S4@NiS2 Heterostructures Encapsulated in Carbon Matrix as Anode. Small 2023, 19, 2304165. [Google Scholar] [CrossRef] [PubMed]
- Senthilkumar, K.K.; Thiruvengadathan, R.; Raghava, R.B.T.S. Recent Advancements in Na Super Ionic Conductor-Incorporated Composite Polymer Electrolytes for Sodium-Ion Battery Application. Electrochem 2025, 6, 6. [Google Scholar] [CrossRef]
- Li, J.; Liu, L.; Gao, Y.; Zhou, X.; Fang, M.; Guo, J.; Zhou, X.; Zhang, B.; Jia, C.; Xu, B.B.; et al. Ion-Exchange Synthesis of Low-Water Prussian Blue Analogs for Enhanced Sodium Storage. EcoMat 2025, 7, e70000. [Google Scholar] [CrossRef]
- Jeong, Y.; Song, J.; Kim, H.; Park, J.; Maulana, A.Y.; An, N.; Yun, B.; Jung, S.; Park, M.; Kim, J. Enhanced potassium storage of two dimensional Sb2Se3/MXene@NC as an anode material for potassium-ion batteries. J. Energy Storage 2024, 92, 112000. [Google Scholar] [CrossRef]
- Lv, J.; Lai, G.; Yang, T.; Sun, X.; Liu, F.; Wu, W.; Shi, M.; Wang, G.; Gao, K.; Li, X.; et al. Enabling long cycle aluminum-sulfur batteries via structurally stable Co, N-doped graphene-CNTs covalently bonded hybrid. Chem. Eng. J. 2024, 494, 152811. [Google Scholar] [CrossRef]
- Mo, J.; Li, J.; Li, Y.; Tang, J.; Lee, S. Electrospun graphene@SnO2 nanofibers as anode materials with excellent electrochemical performance for lithium-ion batteries. Colloids Surf. A Physicochem. Eng. Asp. 2025, 711, 136303. [Google Scholar] [CrossRef]
- Sun, Y.-N.; Goktas, M.; Zhao, L.; Adelhelm, P.; Han, B.-H. Ultrafine SnO2 nanoparticles anchored on N, P-doped porous carbon as anodes for high performance lithium-ion and sodium-ion batteries. J. Colloid Interface Sci. 2020, 572, 122–132. [Google Scholar] [CrossRef]
- Zhang, Z.; Li, S.; Gao, S.; Pan, Y.; Shan, X.; Feng, H.; Yang, D.; Yang, H. Sn/P@G-CNTs composites as high-performance anode materials for sodium-ion batteries. Electrochim. Acta 2021, 388, 138532. [Google Scholar] [CrossRef]
- Wang, L.; Lin, C.; Yang, G.; Wang, N.; Yan, W. SnO2 nanosheets grown on in-situ formed N-doped branched TiO2/C nanofibers as binder-free anodes for sodium-ion storage. Electrochim. Acta 2022, 411, 140049. [Google Scholar] [CrossRef]
- Wang, M.; Wang, X.; Yao, Z.; Tang, W.; Xia, X.; Gu, C.; Tu, J. SnO2 Nanoflake Arrays Coated with Polypyrrole on a Carbon Cloth as Flexible Anodes for Sodium-Ion Batteries. ACS Appl. Mater. Interfaces 2019, 11, 24198–24204. [Google Scholar] [CrossRef]
- Yang, Z.; Qin, X.; Lin, K.; Cai, Q.; Han, C.; Kang, F.; Li, B. Realizing ultra-stable SnO2 anodes via in-situ formed confined space for volume expansion. Carbon 2022, 187, 321–329. [Google Scholar] [CrossRef]
- Hoang, V.-H.; Nguyen, D.-L.; Tu, N.; Tran, V.-D.; Lam, V.-N.; Duong, T.-T. One-Step Hydrothermal Synthesis and Characterization of Highly Dispersed Sb-Doped SnO2 Nanoparticles for Supercapacitor Applications. Electrochem 2025, 6, 22. [Google Scholar] [CrossRef]
- Zhou, J.-E.; Xu, Z.; Li, Y.; Lin, X.; Wu, Y.; Zeb, A.; Zhang, S. Oxygen-deficient metal–organic framework derivatives for advanced energy storage: Multiscale design, application, and future development. Coord. Chem. Rev. 2023, 494, 215348. [Google Scholar] [CrossRef]
