Marine Plastic Waste in Construction: A Systematic Review of Applications in the Built Environment
Abstract
:1. Introduction
2. Materials and Methods
- Scope: Studies were included if they investigated the reuse, recycling, or valorisation of plastic waste originating from marine or coastal environments within the context of construction or the built environment. Alternatively, studies focusing on the recycling of single-use plastic waste commonly found in marine environments—specifically, light packaging and disposable surgical masks—were also considered, provided the recycled materials were applied in construction.
- Material type: The focus must include thermoplastics or thermosetting polymers (e.g., PET, HDPE, LDPE, PP, and PS).
- Publication type: Only peer-reviewed journal articles published in English were included.
- Publication date: Studies published between January 2015 and March 2025 were included.
- Studies unrelated to marine plastic waste or single-use plastics.
- Studies without explicit construction-related applications.
- Conference abstracts, editorials, patents, and grey literature.
3. Results and Discussion
3.1. Fishing Industry Waste
3.1.1. Fishing Waste in Cementitious and Bituminous Composites
3.1.2. FRP Solutions and 3D Printing
3.2. Plastic Packaging Waste
3.2.1. Packaging Plastics in Cementitious and Bituminous Composites
3.2.2. Minimal Processing and Alternative Applications
3.2.3. Use in Clay and Cement Bricks
3.2.4. Non-Cementitious and Composite Applications
3.2.5. Structural Applications
3.3. Surgical Masks
3.4. Pre-Processing Techniques and Recycling Methods
3.5. Applications in Construction
3.5.1. Overall Non-Structural Applications
3.5.2. Overall Structural Applications
3.5.3. Trade-Offs
3.6. Environmental Benefits and Challenges
3.7. Policy and Practice Implications
3.8. Research Gaps and Future Directions
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- MacLeod, M.; Arp, H.P.H.; Tekman, M.B.; Jahnke, A. The global threat from plastic pollution. Science 1979, 373, 61–65. [Google Scholar] [CrossRef] [PubMed]
- Muñiz, R.; Rahman, M.S. Microplastics in coastal and marine environments: A critical issue of plastic pollution on marine organisms, seafood contaminations, and human health implications. J. Hazard. Mater. Adv. 2025, 18, 100663. [Google Scholar] [CrossRef]
- Jambeck, J.R.; Geyer, R.; Wilcox, C.; Siegler, T.R.; Perryman, M.; Andrady, A.; Narayan, R.; Law, K.L. Plastic waste inputs from land into the ocean. Science 2015, 347, 768–771. [Google Scholar] [CrossRef] [PubMed]
- Global Plastics Production Forecast 2025–2050 | Statista. Available online: https://www.statista.com/statistics/664906/plastics-production-volume-forecast-worldwide/ (accessed on 14 April 2025).
- Just 9.5% of Plastic Made in 2022 Used Recycled Material, Study Shows | Plastics | The Guardian. Available online: https://www.theguardian.com/environment/2025/apr/10/just-95-of-plastic-made-in-2022-used-recycled-material-study-shows (accessed on 14 April 2025).
- Global Plastic Production with Projections, 1950 to 2060. Available online: https://ourworldindata.org/grapher/global-plastic-production-projections (accessed on 14 April 2025).
