Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (239)

Search Parameters:
Keywords = recycling PET plastic

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 1637 KiB  
Article
Comparative Analysis of Plastic Waste Management Options Sustainability Profiles
by Madalina-Maria Enache, Daniela Gavrilescu and Carmen Teodosiu
Polymers 2025, 17(15), 2117; https://doi.org/10.3390/polym17152117 - 31 Jul 2025
Viewed by 312
Abstract
Efficient plastic waste end-of-life management is a serious worldwide environmental issue motivated by growing waste production and negative effects of wrongful disposal. This study presents a comparative overview of plastic waste management regimes within the European Union (EU), the United States of America [...] Read more.
Efficient plastic waste end-of-life management is a serious worldwide environmental issue motivated by growing waste production and negative effects of wrongful disposal. This study presents a comparative overview of plastic waste management regimes within the European Union (EU), the United States of America (USA), and Romania, ranked with circular economy goals. By using the United States Environmental Protection Agency (US EPA) Waste Reduction Model (WARM), version 16, the study provides a quantified score to greenhouse gas (GHG) emissions within three large options of management: recycling, energy recovery through combustion, and landfilling. The model setup utilizes region-specific information on legislation, base technology, and recycling efficiency. The outcomes show that recycling always entails net GHG emissions reductions, i.e., −4.49 kg CO2e/capita/year for EU plastic waste and −20 kg CO2e/capita/year for USA plastic waste. Combustion and landfilling have positive net emissions from 1.76 to 14.24 kg CO2e/capita/year. Economic indicators derived from the model also show significant variation: salaries for PET management amounted to USD 2.87 billion in the EU and USD 377 million in the USA, and tax collection was USD 506 million and USD 2.01 billion, respectively. The conclusions highlight the wider environmental and socioeconomic benefits of recycling and reinforce its status as a cornerstone of circular-economy sustainable plastic waste management and a strategic element of national development agendas, with special reference to Romania’s national agenda. Full article
(This article belongs to the Special Issue Polymers for Environmental Applications)
Show Figures

Figure 1

42 pages, 3564 KiB  
Review
A Review on Sustainable Upcycling of Plastic Waste Through Depolymerization into High-Value Monomer
by Ramkumar Vanaraj, Subburayan Manickavasagam Suresh Kumar, Seong Cheol Kim and Madhappan Santhamoorthy
Processes 2025, 13(8), 2431; https://doi.org/10.3390/pr13082431 - 31 Jul 2025
Viewed by 657
Abstract
Plastic waste accumulation is one of the most pressing environmental challenges of the 21st century, owing to the widespread use of synthetic polymers and the limitations of conventional recycling methods. Among available strategies, chemical upcycling via depolymerization has emerged as a promising circular [...] Read more.
Plastic waste accumulation is one of the most pressing environmental challenges of the 21st century, owing to the widespread use of synthetic polymers and the limitations of conventional recycling methods. Among available strategies, chemical upcycling via depolymerization has emerged as a promising circular approach that converts plastic waste back into valuable monomers and chemical feedstocks. This article provides an in-depth narrative review of recent progress in the upcycling of major plastic types such as PET, PU, PS, and engineering plastics through thermal, chemical, catalytic, biological, and mechanochemical depolymerization methods. Each method is critically assessed in terms of efficiency, scalability, energy input, and environmental impact. Special attention is given to innovative catalyst systems, such as microsized MgO/SiO2 and Co/CaO composites, and emerging enzymatic systems like engineered PETases and whole-cell biocatalysts that enable low-temperature, selective depolymerization. Furthermore, the conversion pathways of depolymerized products into high-purity monomers such as BHET, TPA, vanillin, and bisphenols are discussed with supporting case studies. The review also examines life cycle assessment (LCA) data, techno-economic analyses, and policy frameworks supporting the adoption of depolymerization-based recycling systems. Collectively, this work outlines the technical viability and sustainability benefits of depolymerization as a core pillar of plastic circularity and monomer recovery, offering a path forward for high-value material recirculation and waste minimization. Full article
Show Figures