- Darbar, D.; Bhattacharya, I. Application of Machine Learning in Battery: State of Charge Estimation Using Feed Forward Neural Network for Sodium-Ion Battery. Electrochem 2022, 3, 42–57. [Google Scholar] [CrossRef]
- Yang, L.; Lei, Y.; Liang, X.; Qu, L.; Xu, K.; Hua, Y.; Feng, J. SnO2 nanoparticles composited with biomass N-doped carbon microspheres as low cost, environmentally friendly and high-performance anode material for sodium-ion and lithium-ion batteries. J. Power Sources 2022, 547, 232032. [Google Scholar] [CrossRef]
- Ma, D.; Li, Y.; Mi, H.; Luo, S.; Zhang, P.; Lin, Z.; Li, J.; Zhang, H. Cover Picture: Robust SnO2-Nanoparticle-Impregnated Carbon Nanofibers with Outstanding Electrochemical Performance for Advanced Sodium-Ion Batteries. Angew. Chem. Int. Ed. 2018, 57, 8783. [Google Scholar] [CrossRef]
- Xu, Y.; Zhou, M.; Zhang, C.; Wang, C.; Liang, L.; Fang, Y.; Wu, M.; Cheng, L.; Lei, Y. Oxygen vacancies: Effective strategy to boost sodium storage of amorphous electrode materials. Nano Energy 2017, 38, 304–312. [Google Scholar] [CrossRef]
- Zhao, Q.; Liu, J.; Li, X.; Xia, Z.; Zhang, Q.; Zhou, M.; Tian, W.; Wang, M.; Hu, H.; Li, Z.; et al. Graphene oxide-induced synthesis of button-shaped amorphous Fe2O3/rGO/CNFs films as flexible anode for high-performance lithium-ion batteries. Chem. Eng. J. 2019, 369, 215–222. [Google Scholar] [CrossRef]
- Duan, Y.-K.; Li, Z.-W.; Zhang, S.-C.; Su, T.; Zhang, Z.-H.; Jiao, A.-J.; Fu, Z.-H. Stannate-Based Materials as Anodes in Lithium-Ion and Sodium-Ion Batteries: A Review. Molecules 2023, 28, 5037. [Google Scholar] [CrossRef]
- Li, C.; Qiu, M.; Li, R.; Li, X.; Wang, M.; He, J.; Lin, G.; Xiao, L.; Qian, Q.; Chen, Q.; et al. Electrospinning Engineering Enables High-Performance Sodium-Ion Batteries. Adv. Fiber Mater. 2022, 4, 43–65. [Google Scholar] [CrossRef]
- Xin, B.-J.; Wu, X.-L. Research progresses on metal-organic frameworks for sodium/potassium-ion batteries. Battery Energy 2024, 3, 20230074. [Google Scholar] [CrossRef]
- Sun, L.; Cai, Y.; Haider, M.K.; Miyagi, D.; Zhu, C.; Kim, I.S. Structural design and optimization of metal-organic framework-derived FeOx@C/rGO anode materials for constructing high-performance hybrid supercapacitors. Compos. Part B Eng. 2022, 236, 109812. [Google Scholar] [CrossRef]
- Derikvandi, H.; Nezamzadeh-Ejhieh, A. Synergistic effect of p-n heterojunction, supporting and zeolite nanoparticles in enhanced photocatalytic activity of NiO and SnO2. J. Colloid Interface Sci. 2017, 490, 314–327. [Google Scholar] [CrossRef] [PubMed]
- Gao, L.; Wu, G.; Ma, J.; Jiang, T.; Chang, B.; Huang, Y.; Han, S. SnO2 Quantum Dots@Graphene Framework as a High-Performance Flexible Anode Electrode for Lithium-Ion Batteries. ACS Appl. Mater. Interfaces 2020, 12, 12982–12989. [Google Scholar] [CrossRef]
- Giancaspro, M.; Tancredi, M.; Di Fonzo, R.P.; Lasala, P.; Milella, A.; Bianco, G.V.; Sibillano, T.; Giannini, C.; Castaldo, R.; Gentile, G.; et al. Multilevel characterization of SnO2 nanostructures toward enhanced photocatalytic activity. MRS Bull. 2025, 50, 384–397. [Google Scholar] [CrossRef]
- Ghosh, S.; Das, K.; Chakrabarti, K.; De, S.K. Effect of oleic acid ligand on photophysical, photoconductive and magnetic properties of monodisperse SnO2 quantum dots. Dalton Trans. 2013, 42, 3434–3446. [Google Scholar] [CrossRef]