- Seyyedi, S.R.; Kowsari, E.; Ramakrishna, S.; Gheibi, M.; Chinnappan, A. Marine plastics, circular economy, and artificial intelligence: A comprehensive review of challenges, solutions, and policies. J. Environ. Manag. 2023, 345, 118591. [Google Scholar] [CrossRef]
- Ronkay, F.; Molnar, B.; Gere, D.; Czigany, T. Plastic waste from marine environment: Demonstration of possible routes for recycling by different manufacturing technologies. Waste Manag. 2021, 119, 101–110. [Google Scholar] [CrossRef]
- Vince, J.; Stoett, P. From problem to crisis to interdisciplinary solutions: Plastic marine debris. Mar. Policy 2018, 96, 200–203. [Google Scholar] [CrossRef]
- Aretoulaki, E.; Ponis, S.; Plakas, G.; Agalianos, K. A systematic meta-review analysis of review papers in the marine plastic pollution literature. Mar. Pollut. Bull. 2020, 161, 111690. [Google Scholar] [CrossRef]
- Turner, A. Heavy metals, metalloids and other hazardous elements in marine plastic litter. Mar. Pollut. Bull. 2016, 111, 136–142. [Google Scholar] [CrossRef]
- Thushari, G.; Senevirathna, J. Plastic pollution in the marine environment. Heliyon 2020, 6, e04709. [Google Scholar] [CrossRef]
- Meijer, L.J.J.; van Emmerik, T.; van der Ent, R.; Schmidt, C.; Lebreton, L. More than 1000 rivers account for 80% of global riverine plastic emissions into the ocean. Sci. Adv. 2021, 7, eaaz5803. [Google Scholar] [CrossRef]
- Cho, Y.; Jeon, H.-J.; Lee, S.-E.; Kim, C.; Kim, G.; Kim, K.; Kim, Y.-K.; Lee, S.-R. Microplastic accumulation dynamics in Han river headwaters: Sediment interactions and environmental implication. J. Hazard. Mater. 2024, 472, 134445. [Google Scholar] [CrossRef]
- Peng, Y.; Wu, P.; Schartup, A.T.; Zhang, Y. Plastic waste release caused by COVID-19 and its fate in the global ocean. Proc. Natl. Acad. Sci. USA 2021, 118, e2111530118. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Chen, G.; Wang, J. Microplastics in the Marine Environment: Sources, Fates, Impacts and Microbial Degradation. Toxics 2021, 9, 41. [Google Scholar] [CrossRef] [PubMed]
- What Types of Plastic Are in the Ocean? | The Ocean Cleanup. Available online: https://theoceancleanup.com/faq/what-types-of-plastic-do-you-find-in-the-middle-of-the-ocean (accessed on 16 April 2025).
- Ma, J.; Chen, F.; Xu, H.; Liu, J.; Chen, C.C.; Zhang, Z.; Jiang, H.; Li, Y.; Pan, K. Fate of face masks after being discarded into seawater: Aging and microbial colonization. J. Hazard. Mater. 2022, 436, 129084. [Google Scholar] [CrossRef]
- Oliveira, J.; Belchior, A.; da Silva, V.D.; Rotter, A.; Petrovski, E.; Almeida, P.L.; Lourenço, N.D.; Gaudêncio, S.P. Marine Environmental Plastic Pollution: Mitigation by Microorganism Degradation and Recycling Valorization. Front. Mar. Sci. 2020, 7, 567126. [Google Scholar] [CrossRef]
- Masry, M.; Rossignol, S.; Gardette, J.-L.; Therias, S.; Bussière, P.-O.; Wong-Wah-Chung, P. Characteristics, fate, and impact of marine plastic debris exposed to sunlight: A review. Mar. Pollut. Bull. 2021, 171, 112701. [Google Scholar] [CrossRef]
- Li, W.; Tse, H.; Fok, L. Plastic waste in the marine environment: A review of sources, occurrence and effects. Sci. Total. Environ. 2016, 566–567, 333–349. [Google Scholar] [CrossRef] [PubMed]
- Ben Amor, I.; Klinkova, O.; Baklouti, M.; Elleuch, R.; Tawfiq, I. Mechanical Recycling and Its Effects on the Physical and Mechanical Properties of Polyamides. Polymers 2023, 15, 4561. [Google Scholar] [CrossRef]
- Silva, D.; Garrido, J.; Lekube, B.; Arrillaga, A. On-board and port 3D printing to promote a maritime plastic circular economy. J. Clean. Prod. 2023, 407, 137151. [Google Scholar] [CrossRef]
- Davidson, M.G.; Furlong, R.A.; McManus, M.C. Developments in the life cycle assessment of chemical recycling of plastic waste—A review. J. Clean. Prod. 2021, 293, 126163. [Google Scholar] [CrossRef]
- Vlasopoulos, A.; Malinauskaite, J.; Żabnieńska-Góra, A.; Jouhara, H. Life cycle assessment of plastic waste and energy recovery. Energy 2023, 277, 127576. [Google Scholar] [CrossRef]
- Poddar, S.K.; Paranjpe, A. International Journal of Recent Development in Engineering and Technology Energy Recovery through Plastic Waste in Cement Industry: A Review. 2015. Available online: www.ijrdet.com/files/Volume4Issue5/IJRDET_0515_03.pdf (accessed on 21 May 2025).