Figure 1

27 pages, 19505 KiB  
Article
Analysis on the Ductility of One-Part Geopolymer-Stabilized Soil with PET Fibers: A Deep Learning Neural Network Approach
by Guo Hu, Junyi Zhang, Ying Tang and Jun Wu
Buildings 2025, 15(15), 2645; https://doi.org/10.3390/buildings15152645 - 27 Jul 2025
Viewed by 277
Abstract
Geopolymers, as an eco-friendly alternative construction material to ordinary Portland cement (OPC), exhibit superior performance in soil stabilization. However, their inherent brittleness limits engineering applications. To address this, polyethylene terephthalate (PET) fibers can be incorporated into a one-part geopolymer (OPG) binder to enhance [...] Read more.
Geopolymers, as an eco-friendly alternative construction material to ordinary Portland cement (OPC), exhibit superior performance in soil stabilization. However, their inherent brittleness limits engineering applications. To address this, polyethylene terephthalate (PET) fibers can be incorporated into a one-part geopolymer (OPG) binder to enhance ductility while promoting plastic waste recycling. However, the evaluation of ductile behavior of OPG-stabilized soil with PET fiber normally demands extensive laboratory and field experiments. Leveraging artificial intelligence, a predictive model can be developed for this purpose. In this study, data were collected from compressive and tensile tests performed on the OPG-stabilized soil with PET fiber. Four deep learning neural network models, namely ANN, BPNN, CNN, and LSTM, were then used to construct prediction models. The input parameters in the model included the fly ash (FA) dosage, dosage and length of the PET fiber, and the Curing Time. Results revealed that the LSTM model had the best performance in predicting the three ductile properties (i.e., the compressive strength index [UCS], strain energy index [CSE], and tensile strength index [TES]). The SHAP and 2D-PDP methods were further used to verify the rationality of the LSTM model. It is found that the Curing Time was the most important factor for the strength and ductile behavior. The appropriate addition of PET fiber of a certain length had a positive impact on the ductility index. Thus, for the OPG-stabilized soil, the optimal dosage and length of PET fiber were found to be 1.5% and 9 mm, respectively. Additionally, there was a synergistic effect between FA and PET on the ductility metric. This research provides theoretical support for the application of geopolymer and PET fiber in enhancing the ductility of the stabilized soil. Full article
Show Figures

Figure 1

18 pages, 3231 KiB  
Article
Investigation into the Properties of Alkali-Activated Fiber-Reinforced Slabs, Produced with Marginal By-Products and Recycled Plastic Aggregates
by Fotini Kesikidou, Kyriakos Koktsidis and Eleftherios K. Anastasiou
Constr. Mater. 2025, 5(3), 48; https://doi.org/10.3390/constrmater5030048 - 24 Jul 2025
Viewed by 204
Abstract
Alkali-activated building materials have attracted the interest of many researchers due to their low cost and eco-efficiency. Different binders with different chemical compositions can be used for their production, so the reaction mechanism can become complex and the results of studies can vary [...] Read more.
Alkali-activated building materials have attracted the interest of many researchers due to their low cost and eco-efficiency. Different binders with different chemical compositions can be used for their production, so the reaction mechanism can become complex and the results of studies can vary widely. In this work, several alkali-activated mortars based on marginal by-products as binders, such as high calcium fly ash and ladle furnace slag, are investigated. Their mechanical (flexural and compressive strength, ultrasonic pulse velocity, and modulus of elasticity) and physical (porosity, absorption, specific gravity, and pH) properties were determined. After evaluating the mechanical performance of the mortars, the optimum mixture containing fly ash, which reached 15 MPa under compression at 90 days, was selected for the production of precast compressed slabs. Steel or glass fibers were also incorporated to improve their ductility. To reduce the density of the slabs, 60% of the siliceous sand aggregate was also replaced with recycled polyethylene terephthalate (PET) plastic aggregate. The homogeneity, density, porosity, and capillary absorption of the slabs were measured, as well as their flexural strength and fracture energy. The results showed that alkali activation can be used to improve the mechanical properties of weak secondary binders such as ladle furnace slag and hydrated fly ash. The incorporation of recycled PET aggregates produced slabs that could be classified as lightweight, with similar porosity and capillary absorption values, and over 65% achieved strength compared to the normal weight slabs. Full article
Show Figures

