The Physico-Mechanical, Mineralogical, and Thermal Characterization of Geopolymeric Laterite Bricks Containing Polyethylene Terephthalate Bottle Powder
Abstract
1. Introduction
2. Materials and Methods
2.1. Sampling, Preparation of Materials, and Characterization
2.2. Stabilization of Lateritic Materials Associated with PET Powder
2.3. Characterization of the CEBs
3. Results and Discussions
3.1. Physical Properties of CEBs
3.2. Wet and Dry Compressive Strengths
3.3. Microstructural Properties
3.4. Thermal Properties
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Obonyo, E.A.; Kamseu, E.; Lemougna, P.N.; Tchamba, A.B.; Melo, U.F.; Leonelli, C. A Sustainable Approach for the Geopolymerization of Natural Iron-Rich Aluminosilicate Materials. Sustainability 2014, 6, 5535–5553. [Google Scholar] [CrossRef]
- Kaze, R.C.; Beleuk à Moungam, L.M.; Djouka, M.L.F.; Nana, A.; Kamseu, E.; Chinje, U.F.; Leonelli, C. The Corrosion of Kaolinite by Iron Minerals and the Effects on Geopolymerization. Appl. Clay Sci. 2017, 138, 48–62. [Google Scholar] [CrossRef]
- Oyelami, C.A.; Van Rooy, J.L. A Review of the Use of Lateritic Soils in the Construction/Development of Sustainable Housing in Africa: A Geological Perspective. J. Afr. Earth Sci. 2016, 75, 1475. [Google Scholar] [CrossRef]
- Djobo, J.N.Y. Synthesis Factors, Characteristics and Durability of Volcanic Ash-Based Geopolymère Cement. Ph.D. Thesis, Faculty of Sciences, University of Yaoundé I, Yaoundé, Cameroon, 2017. [Google Scholar] [CrossRef]
- Tchakouté, K.H.; Rüscher, C.H.; Kamseu, E.; Fernanda, A.; Leonelli, C. Influence of the molar concentration of phosphoric acid solution on the properties of métakaolin phosphate-based geopolymer cements. Appl. Clay Sci. 2017, 147, 184–194. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, S.; Wang, D.; Liu, X.; Huang, Z.; Zhang, L. Curing optimization and material synergy in developing high-strength geopolymers from multiple solid wastes. Sustain. Chem. Pharm. 2025, 43, 101898. [Google Scholar] [CrossRef]
- Saeeb, M.; Al-Tam, A.R.; Nader, M.; Ali, A.; Osama, Y. A comprehensive assessment of sustainable high-strength hybrid geopolymer concrete. Results Eng. 2025, 26, 104613. [Google Scholar] [CrossRef]
- Wei, S.; Wang, D.; Yilmaz, E.; Yang, G.; Li, J. Delving into the role of microwave curing on the strength and cement hydration features of cemented tailings backfill. Green Smart Min. Eng. 2024, 1, 289–298. [Google Scholar]
- Li, B.; Sun, P.; Yang, W.; Li, T.; Xu, W. Research progress on the adaptability of lunar regolith simulant-based composites and lunar base construction methods. Int. Sci. Technol. 2024, 34, 1314–1363. [Google Scholar] [CrossRef]
- Davidovits, J. Geopolymer Chemistry & Applications; Geopolymer Institute: Saint-Quentin, France, 2008. [Google Scholar]
- Nath, S.K.; Maitra, S.; Mukherjee, S.; Kumar, S. Microstructural and morphological evolution of fly ash based geopolymers. Constr. Build. Mater. 2016, 111, 758–765. [Google Scholar] [CrossRef]
- Tome, S.; Etoh, M.A.; Etame, J.; Kumar, S. Improved reactivity of volcanic ash using municipal solid incinerator fly ash for alkali-activated cement synthesis. Waste Biomass Valorization 2020, 11, 3035–3044. [Google Scholar] [CrossRef]