- Guidelines for Co-Processing of Plastic Waste in Cement Kilns (As per Rule "5(b) of Plastic Waste Management Rules, 2016); Central Pollution Control Board: New Delhi, India, 2017.
- Rodrigues, P.V.; Cestari, S.P.; Cruz, V.; Castro, M.C.R.; Machado, A.V. New Strategy for Upcycling Marine Plastic Waste Through the Development of a Diamine-Functionalized Poly(ethylene terephthalate) Compatibilizer. Recycling 2025, 10, 82. [Google Scholar] [CrossRef]
- Gazzotti, S.; De Felice, B.; Ortenzi, M.A.; Parolini, M. Approaches for Management and Valorization of Non-Homogeneous, Non-Recyclable Plastic Waste. Int. J. Environ. Res. Public Health 2022, 19, 10088. [Google Scholar] [CrossRef] [PubMed]
- International Energy Agency. Net Zero by 2050—A Roadmap for the Global Energy Sector. 2022. Available online: https://iea.blob.core.windows.net/assets/deebef5d-0c34-4539-9d0c-10b13d840027/NetZeroby2050-ARoadmapfortheGlobalEnergySector_CORR.pdf (accessed on 1 March 2022).
- Going Climate-Neutral by 2050—Publications Office of the EU. Available online: https://op.europa.eu/en/publication-detail/-/publication/92f6d5bc-76bc-11e9-9f05-01aa75ed71a1 (accessed on 16 April 2024).
- Global Status Report for Buildings and Construction | UNEP—UN Environment Programme. Available online: https://www.unep.org/resources/report/global-status-report-buildings-and-construction (accessed on 16 April 2025).
- Palma, P.; Gouveia, J.P.; Barbosa, R. How much will it cost? An energy renovation analysis for the Portuguese dwelling stock. Sustain. Cities Soc. 2022, 78, 103607. [Google Scholar] [CrossRef]
- Mollaei, A.; Byers, B.; Christovan, C.; Olumo, A.; De Wolf, C.; Bachmann, C.; Haas, C. A global perspective on building material recovery incorporating the impact of regional factors. J. Clean. Prod. 2023, 429, 139525. [Google Scholar] [CrossRef]
- Tarabieh, K.A.; Nassar, K.; Sharkass, M. A Comparative Study of the Thermal Performance of Plastic Bottle Wall against Traditional Composite Brick Wall Typologies. J. Constr. Res. 2020, 2, 1–8. [Google Scholar] [CrossRef]
- Lamba, P.; Kaur, D.P.; Raj, S.; Sorout, J. Recycling/reuse of plastic waste as construction material for sustainable development: A review. Environ. Sci. Pollut. Res. 2020, 29, 86156–86179. [Google Scholar] [CrossRef] [PubMed]
- Hopewell, J.; Dvorak, R.; Kosior, E. Plastics recycling: Challenges and opportunities. Philos. Trans. R. Soc. B Biol. Sci. 2009, 364, 2115–2126. [Google Scholar] [CrossRef]
- Nyika, J.; Dinka, M. Recycling plastic waste materials for building and construction Materials: A minireview. Mater. Today Proc. 2022, 62, 3257–3262. [Google Scholar] [CrossRef]
- Prasittisopin, L.; Ferdous, W.; Kamchoom, V. Microplastics in construction and built environment. Dev. Built Environ. 2023, 15, 100188. [Google Scholar] [CrossRef]
- Lopes, L.; Daruari, H.; Almeida, M.; Gaspar, F.; Mendonça, P. Closing the Loop of Circularity by Harnessing Additive Manufacturing to Reuse, Recycle and Reintroduce Marine Plastic Waste Back into the Built Environment. Adv. Sci. Technol. 2025, 159, 41–46. [Google Scholar] [CrossRef]
- Maris, J.; Bourdon, S.; Brossard, J.-M.; Cauret, L.; Fontaine, L.; Montembault, V. Mechanical recycling: Compatibilization of mixed thermoplastic wastes. Polym. Degrad. Stab. 2018, 147, 245–266. [Google Scholar] [CrossRef]
- Gomes, T.E.; Cadete, M.S.; Dias-De-Oliveira, J.; Neto, V. Controlling the properties of parts 3D printed from recycled thermoplastics: A review of current practices. Polym. Degrad. Stab. 2022, 196, 109850. [Google Scholar] [CrossRef]