Figure 1

26 pages, 796 KiB  
Article
Developing an Integrated Circular Economy Framework for Nanomaterial-Enhanced Recycled PET (nrPET): Advancing Sustainable and Resilient Road Construction Practices
by Demiss A. Belachew and Walied A. Elsaigh
Recycling 2025, 10(4), 146; https://doi.org/10.3390/recycling10040146 - 22 Jul 2025
Viewed by 277
Abstract
The rapid growth in plastic consumption, particularly polyethylene terephthalate (PET), has led to a significant increase in plastic waste, posing a major environmental challenge. Developing an integrated circular economy framework for nanomaterial-enhanced recycled PET (nrPET) can be a promising approach to address this [...] Read more.
The rapid growth in plastic consumption, particularly polyethylene terephthalate (PET), has led to a significant increase in plastic waste, posing a major environmental challenge. Developing an integrated circular economy framework for nanomaterial-enhanced recycled PET (nrPET) can be a promising approach to address this issue and advance sustainable and resilient road construction practices. This comprehensive review examines the current use of rPET in road construction, its existing limitations, and the role of nanomaterials in enhancing the performance of these materials. The review explores the mechanisms by which nanomaterials, such as carbon nanotubes, graphene, nanosilica, and clay nanoplatelets, can improve the properties of rPET, leading to more durable, weather-resistant, and cost-effective road materials. Furthermore, the review analyzes the environmental and sustainability benefits of using nrPET in road construction, focusing on carbon footprint reduction, conservation of natural resources, and alignment with circular economy principles. The potential for job creation, social benefits, and support for circular economy initiatives are also discussed. The review then delves into the challenges associated with the implementation of this framework, including technical barriers, economic and market barriers, regulatory and policy challenges, and environmental and safety considerations. Strategies to address these challenges, such as advancements in nanotechnology, scaling up circular economy models, and fostering collaborative research, are presented. Finally, the article proposes a framework and outlines future directions and research opportunities, emphasizing the exploration of emerging nanomaterials, scaling up circular economy models, and encouraging collaborations between researchers, industry stakeholders, policymakers, and communities. Full article
(This article belongs to the Special Issue Recycled Materials in Sustainable Pavement Innovation)
Show Figures

Figure 1

13 pages, 1873 KiB  
Article
Effect of Thickness Swelling and Termite Attack Resistance in Wood–Plastic Composites Produced with Pine Wood and Recycled Thermoplastics
by Emilly Silva, Yonny Lopez, Juarez Paes, Fernanda Maffioletti, Gabrielly Souza and Fabricio Gonçalves
Biomass 2025, 5(3), 43; https://doi.org/10.3390/biomass5030043 - 21 Jul 2025
Viewed by 462
Abstract
This research aimed to evaluate the biological resistance to xylophagous organisms and the dimensional stability related to water absorption in plastic wood panels manufactured by compression molding and produced with pine wood and recycled thermoplastics. The wood–plastic composites (WPCs) were prepared from 50% [...] Read more.
This research aimed to evaluate the biological resistance to xylophagous organisms and the dimensional stability related to water absorption in plastic wood panels manufactured by compression molding and produced with pine wood and recycled thermoplastics. The wood–plastic composites (WPCs) were prepared from 50% pine sawdust and 50% recycled plastics (polyethylene terephthalate-PET, high-density polyethylene-HDPE, and polypropylene-PP). The thickness swelling test was carried out by immersing of the WPC samples in water at room temperature (25–30 °C) and evaluating the total change in WPC thickness after 1500 h (≈9 weeks or two months). In addition, the coefficient of initial swelling was evaluated to verify the variability of the swelling. For the biological resistance evaluation of the WPCs, tests were carried out with soil or arboreal termites (Nasutitermes corniger) and drywood termites (Cryptotermes brevis). The WPC loss of mass and termite mortality were evaluated. The use of PP promoted the best response to thickness swelling. The simple mathematical model adopted offers real predictions to evaluate the thickness of the swelling of the compounds in a given time. For some variables there were no statistical differences. It was shown that treatment 3 (T3) presented visual damage values between 0.4 for drywood termites and 9.4 for soil termites, in addition to 26% termite mortality, represented by the lowest survival time of 12 days. The developed treatments have resistance to termite attacks; these properties can be an important starting point for its use on a larger scale by the panel industries. Full article
Show Figures