- Xiang, Q.; Yu, J.; Jaroniec, M. Graphene-based semiconductor photocatalysts. Chem. Soc. Rev. 2012, 41, 782–796. [Google Scholar] [CrossRef]
- Pan, X.; Yang, M.-Q.; Xu, Y.-J. Morphology control, defect engineering and photoactivity tuning of ZnO crystals by graphene oxide-a unique 2D macromolecular surfactant. Phys. Chem. Chem. Phys. 2014, 16, 5589–5599. [Google Scholar] [CrossRef]
- Ambade, R.B.; Veerasubramani, G.K.; Ambade, S.B.; Christy, M.; Eom, W.; Shin, H.; Kim, Y.-B.; Kim, D.-W.; Han, T.H. Photonic split-second induced mesoporous TiO2-Graphene architectures for efficient sodium-ion batteries. Carbon 2021, 178, 332–344. [Google Scholar] [CrossRef]
- Gao, S.; Wang, N.; Li, S.; Li, D.; Cui, Z.; Yue, G.; Liu, J.; Zhao, X.; Jiang, L.; Zhao, Y. A Multi-Wall Sn/SnO2 @Carbon Hollow Nanofiber Anode Material for High-Rate and Long-Life Lithium-Ion Batteries. Angew. Chem. Int. Ed. Engl. 2020, 59, 2465–2472. [Google Scholar] [CrossRef]
- Zhao, Q.; Xia, Z.; Qian, T.; Rong, X.; Zhang, M.; Dong, Y.; Chen, J.; Ning, H.; Li, Z.; Hu, H.; et al. PVP-assisted synthesis of ultrafine transition metal oxides encapsulated in nitrogen-doped carbon nanofibers as robust and flexible anodes for sodium-ion batteries. Carbon 2021, 174, 325–334. [Google Scholar] [CrossRef]
- Dong, W.; Xu, J.; Wang, C.; Lu, Y.; Liu, X.; Wang, X.; Yuan, X.; Wang, Z.; Lin, T.; Sui, M.; et al. A Robust and Conductive Black Tin Oxide Nanostructure Makes Efficient Lithium-Ion Batteries Possible. Adv. Mater. 2017, 29, 1700136. [Google Scholar] [CrossRef] [PubMed]
- Nan, D.; Huang, Z.-H.; Lv, R.; Yang, L.; Wang, J.-G.; Shen, W.; Lin, Y.; Yu, X.; Ye, L.; Sun, H.; et al. Nitrogen-enriched electrospun porous carbon nanofiber networks as high-performance free-standing electrode materials. J. Mater. Chem. A 2014, 2, 19678–19684. [Google Scholar] [CrossRef]
- Mao, Y.; Duan, H.; Xu, B.; Zhang, L.; Hu, Y.; Zhao, C.; Wang, Z.; Chen, L.; Yang, Y. Lithium storage in nitrogen-rich mesoporous carbon materials. Energy Environ. Sci. 2012, 5, 7950–7955. [Google Scholar] [CrossRef]
- Muller, G.A.; Cook, J.B.; Kim, H.S.; Tolbert, S.H.; Dunn, B. High performance pseudocapacitor based on 2D layered metal chalcogenide nanocrystals. Nano Lett. 2015, 15, 1911–1917. [Google Scholar] [CrossRef]
- Zhao, K.; Liu, F.; Niu, C.; Xu, W.; Dong, Y.; Zhang, L.; Xie, S.; Yan, M.; Wei, Q.; Zhao, D.; et al. Graphene Oxide Wrapped Amorphous Copper Vanadium Oxide with Enhanced Capacitive Behavior for High-Rate and Long-Life Lithium-Ion Battery Anodes. Adv. Sci. 2015, 2, 1500154. [Google Scholar] [CrossRef]
- Wu, Z.; Huang, Z.; Yu, M.; Du, Y.; Li, J.; Jia, H.; Lin, Z.; Huang, X.; Ying, S. Few-layer MoS2 promotes SnO2@C nano-composites for high performance sodium ion batteries. Dalton Trans. 2024, 53, 5920–15927. [Google Scholar] [CrossRef]
- Danis, A.S.; Counihan, M.J.; Hatfield, K.O.; Zhang, J.; Agarwal, G.; Zhang, L.; Assary, R.S.; Rodríguez-López, J. Colocalized Raman spectroscopy-scanning electrochemical microscopy investigation of redox flow battery dialkoxybenzene redoxmer degradation pathways. Electrochim. Acta 2023, 447, 142123. [Google Scholar] [CrossRef]