- Suksiripattanapong, C.; Uraikhot, K.; Tiyasangthong, S.; Wonglakorn, N.; Tabyang, W.; Jomnonkwao, S.; Phetchuay, C. Performance of Asphalt Concrete Pavement Reinforced with High-Density Polyethylene Plastic Waste. Infrastructures 2022, 7, 72. [Google Scholar] [CrossRef]
- Noor, A.; Rehman, M.A.U. A mini-review on the use of plastic waste as a modifier of the bituminous mix for flexible pavement. Clean. Mater. 2022, 4, 100059. [Google Scholar] [CrossRef]
- Magbool, H.M. Sustainability of utilizing recycled plastic fiber in green concrete: A systematic review. Case Stud. Constr. Mater. 2025, 22, e04432. [Google Scholar] [CrossRef]
- Koppula, N.K.; Schuster, J.; Shaik, Y.P. Fabrication and Experimental Analysis of Bricks Using Recycled Plastics and Bitumen. J. Compos. Sci. 2023, 7, 111. [Google Scholar] [CrossRef]
- Pilapitiya, P.N.T.; Ratnayake, A.S. The world of plastic waste: A review. Clean. Mater. 2024, 11, 100220. [Google Scholar] [CrossRef]
- Fadeeva, Z.; Van Berkel, R. Unlocking circular economy for prevention of marine plastic pollution: An exploration of G20 policy and initiatives. J. Environ. Manag. 2021, 277, 111457. [Google Scholar] [CrossRef]
- OECD Environment Working Papers. Plastics Recycled Content Requirements; OECD: Paris, France, 2024. [Google Scholar] [CrossRef]
- Directive 2019/904 EN SUP Directive EUR-Lex. Available online: https://eur-lex.europa.eu/eli/dir/2019/904/oj/eng (accessed on 11 June 2025).
- Sustainable Public Procurement of Plastics; Ministry of Infrastructure and Water Management: Haag, The Netherlands, 2022.
- Cirino, E.; Curtis, S.; Wallis, J.; Thys, T.; Brown, J.; Rolsky, C.; Erdle, L.M. Assessing benefits and risks of incorporating plastic waste in construction materials. Front. Built Environ. 2023, 9, 1206474. [Google Scholar] [CrossRef]
- Truong, V.D.; Noh, H.W.; Kil Park, J.; Han, T.H.; Kim, D.J. Pullout resistance of waste fishing net embedded in the interface between the concrete and fibrous mortar matrix: Test method and experimental investigation. Constr. Build. Mater. 2024, 418, 135397. [Google Scholar] [CrossRef]
- Truong, V.D.; Kim, M.O.; Kim, D.J. Feasibility study on use of waste fishing nets as continuous reinforcements in cement-based matrix. Constr. Build. Mater. 2021, 269, 121314. [Google Scholar] [CrossRef]
- Kil Park, J.; Hong, K.-N.; Choi, S.I.; Han, T.H.; Kim, M.O. Experimental study on strength and flexural toughness properties of waste fishing net hybrid fiber-reinforced cementitious composites. Compos. Struct. 2022, 295, 115833. [Google Scholar] [CrossRef]
- Pae, J.; Kim, M.O.; Han, T.H.; Moon, J. Tomographic microstructural investigation of waste fishing net-reinforced high performance cementitious composites. J. Build. Eng. 2022, 56, 104829. [Google Scholar] [CrossRef]
- TNguyen, T.N.M.; Han, T.H.; Kil Park, J.; Kim, J.J. Strength and Toughness of Waste Fishing Net Fiber-Reinforced Concrete. Materials 2021, 14, 7381. [Google Scholar] [CrossRef]
- AHussan, A.; Sebaibi, N. Valorization of polyethylene and polypropylene fibers from waste fishing gears into cementitious material and comparison with industrial polypropylene fibers. J. Build. Eng. 2025, 104, 112281. [Google Scholar] [CrossRef]
- Hussan, A.; El Haddaji, B.; Zelloufi, M.; Sebaibi, N. Innovative Cutting and Valorization of Waste Fishing Trawl and Waste Fishing Rope Fibers in Cementitious Materials. Appl. Sci. 2024, 14, 3985. [Google Scholar] [CrossRef]