Figure 1

18 pages, 1010 KiB  
Review
Engineering IsPETase and Its Homologues: Advances in Enzyme Discovery and Host Optimisation
by Tolu Sunday Ogunlusi, Sylvester Sapele Ikoyo, Mohammad Dadashipour and Hong Gao
Int. J. Mol. Sci. 2025, 26(14), 6797; https://doi.org/10.3390/ijms26146797 - 16 Jul 2025
Viewed by 406
Abstract
Polyethylene terephthalate (PET) pollution represents a significant environmental challenge due to its widespread use and recalcitrant nature. PET-degrading enzymes, particularly Ideonella sakaiensis PETases (IsPETase), have emerged as promising biocatalysts for mitigating this problem. This review provides a comprehensive overview of recent [...] Read more.
Polyethylene terephthalate (PET) pollution represents a significant environmental challenge due to its widespread use and recalcitrant nature. PET-degrading enzymes, particularly Ideonella sakaiensis PETases (IsPETase), have emerged as promising biocatalysts for mitigating this problem. This review provides a comprehensive overview of recent advancements in the discovery and heterologous expression of IsPETase and closely related enzymes. We highlight innovative approaches, such as in silico and AI-based enzyme screening and advanced screening assays. Strategies to enhance enzyme secretion and solubility, such as using signal peptides, fusion tags, chaperone co-expression, cell surface display systems, and membrane permeability modulation, are critically evaluated. Despite considerable progress, challenges remain in achieving industrial-scale production and application. Future research must focus on integrating cutting-edge molecular biology techniques with host-specific optimisation to achieve sustainable and cost-effective solutions for PET biodegradation and recycling. This review aims to provide a foundation for further exploration and innovation in the field of enzymatic plastic degradation. Full article
(This article belongs to the Special Issue The Characterization and Application of Enzymes in Bioprocesses)
Show Figures

Figure 1

19 pages, 549 KiB  
Article
Evaluating Plastic Waste Management in EU Accession Countries: A Life Cycle Perspective from the Republic of Serbia with Microplastic Implications
by Dunja Prokić, Jasna Stepanov, Ljiljana Milošević, Biljana Panin, Nataša Stojić and Mira Pucarević
Sustainability 2025, 17(14), 6297; https://doi.org/10.3390/su17146297 - 9 Jul 2025
Viewed by 374
Abstract
EU accession countries, including the Republic of Serbia, are under growing pressure to align their plastic waste management systems with EU environmental directives. Despite this, significant challenges remain, including inadequate infrastructure, a limited recycling capacity, and weak enforcement mechanisms. This study employs life [...] Read more.
EU accession countries, including the Republic of Serbia, are under growing pressure to align their plastic waste management systems with EU environmental directives. Despite this, significant challenges remain, including inadequate infrastructure, a limited recycling capacity, and weak enforcement mechanisms. This study employs life cycle assessment (LCA) to evaluate the environmental impacts of polyethylene terephthalate (PET) packaging waste in Serbia, focusing on three end-of-life scenarios (EoL): landfilling, recycling, and incineration. Using GaBi Professional v6.0 software and the ReCiPe 2016 methodology, the results indicate that mismanaged PET waste contributes notably to terrestrial ecotoxicity (3.69 kg 1.4-DB eq.) and human toxicity (non-cancer) (2.36 kg 1.4-DB eq.). In 2023, 14,967.8 tons of PET were collected by authorized operators; however, unreported quantities likely end up in landfills or the natural environment. Beyond the quantified LCA results, this study highlights microplastic pollution as an emerging environmental concern. It advocates for the development of Serbia-specific characterization factors (CFs) for PET microplastics, incorporating localized fate, exposure, and effect data. Tailored CFs would enhance the precision of impact assessments for Serbian terrestrial ecosystems, contributing to more effective, evidence-based environmental policies. These insights are crucial for supporting Serbia’s transition to sustainable waste management and for meeting EU environmental standards. Full article
Show Figures