- Lin, C.; Suo, G.; Mu, R.; Zhao, B.; Li, J.; Hou, X.; Ye, X.; Yang, Y.; Zhang, L. Dual carbon confining SnO2 nanocrystals as high-performance anode for sodium-ion batteries. J. Power Sources 2024, 623, 235426. [Google Scholar] [CrossRef]
- Li, Y.; Zhao, Y.; Ma, C.; Shi, J.; Zhao, Y. Highly monodispersed graphene/SnO2 hybrid nanosheets as bifunctional anode materials of Li-ion and Na-ion batteries. J. Alloys Compd. 2020, 821, 153506. [Google Scholar] [CrossRef]
- Du, C.; Chen, X.; Zhu, W.; Feng, Q.; Li, J.; Zheng, Y.; Huang, Z. 3D porous SnO2/MXene as a superior anode material for Li-ion and Na-ion battery. J. Electroanal. Chem. 2024, 967, 118481. [Google Scholar] [CrossRef]
- Cheng, Y.; Wang, S.; Zhou, L.; Chang, L.; Liu, W.; Yin, D.; Yi, Z.; Wang, L. SnO2 Quantum Dots: Rational Design to Achieve Highly Reversible Conversion Reaction and Stable Capacities for Lithium and Sodium Storage. Small 2020, 16, 2000681. [Google Scholar] [CrossRef] [PubMed]
- Han, B.; Zhang, W.; Gao, D.; Zhou, C.; Xia, K.; Gao, Q.; Wu, J. Encapsulating tin oxide nanoparticles into holey carbon nanotubes by melt infiltration for superior lithium and sodium ion storage. J. Power Sources 2020, 449, 227564. [Google Scholar] [CrossRef]
- Jo, M.S.; Lee, J.S.; Jeong, S.Y.; Kim, J.K.; Kang, Y.C.; Kang, D.W.; Jeong, S.M.; Cho, J.S. Golden Bristlegrass-Like Hierarchical Graphene Nanofibers Entangled with N-Doped CNTs Containing CoSe2 Nanocrystals at Each Node as Anodes for High-Rate Sodium-Ion Batteries. Small 2020, 16, e2003391. [Google Scholar] [CrossRef]
- Chen, X.; Lu, H.; Lei, Y.; Zhang, J.; Xiao, F.; Wang, R.; Xie, P.; Xu, J. Expanded graphite confined SnO2 as anode for lithium ion batteries with low average working potential and enhanced rate capability. J. Mater. Sci. Technol. 2022, 107, 165–171. [Google Scholar] [CrossRef]
- Wang, Y.; Xiao, F.; Chen, X.; Xiong, P.; Lin, C.; Wang, H.-E.; Wei, M.; Qian, Q.; Chen, Q.; Zeng, L. Extraordinarily stable and wide-temperature range sodium/potassium-ion batteries based on 1D SnSe2-SePAN composite nanofibers. InfoMat 2023, 5, e12467. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yan, Y.; Zhu, B.; Xia, Z.; Wang, H.; Xu, W.; Xin, Y.; Zhao, Q.; Wu, M. Oxygen-Vacancy Engineered SnO2 Dots on rGO with N-Doped Carbon Nanofibers Encapsulation for High-Performance Sodium-Ion Batteries. Molecules 2025, 30, 3203. https://doi.org/10.3390/molecules30153203
Yan Y, Zhu B, Xia Z, Wang H, Xu W, Xin Y, Zhao Q, Wu M. Oxygen-Vacancy Engineered SnO2 Dots on rGO with N-Doped Carbon Nanofibers Encapsulation for High-Performance Sodium-Ion Batteries. Molecules. 2025; 30(15):3203. https://doi.org/10.3390/molecules30153203
Chicago/Turabian StyleYan, Yue, Bingxian Zhu, Zhengzheng Xia, Hui Wang, Weijuan Xu, Ying Xin, Qingshan Zhao, and Mingbo Wu. 2025. "Oxygen-Vacancy Engineered SnO2 Dots on rGO with N-Doped Carbon Nanofibers Encapsulation for High-Performance Sodium-Ion Batteries" Molecules 30, no. 15: 3203. https://doi.org/10.3390/molecules30153203
APA StyleYan, Y., Zhu, B., Xia, Z., Wang, H., Xu, W., Xin, Y., Zhao, Q., & Wu, M. (2025). Oxygen-Vacancy Engineered SnO2 Dots on rGO with N-Doped Carbon Nanofibers Encapsulation for High-Performance Sodium-Ion Batteries. Molecules, 30(15), 3203. https://doi.org/10.3390/molecules30153203