- Gopinath, S.; Kumar, N.M.; Ganesan, I.; Kumar, V.R. Use of waste fishing nets in cementitious applications. Indian J. Eng. Mater. Sci. 2024, 31, 465–473. [Google Scholar] [CrossRef]
- Kyriakidis, I.F.; Kladovasilakis, N.; Pechlivani, E.M.; Tsongas, K. Mechanical Performance of Recycled 3D Printed Sustainable Polymer-Based Composites: A Literature Review. J. Compos. Sci. 2024, 8, 215. [Google Scholar] [CrossRef]
- Zulkernain, N.H.; Gani, P.; Chuan, N.C.; Uvarajan, T. Utilisation of plastic waste as aggregate in construction materials: A review. Constr. Build. Mater. 2021, 296, 123669. [Google Scholar] [CrossRef]
- Chinchillas-Chinchillas, M.J.; Gaxiola, A.; Alvarado-Beltrán, C.G.; Orozco-Carmona, V.M.; Pellegrini-Cervantes, M.J.; Rodríguez-Rodríguez, M.; Castro-Beltrán, A. A new application of recycled-PET/PAN composite nanofibers to cement–based materials. J. Clean. Prod. 2020, 252, 119827. [Google Scholar] [CrossRef]
- Chong, B.W.; Shi, X. Meta-analysis on PET plastic as concrete aggregate using response surface methodology and regression analysis. J. Infrastruct. Preserv. Resil. 2023, 4, 2. [Google Scholar] [CrossRef]
- Abubakar, L.; Yeasmin, N.; Bhattacharjee, A. Waste Polyethylene Terephthalate (PET) as a Partial Replacement of Aggregates in Sustainable Concrete. Constr. Mater. 2024, 4, 738–747. [Google Scholar] [CrossRef]
- Thiam, M.; Fall, M. Mechanical, physical and microstructural properties of a mortar with melted plastic waste binder. Constr. Build. Mater. 2021, 302, 124190. [Google Scholar] [CrossRef]
- Ferreira, J.W.d.S.; Marroquin, J.F.R.; Felix, J.F.; Farias, M.M.; Casagrande, M.D.T. The feasibility of recycled micro polyethylene terephthalate (PET) replacing natural sand in hot-mix asphalt. Constr. Build. Mater. 2022, 330, 127276. [Google Scholar] [CrossRef]
- Beibei, X.; Devid, F.; Carlo, M.G.; Luciana, R.; Fabio, D.T.; Andrea, F.G. Experimental Characterization of Mortar with Recycled PET Aggregate: Preliminary Results. Procedia Struct. Integr. 2021, 33, 1027–1034. [Google Scholar] [CrossRef]
- Legan, M.; Štukovnik, P.; Zupan, K.; Gotvajn, A.Ž. The Impact of Recycled Polyethylene Terephthalate as Aggregate Replacement on Mechanical and Ecotoxicological Properties of Mortar. Recycling 2025, 10, 8. [Google Scholar] [CrossRef]
- Chen, Z.; Liu, T.; Ma, X.; Tang, H.; Huang, J.; Pei, J. Structural dimension optimization and mechanical response analysis of fabricated honeycomb plastic pavement slab. Front. Struct. Civ. Eng. 2022, 16, 896–908. [Google Scholar] [CrossRef]
- Dadzie, D.K.; Kaliluthin, A.K.; Kumar, D.R. Exploration of Waste Plastic Bottles Use in Construction. Civ. Eng. J. 2020, 6, 2262–2272. [Google Scholar] [CrossRef]
- Athithan, V.; Natarajan, L.T. Reuse of plastic waste as building materials to enhance sustainability in construction: A review. Innov. Infrastruct. Solutions 2023, 8, 204. [Google Scholar] [CrossRef]
- Zulkernain, N.H.; Gani, P.; Ng, C.C.; Uvarajan, T. Optimisation of mixed proportion for cement brick containing plastic waste using response surface methodology (RSM). Innov. Infrastruct. Solutions 2022, 7, 183. [Google Scholar] [CrossRef]
- da Silva, T.R.; Cecchin, D.; de Azevedo, A.R.G.; Valadão, I.; Alexandre, J.; da Silva, F.C.; Marvila, M.T.; Gunasekaran, M.; Filho, F.G.; Monteiro, S.N. Technological Characterization of PET—Polyethylene Terephthalate—Added Soil-Cement Bricks. Materials 2021, 14, 5035. [Google Scholar] [CrossRef] [PubMed]