Figure 1

35 pages, 1062 KiB  
Review
Micro- and Nanoplastics in the Environment: Current State of Research, Sources of Origin, Health Risks, and Regulations—A Comprehensive Review
by Anna Kochanek, Katarzyna Grąz, Halina Potok, Anna Gronba-Chyła, Justyna Kwaśny, Iwona Wiewiórska, Józef Ciuła, Emilia Basta and Jacek Łapiński
Toxics 2025, 13(7), 564; https://doi.org/10.3390/toxics13070564 - 2 Jul 2025
Viewed by 2134
Abstract
Small-particle-produced goods, such as those used in industry, medicine, cosmetics, paints, abrasives, and plastic pellets or powders, are the main sources of microplastics. It is also possible to mention tire recycling granules here. Larger components break down in the environment to generate secondary [...] Read more.
Small-particle-produced goods, such as those used in industry, medicine, cosmetics, paints, abrasives, and plastic pellets or powders, are the main sources of microplastics. It is also possible to mention tire recycling granules here. Larger components break down in the environment to generate secondary microplastics. Microplastics, or particles smaller than 5 mm, and nanoplastics, or particles smaller than 1 μm, are the products of degradation and, in particular, disintegration processes that occur in nature as a result of several physical, chemical, and biological variables. Polypropylene, polyethylene, polyvinyl chloride (PVC), polystyrene, polyurethane, and polyethylene terephthalate (PET) are among the chemicals included in this contamination in decreasing order of quantity. Micro- and nanoplastics have been detected in the air, water, and soil, confirming their ubiquitous presence in natural environments. Their widespread distribution poses significant threats to human health, including oxidative stress, inflammation, cellular damage, and potential carcinogenic effects. The aim of this article is to review the current literature on the occurrence of micro- and nanoplastics in various environmental compartments and to analyze the associated health consequences. The article also discusses existing legal regulations and highlights the urgent need for intensified research into the toxicological mechanisms of microplastics and the development of more effective strategies for their mitigation. Full article
(This article belongs to the Section Emerging Contaminants)
Show Figures

Figure 1

21 pages, 1405 KiB  
Article
Analyses of Food-Consumption Data and Migration for the Safety Evaluation of Recycled Polystyrene Intended for Food-Packaging Applications
by David Mittermayr, Wolfgang Roland and Jörg Fischer
Polymers 2025, 17(13), 1846; https://doi.org/10.3390/polym17131846 - 30 Jun 2025
Viewed by 354
Abstract
The recycling of post-consumer plastics for food-contact applications is subject to stringent regulatory requirements, particularly with regard to the removal of potentially harmful non-intentionally added substances (NIAS). While polyethylene terephthalate (PET) recycling processes are already approved by the European Food Safety Authority (EFSA), [...] Read more.
The recycling of post-consumer plastics for food-contact applications is subject to stringent regulatory requirements, particularly with regard to the removal of potentially harmful non-intentionally added substances (NIAS). While polyethylene terephthalate (PET) recycling processes are already approved by the European Food Safety Authority (EFSA), there is a lack of guidance for other polymers like polystyrene (PS). This study aims to provide a scientific basis for assessing the decontamination efficiency required for recycled post-consumer PS in food-contact applications. As one of the first studies to propose a framework for PS decontamination assessment based on EFSA food-consumption data and conservative diffusion modeling, it contributes to filling this regulatory gap. First, European food-consumption data were analyzed to identify critical scenarios of the age-group-dependent intake of PS-packaged food. Based on this, a conservative migration model was applied using a one-dimensional diffusion simulation to determine the maximum allowable initial concentrations of NIAS in PS. The calculated values were then compared with published reference contamination levels to calculate the required cleaning efficiency. The combination of food-consumption values and the migration process showed that trays for fruits and vegetables are the most critical food-contact application for post-consumer PS recycling. The most stringent assumptions resulted in necessary decontamination efficiencies ranging from 92% for the smallest molecule, toluene (92.14 g/mol), to 42% for the largest molecule, methyl stearate (298.50 g/mol). The results provide a methodological basis for regulatory assessments and offer practical guidance for designing safe recycling processes, thereby supporting the circular use of PS in food packaging and building the basis for future regulatory assessments of other polymers, in line with the European Union Plastics Strategy and circular economy objectives. Full article
(This article belongs to the Section Circular and Green Sustainable Polymer Science)
Show Figures