- Pacheco-Torgal, F.; Castro-Gomes, J.; Jalali, S. Alkali-activated binders: A review Part 1. Historical background, terminology, reaction mechanisms and hydration products. Constr. Build. Mater. 2008, 22, 1305–1314. [Google Scholar] [CrossRef]
- Pacheco-Torgal, F.; Castro-Gomes, J.; Jalali, S. Alkali-activated binders: A review. Part 2. About materials and binders manufacture. Constr. Build. Mater. 2008, 22, 1315–1322. [Google Scholar] [CrossRef]
- Sore, S.O.; Messan, A.; Prud’homme, E.; Escadeillas, G.; Tsobnang, F. Stabilization of Compressed Earth Blocks (CEBs) by Geopolymer Binder Based on Local Materials from Burkina Faso. Constr. Build. Mater. 2018, 165, 333–345. [Google Scholar] [CrossRef]
- Ellen MacArthur Foundation. The New Plastics Economy, Rethinking the Future of Plastics; Ellen MacArthur Foundation: Cowes, UK, 2016. [Google Scholar]
- Aurelie, R.K.T.; Tome, S.; Chongouang, J.; Eguekeng, I.; Spieß, A.; Fetzer, M.N.A.; Elie, K.; Janiak, C.; Etoh, M. Stabilization of compressed earth blocks (CEB) by pozzolana based phosphate geopolymer binder: Physico-mechanical and microstructural investigations. Clean. Mater. 2022, 4, 100062. [Google Scholar] [CrossRef]
- Reboza, A. Relevant Textural Indicators for the Infiltration of Treated Water in Onsite Sanitation; Ecole Nationale des Ponts et Chaussées: Paris, France, 2011; 44p. [Google Scholar]
- Mbesse, C.O. The Paleocene-Eocene Boundary in the Douala Basin: Biostratigraphy and Attempt to Reconstruct Paleoenvironments. Ph.D. Thesis, University of Liège, Liège, Belgium, 2013; p. 221. [Google Scholar]
- Wang, S.; Yang, R.; Li, Y.; Yang, Z. Effect of cement content, polypropylene fiber length and dosage on fluidity and mechanical properties of fiber-toughened cemented aeolian sand backfill. Int. J. Miner. Metall. Mater. 2024, 31, 2404–2416. [Google Scholar] [CrossRef]
- Hu, J.; Zhang, L.; Guo, S.; Yang, B. An effective strategy for coal-series kaolin utilization: Preparation of magnetic adsorbent for Congo red adsorption. Chem. Eng. Sci. 2025, 304, 120958. [Google Scholar]
- Lin, H.; Liu, H.; Li, Y.; Kong, X. Properties and reaction mechanism of phosphoric acid activated metakaolin geopolymer at varied curing temperatures. Cem. Concr. Res. 2021, 144, 106425. [Google Scholar] [CrossRef]
- Li, G.; Xia, C.; Hong, X.; Wang, C. Effect of SiO2/Al2O3 molar ratio on microstructure and properties of phosphoric acid-based metakaolin geopolymers. DEStech Trans. Mater. Sci. Eng. 2017. [Google Scholar] [CrossRef]
- Zhang, B.; Guo, H.; Deng, L.; Fan, W.; Yu, T.; Wang, Q. Undehydrated kaolinite as materials for the preparation of geopolymer through phosphoric acid-activation. Appl. Clay Sci. 2020, 199, 105887. [Google Scholar] [CrossRef]
- XP P 13-901; Earth Bricks and Earth Blocks for Walls and Partitions—Definitions—Specifications—Test Methods—Delivery Acceptance Conditions. AFNOR: Paris, France, 2022.
- ASTM C642; Standard Test Method for Density, Absorption, and Voids in Hardened Concrete. ASTM International: West Conshohocken, PA, USA, 2013. [CrossRef]
- NF EN ISO 17892-2; Geotechnical Investigation and Testing—Laboratory Testing of Soil—Part 2: Determination of Bulk Density. AFNOR: Paris, France, 2014.