- Syahyadi, R. Optimizing Clay Bricks with Hdpe and Polyethylene Pet as a Sustainable Construction Material. Int. J. GEOMATE 2024, 27, 18–25. [Google Scholar] [CrossRef]
- Xiao, R.; Yu, Q.; Ye, H.; Shi, Y.; Sheng, Y.; Zhang, M.; Nourani, P.; Ge, S. Visual design of high-density polyethylene into wood plastic composite with multiple desirable features: A promising strategy for plastic waste valorization. J. Build. Eng. 2023, 63, 105445. [Google Scholar] [CrossRef]
- Kulkarni, P.; Ravekar, V.; Rao, P.R.; Waigokar, S.; Hingankar, S. Recycling of waste HDPE and PP plastic in preparation of plastic brick and its mechanical properties. Clean. Mater. 2022, 5, 100113. [Google Scholar] [CrossRef]
- De Jesus, R.M. Experimental Study on Mechanical Behaviour of Concrete Beams with Shredded Plastics. GEOMATE J. 2018, 14, 71–75. [Google Scholar] [CrossRef]
- Babatunde, Y.O.; Ibrahim, R.A.; Oguntayo, D.O. Effect of mix proportion on the strength and durability of plastic and sand composite for construction applications. Innov. Infrastruct. Solutions 2022, 7, 333. [Google Scholar] [CrossRef]
- Avudaiappan, S.; Cendoya, P.; Arunachalam, K.P.; Maureira-Carsalade, N.; Canales, C.; Amran, M.; Parra, P.F. Innovative Use of Single-Use Face Mask Fibers for the Production of a Sustainable Cement Mortar. J. Compos. Sci. 2023, 7, 214. [Google Scholar] [CrossRef]
- Li, Y.; Yan, X.; Wan, M.; Zhou, J.; Liu, J. Research on Recycling and Utilization of Shredded Waste Mask Fibers to Prepare Sustainable Engineered Cementitious Composites. Buildings 2025, 15, 402. [Google Scholar] [CrossRef]
- Castellote, M.; Jiménez-Relinque, E.; Grande, M.; Rubiano, F.J.; Castillo, Á. Face Mask Wastes as Cementitious Materials: A Possible Solution to a Big Concern. Materials 2022, 15, 1371. [Google Scholar] [CrossRef]
- Ajam, L.; Trabelsi, A.; Kammoun, Z. Valorisation of face mask waste in mortar. Innov. Infrastruct. Solutions 2021, 7, 130. [Google Scholar] [CrossRef]
- Alcin, E.; Ozdemir, A.M.; Kok, B.V.; Yilmaz, M.; Yilmaz, B. Influence of pandemic waste face mask on rheological, physical and chemical properties of bitumen. Constr. Build. Mater. 2022, 337, 127576. [Google Scholar] [CrossRef] [PubMed]
- Thoudam, K.; Hossiney, N.; Kumar, S.L.; Alex, J.; Bhalkikar, A.; Fathima, A. Assessing performance of alkali-activated bricks incorporated with processed surgical masks. J. Mater. Res. Technol. 2023, 25, 6432–6445. [Google Scholar] [CrossRef]
- Kim, M.O.; Lee, H.K.; Kim, H.-K. Cost and environmental effects of ocean-borne plastic flakes in cement mortar considering equivalent-strength mix design. Constr. Build. Mater. 2021, 291, 123267. [Google Scholar] [CrossRef]
- Lingamen, R.B.B.; Cruz, O.G.D. Polyethylene Terephthalate (PET) Waste as Partial Aggregate and Reinforcement in Reinforced Concrete: A Review. Int. J. Integr. Eng. 2023, 15, 159–171. [Google Scholar] [CrossRef]
- Ali, K.; Qureshi, M.I.; Saleem, S.; Khan, S.U. Effect of waste electronic plastic and silica fume on mechanical properties and thermal performance of concrete. Constr. Build. Mater. 2021, 285, 122952. [Google Scholar] [CrossRef]
- Chen, K.; Mraiza, Z.; Pu, Y.; Li, J.; Liu, Z.; Ragauskas, A.J.; Zhou, F.; Yuan, J.S. A Multi-Streamline Approach for Upcycling PET into a Biodiesel and Asphalt Modifier. Polymers 2024, 16, 796. [Google Scholar] [CrossRef]
- Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ) GmbH. Assessing the Role and Impact of EPR in the Prevention of Marine Plastic Packaging Litter. 2022. Available online: www.giz.de/en/worldwide/93799.html (accessed on 21 May 2025).