Graphical abstract

36 pages, 4108 KiB  
Article
Innovative AIoT Solutions for PET Waste Collection in the Circular Economy Towards a Sustainable Future
by Cosmina-Mihaela Rosca and Adrian Stancu
Appl. Sci. 2025, 15(13), 7353; https://doi.org/10.3390/app15137353 - 30 Jun 2025
Viewed by 438
Abstract
Recycling plastic waste has emerged as one of the most pressing environmental challenges of the 21st century. One of the biggest challenges in polyethylene terephthalate (PET) recycling is the requirement to return bottles in their original, undeformed state. This necessitates storing large volumes [...] Read more.
Recycling plastic waste has emerged as one of the most pressing environmental challenges of the 21st century. One of the biggest challenges in polyethylene terephthalate (PET) recycling is the requirement to return bottles in their original, undeformed state. This necessitates storing large volumes of waste and takes up substantial space. Therefore, this paper seeks to address this issue and introduces a novel AIoT-based infrastructure that integrates the PET Bottle Identification Algorithm (PBIA), which can accurately recognize bottles regardless of color or condition and distinguish them from other waste. A detailed study of Azure Custom Vision services for PET bottle identification is conducted, evaluating its object recognition capabilities and overall performance within an intelligent waste management framework. A key contribution of this work is the development of the Algorithm for Citizens’ Trust Level by Recycling (ACTLR), which assigns trust levels to individuals based on their recycling behavior. This paper also details the development of a cost-effective prototype of the AIoT system, demonstrating its low-cost feasibility for real-world implementation, using the Asus Tinker Board as the primary hardware. The software application is designed to monitor the collection process across multiple recycling points, offering Microsoft Azure cloud-hosted data and insights. The experimental results demonstrate the feasibility of integrating this prototype on a large scale at minimal cost. Moreover, the algorithm integrates the allocation points for proper recycling and penalizes fraudulent activities. This innovation has the potential to streamline the recycling process, reduce logistical burdens, and significantly improve public participation by making it more convenient to store and return used plastic bottles. Full article
Show Figures

Figure 1

19 pages, 1900 KiB  
Article
Thermal Characterization and Recycling of Polymers from Plastic Packaging Waste
by Maria-Anna Charitopoulou, Stavri Koutroumpi and Dimitrios S. Achilias
Polymers 2025, 17(13), 1786; https://doi.org/10.3390/polym17131786 - 27 Jun 2025
Viewed by 401
Abstract
Today, the global production of plastic packaging reaches a million tons annually, resulting in significant amounts of plastic waste in the environment, which causes serious pollution issues and negatively affects the health of all living beings. However, the recycling rate for plastic packaging [...] Read more.
Today, the global production of plastic packaging reaches a million tons annually, resulting in significant amounts of plastic waste in the environment, which causes serious pollution issues and negatively affects the health of all living beings. However, the recycling rate for plastic packaging waste in Europe currently remains limited (~38%). With this in mind, this study focuses on the collection, characterization, and recycling, through pyrolysis, of 23 random plastic samples collected from food and non-food packaging waste in Greece. The samples were analyzed using thermal characterization techniques, such as Differential Scanning Calorimetry (DSC) and Evolved Gas Analysis (EGA), in conjunction with FTIR spectroscopy to gather important information and identify the polymers present in each sample. Furthermore, the samples underwent pyrolysis, resulting in valuable products such as the monomers styrene or ethylene, along with other useful secondary compounds, including benzoic acid, depending on the polymer type of each sample. The most prevalent polymer identified was PE (35%), while the remaining samples consisted of PET (22%), PP (22%), and PS (17%); only one sample was a blend of PE/PP. DSC facilitated the identification of the polyethylene type (LDPE, HDPE, or LLDPE). Full article
(This article belongs to the Special Issue Recycling and Circularity of Polymeric Materials)
Show Figures