- ASTM D5470; Standard Test Method for Thermal Transmission Properties of Thermally Conductive Electrical Insulation Materials. ASTM International: West Conshohocken, PA, USA, 2017. [CrossRef]
- Pancharathi, R.K.; Sangoju, B.; Chaudhary, S. Advances in Sustainable Construction Materials; Springer: Singapore, 2019. [Google Scholar]
- Han, Y.; Cui, X.; Lv, X.; Wang, K. Preparation and characterization of geopolymers based on a phosphoric-acid-activated electrolytic manganese dioxide residue. J. Clean. Prod. 2018, 205, 488–498. [Google Scholar] [CrossRef]
- Noël, J.; Djobo, Y.; Stephan, D.; Elimbi, A. Setting and hardening behavior of volcanic ash phosphate cement. J. Build. Eng. 2020, 31, 101427. [Google Scholar] [CrossRef]
- Wagh, A.S.; Jeong, S.Y. Chemically Bonded Phosphate Ceramics: I, A Dissolution Model of Formation. J. Am. Ceram. Soc. 2003, 86, 1839–1845. [Google Scholar] [CrossRef]
- Bewa, C.N.; Tchakouté, H.K.; Fotio, D.; Claus, H.; Kamseu, E.; Leonelli, C. Water resistance and thermal behaviour of metakaolin-phosphate-based geopolymer cements. J. Asian Ceram. Soc. 2018, 6, 271–283. [Google Scholar] [CrossRef]
- Grace, A.; Tatiane, M.; Noël, J.; Djobo, Y.; Tome, S.; Cyriaque, R.; Giogetti, J.; Deutou, N. Lateritic soil based—Compressed earth bricks stabilized with phosphate binder. J. Build. Eng. 2020, 31, 101465. [Google Scholar] [CrossRef]
- Djobo, J.N.Y.; Tchadjié, L.N.; Tchakouté, H.K.; Kenne, B.B.D.; Elimbi, A.; Njopwouo, D. Synthesis of geopolymer composites from a mixture of volcanic scoria and metakaolin. Integr. Med. Res. 2014, 2, 321–325. [Google Scholar] [CrossRef]
- Gualtieri, M.L.; Romagnoli, M.; Pollastri, S.; Gualtieri, A.F. Inorganic polymers from laterite using activation with phosphoric acid and alkaline sodium silicate solution: Mechanical and microstructural properties. Cem. Concr. Res. 2015, 74, 95–102. [Google Scholar] [CrossRef]
- Dao, K.; Ouedraogo, M.; Millogo, Y.; Aubert, J.-E.; Gomina, M. Thermal, hydric and mechanical behaviours of adobes stabilized with cement. Constr. Build. Mater. 2018, 158, 84–96. [Google Scholar] [CrossRef]
- Davidovits, J. Global warming impact on the cement and aggregates industries. World Resour. Rev. 1994, 6, 263–278. [Google Scholar]
- Van Jaarsveld, J.G.S.; Van Deventer, J.S.J.; Schwartzman, A. The potential use of geopolymeric materials to immobilise toxic metals: Part II. material and leaching characteristics. Miner. Eng. 1999, 12, 75–91. [Google Scholar] [CrossRef]
- Khedari, J.; Watsanasathaporn, P.; Hirunlabh, J. Development of fibre-based soil-cement block with low thermal conductivity. Cem. Concr. Compos. 2005, 27, 111–116. [Google Scholar] [CrossRef]
- Millogo, Y.; Morel, J.-C.; Aubert, J.E.; Ghavami, K. Experimental analysis of pressed adobe blocks reinforced with Hibiscus cannabinus fibers. Constr. Build. Mater. 2014, 52, 71–78. [Google Scholar] [CrossRef]
- Topçu, I.B.; Toprak, M.U. A discussion of the paper “The maturity method: Modifications to improve estimation of concrete strength at later age” by Yahia A. Abdel-Jawad. Constr. Build. Mater. 2007, 21, 1144–1148. [Google Scholar] [CrossRef]
- Tam, V.W.; Tam, C.; Zeng, S.; Chan, K. Environmental performance measurement indicators in construction. Build. Environ. 2006, 41, 164–173. [Google Scholar] [CrossRef]
- Meukam, P.; Jannot, Y.; Noumowe, A.; Kofane, T.C. Thermophysical characteristics of economical building materials. Constr. Build. Mater. 2004, 18, 437–443. [Google Scholar] [CrossRef]
- Diaz, N.F. Modeling of a hydronic ceiling system and its environment as energetic auditing tool. Appl. Energy 2011, 88, 636–649. [Google Scholar] [CrossRef]
- Kaze, C.R.; Ninla, L.P.; Alomayri, T.; Assaedi, H.; Adesina, A.; Das, S.K.; Gisèle-Laure, L.N.; Elie, K.; Uphie, C.M.; Leonelli, C. Characterization and performance evolution of laterite based geopolymer binder cured at different temperatures. Constr. Build. Mater. 2021, 270, 121443. [Google Scholar] [CrossRef]
- Akande, J.M.; Lawal, A.I. Optimization of Blasting Parameters Using Regression Models in Ratcon and NSCE Granite Quarries, Ibadan, Oyo State, Nigeria. Geomaterials 2013, 3, 28–37. [Google Scholar] [CrossRef]
- Kumar, N.; Barbato, M. Effects of sugarcane bagasse fibers on the properties of compressed and stabilized earth blocks. Constr. Build. Mater. 2022, 315, 125552. [Google Scholar] [CrossRef]
- Rachel, N.Y.; Rodrigue, C.K.; Adeyemi, A.; Juvenal, G.D.N.; Séverin, B.K.J.; Jean, N.Y.D. Performance of laterite based geopolymer reinforced with sugarcane bagasse fibers. Case Stud. Constr. Mater. 2021, 15, e00762. [Google Scholar] [CrossRef]
- Blaise, N.B.; Fabien, K.; Benjamin, B.; Emilienne, Y.A.B.; Emmanuel, Y.B.; Ndigui, B. Development and characterization of a composite material with geopolymer matrix obtained by incorporation of microparticles from plastic bottles. Heliyon 2024, 10, e30801. [Google Scholar] [CrossRef]
- NC 102–114; 2002–2006; Compressed Earth Blocks: Cameroonian Standards First Edition. Standardization and Quality Unit, Department of Industrial Development, MINDIC: Yaounde, Cameroon, 2002.