- European Commission. European Commission Plastics Strategy. Available online: https://environment.ec.europa.eu/strategy/plastics-strategy_en (accessed on 21 May 2025).
Keyword 1 | Keyword 2 | Keyword 3 | Keyword 4 |
---|---|---|---|
Ocean plastic | Waste | Recycling | Construction |
Marine plastic | Litter | Reuse | |
Pollution |
Boolean Search Query |
---|
(“marine plastic” OR “ocean plastic”) AND (“waste” OR “litter” OR “pollution”) AND (“recycling” OR “reuse”) AND (“construction” OR “built environment”) AND (LIMIT-TO (SUBJAREA, “ENGI”) OR LIMIT-TO (SUBJAREA, “MATE”)) AND (LIMIT-TO (DOCTYPE, “ar”) OR LIMIT-TO (DOCTYPE, “re”) OR LIMIT-TO (DOCTYPE, “cp”)) AND (LIMIT-TO (PUBSTAGE, “final”)) AND (LIMIT-TO (LANGUAGE, “English”)) |
Category | Applications |
---|---|
Cement/Concrete Reinforcement | Cement and/or concrete reinforcement |
3D-printed concrete reinforcement | |
Cement road pavement | |
Concrete binder and/or additives | |
Plastic sand mix | |
Concrete interface matrix | |
3D-Printed Parts for Construction | 3D-printed parts (excluding explicitly stated as reinforcement) |
Asphalt/Bitumen Applications | Asphalt and bitumen additive |
Bitumen binder | |
Plastic/Composite Bricks | Plastic bricks |
Concrete brick reinforcement | |
Soil cement bricks additive | |
Clay brick additive | |
Earth bricks additive | |
Others | Thermal insulation |
Gypsum reinforcement | |
Railway infrastructure | |
Wood–plastic mixture | |
Carbon fibre-reinforced polymer panels | |
Pavement Components | Pavement slabs and blocks |
Unspecified | Unspecified |
Benefits | Trade-Offs |
---|---|
Reduces landfill and marine pollution | Collection and sorting of plastic waste can be complex and costly |
Lowers construction material costs | Mechanical properties (e.g., compressive strength) may decrease, especially at high plastic contents |
Enhances thermal insulation and water resistance | Workability and bonding with cementitious matrices can be problematic |
Improves flexural strength and crack resistance | Increased porosity and risk of microplastic release |
Supports circular economy and resource conservation | Long-term durability and environmental safety remain uncertain |
Lightweight and easy to mould into various forms | Susceptibility to UV degradation and flammability concerns |
Can be used in non-structural and some structural applications | Not suitable for high-load structural elements without modifications |
Energy savings compared to producing virgin materials | The end-of-life recyclability of plastic-infused composites is limited |
Provides new ways for waste management (e.g., masks and fishing nets) | Potential health and safety risks for workers and occupants |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lopes, L.; Dauari, H.; Mendonça, P.; Almeida, M. Marine Plastic Waste in Construction: A Systematic Review of Applications in the Built Environment. Polymers 2025, 17, 1729. https://doi.org/10.3390/polym17131729
Lopes L, Dauari H, Mendonça P, Almeida M. Marine Plastic Waste in Construction: A Systematic Review of Applications in the Built Environment. Polymers. 2025; 17(13):1729. https://doi.org/10.3390/polym17131729
Chicago/Turabian StyleLopes, Lucas, Harish Dauari, Paulo Mendonça, and Manuela Almeida. 2025. "Marine Plastic Waste in Construction: A Systematic Review of Applications in the Built Environment" Polymers 17, no. 13: 1729. https://doi.org/10.3390/polym17131729
APA StyleLopes, L., Dauari, H., Mendonça, P., & Almeida, M. (2025). Marine Plastic Waste in Construction: A Systematic Review of Applications in the Built Environment. Polymers, 17(13), 1729. https://doi.org/10.3390/polym17131729