Figure 1

16 pages, 3362 KiB  
Article
The Physico-Mechanical, Mineralogical, and Thermal Characterization of Geopolymeric Laterite Bricks Containing Polyethylene Terephthalate Bottle Powder
by Marcel Bertrand Hagbe Ntod, Michel Bertrand Mbog, Lionelle Bitom-Mamdem, Elie Constantin Bayiga, Rolande Aurelie Tchouateu Kamwa, Emmanuel Wantou Ngueko, Gilbert François NgonNgon, Dieudonné Bitom and Jacques Etame
J. Compos. Sci. 2025, 9(7), 320; https://doi.org/10.3390/jcs9070320 - 23 Jun 2025
Viewed by 349
Abstract
Compressed earth blocks (CEBs) obtained by laterite material geopolymerization have great potential as building materials; however, plastic waste recycling remains an important challenge for the 21st century. Samples of lateritic materials (LAT) from the locality of Kompina and its surroundings (Littoral-Cameroon) were collected, [...] Read more.
Compressed earth blocks (CEBs) obtained by laterite material geopolymerization have great potential as building materials; however, plastic waste recycling remains an important challenge for the 21st century. Samples of lateritic materials (LAT) from the locality of Kompina and its surroundings (Littoral-Cameroon) were collected, given the region’s association with polyethylene terephthalate powder (P). They were used to make geopolymeric laterite bricks using a phosphoric acid solution (A) concentrated at 10 mol/L, at a fixed value of 20% phosphoric acid, and values of 0, 5, 10, 15, and 20% polyethylene terephthalate (PET) powder. To assess the suitability of these formulations for construction, the CEBs were tested and their physico-mechanical and thermal characteristics determined, including water absorption rate, compressive strength (CS), thermal conductivity, and effusivity. It was revealed that water absorption decreased for the LAT1 and LAT6 formulas, at 6.73% and 5.01%, respectively, with the lowest value being recorded when 10% of the PET powder was used. The water absorption increased beyond this percentage; the CS values did too, with a peak at 10% PET powder, reaching 6.92 MPa and 6.96 MPa for LAT1 and LAT6, respectively, and values decreasing beyond this point. The thermal conductivity and effusivity decreased, with the lowest values at 20% of the PET powder being 0.289 W·m−1·K−1 and 1078.46 J·K−1·m−2·s−1/2, and 0.289 W·m−1·K−1 and 1078.2 J·K−1·m−2·s−1/2 for LAT1 and LAT6, respectively. Based on the results obtained, we conclude that the formulation LAT-P10A20 is the most recommendable. Full article
Show Figures

Figure 1

18 pages, 1096 KiB  
Review
Marine Plastic Waste in Construction: A Systematic Review of Applications in the Built Environment
by Lucas Lopes, Harish Dauari, Paulo Mendonça and Manuela Almeida
Polymers 2025, 17(13), 1729; https://doi.org/10.3390/polym17131729 - 21 Jun 2025
Viewed by 774
Abstract
Marine plastic pollution represents a critical environmental challenge, with millions of tons of plastic waste entering the oceans annually and threatening ecosystems, biodiversity, and human health. This systematic review evaluates the current state of the art in recycling and reusing marine plastic waste [...] Read more.
Marine plastic pollution represents a critical environmental challenge, with millions of tons of plastic waste entering the oceans annually and threatening ecosystems, biodiversity, and human health. This systematic review evaluates the current state of the art in recycling and reusing marine plastic waste within the architecture, engineering, and construction (AEC) sectors, following the PRISMA methodology. Sixty-six peer-reviewed articles published between 2015 and 2025 were analysed, focusing on the integration of plastic waste. The review identifies mechanical recycling as the predominant method, involving washing and shredding plastics into fibres or flakes for use in cementitious composites, asphalt modifiers, bricks, panels, and insulation. Results indicate that recycled plastics, such as PET, HDPE, and PP, can enhance thermal insulation, water resistance, and flexural strength in non-structural applications. However, challenges persist regarding compressive strength, fibre dispersion, and chemical compatibility with cementitious matrices. Although the reuse of marine plastics supports circular economy goals by diverting waste from oceans and landfills, significant gaps remain in long-term durability, microplastic release, end-of-life recyclability, and comprehensive environmental assessments. The findings underscore the need for further research on the broader adoption of life cycle analysis, as well as long-term durability and environmental contamination analyses. Full article
(This article belongs to the Special Issue Environmentally Responsive Polymer Materials)
Show Figures

Figure 1

12 pages, 4292 KiB  
Article
Machine Learning-Based Identification of Plastic Types Using Handheld Spectrometers
by Hedde van Hoorn, Fahimeh Pourmohammadi, Arie-Willem de Leeuw, Amey Vasulkar, Jerry de Vos and Steven van den Berg
Sensors 2025, 25(12), 3777; https://doi.org/10.3390/s25123777 - 17 Jun 2025
Viewed by 474
Abstract
Plastic waste and pollution is growing rapidly worldwide and most plastics end up in landfill or are incinerated because high-quality recycling is not possible. Plastic-type identification with a low-cost, handheld spectral approach could help in parts of the world where high-end spectral imaging [...] Read more.
Plastic waste and pollution is growing rapidly worldwide and most plastics end up in landfill or are incinerated because high-quality recycling is not possible. Plastic-type identification with a low-cost, handheld spectral approach could help in parts of the world where high-end spectral imaging systems on conveyor belts cannot be implemented. Here, we investigate how two fundamentally different handheld infrared spectral devices can identify plastic types by benchmarking the same analysis against a high-resolution bench-top spectral approach. We used the handheld Plastic Scanner, which measures a discrete infrared spectrum using LED illumination at different wavelengths, and the SpectraPod, which has an integrated photonics chip which has varying responsivity in different channels in the near-infrared. We employ machine learning using SVM, XGBoost, Random Forest and Gaussian Naïve Bayes models on a full dataset of plastic samples of PET, HDPE, PVC, LDPE, PP and PS, with samples of varying shape, color and opacity, as measured with three different experimental approaches. The high-resolution spectral approach can obtain an accuracy (mean ± standard deviation) of (0.97 ± 0.01), whereas we obtain (0.93 ± 0.01) for the SpectraPod and (0.70 ± 0.03) for the Plastic Scanner. Differences of reflectance at subsequent wavelengths prove to be the most important features in the plastic-type classification model when using high-resolution spectroscopy, which is not possible with the other two devices. Lower accuracy for the handheld devices is caused by their limitations, as the spectral range of both devices is limited—up to 1600 nm for the SpectraPod, while the Plastic Scanner has limited sensitivity to reflectance at wavelengths of 1100 and 1350 nm, where certain plastic types show characteristic absorbance bands. We suggest that combining selective sensitivity channels (as in the SpectraPod) and illuminating the sample with varying LEDs (as with the Plastic Scanner) could increase the accuracy in plastic-type identification with a handheld device. Full article
(This article belongs to the Special Issue Advanced Optical Sensors Based on Machine Learning: 2nd Edition)
Show Figures

Figure 1

Back to TopTop