Sample | Liquidity Limit (%) | Plasticity Index | γd max (g·cm−3) | OWC (%) | VBS (g/100 g) | % of Gravel | % of Sand | % of Silt | % of Clay | GTR Classification |
---|---|---|---|---|---|---|---|---|---|---|
Lat 1 | 55.7 | 25.8 | 1.626 | 23 | 0.94 | 47 | 12.4 | 32 | 9 | A2 |
Lat 6 | 52.8 | 24.6 | 1.652 | 23.8 | 1.33 | 45 | 11.2 | 34 | 10 | A2 |
Formulations | LAT-P0A0 | LAT-P0A20 | LAT-P5A20 | LAT-P10A20 | LAT-P15A20 | LAT-P20A20 |
---|---|---|---|---|---|---|
Lateritic soil (LAT) (g) | 150 | 150 | 150 | 150 | 150 | 150 |
H3PO4 (A) (g) | 0 | 30 | 30 | 30 | 30 | 30 |
PET (P) (g) | 0 | 0 | 7.5 | 15 | 22.5 | 30 |
H2O (g) | 34 | 20 | 18 | 15 | 10 | 10 |
Ratio P/A | 0 | 0 | 0.25 | 0.5 | 0.75 | 1 |
Mixture | Activator | Results | Source |
---|---|---|---|
1 Laterite, PET powder (ɸ < 160 µm) | 10M H3PO4 (20%) | Increase in compression strength, decrease in water absorption, increase in thermal conductivity and effusivity, only stabilized CEBs used, and decrease with the introduction of PET powder | Current work |
2 Calcined iron laterite | 8M NaOH | Increase in thermal conductivity | Kaze et al. [46] |
3 Clay soil, polyethylene film (50 µm thick) | - | Increase in compression strength, decrease in water absorption | Elenga et al. [47] |
4 Clay soil, sugarcane bagasse fiber (ɸ < 0.2 mm) | Cement (12%) | Increase in compression strength, decrease in water absorption | Kumar et al. [48] |
5 Laterite, sugarcane bagasse fiber | 10M NaOH | Decrease in compression strength, increase in water absorption, and decrease in density | Rachel N.Y. et al. [49] |
6 Metakaolin, microparticles from plastic bottles (ɸ < 0.2 mm) | 7M NaOH | Decrease in compression strength, decrease in thermal conductivity, and decrease in the thermal effusivity | Blaise N.B. et al. [50] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hagbe Ntod, M.B.; Mbog, M.B.; Bitom-Mamdem, L.; Bayiga, E.C.; Tchouateu Kamwa, R.A.; Wantou Ngueko, E.; NgonNgon, G.F.; Bitom, D.; Etame, J. The Physico-Mechanical, Mineralogical, and Thermal Characterization of Geopolymeric Laterite Bricks Containing Polyethylene Terephthalate Bottle Powder. J. Compos. Sci. 2025, 9, 320. https://doi.org/10.3390/jcs9070320
Hagbe Ntod MB, Mbog MB, Bitom-Mamdem L, Bayiga EC, Tchouateu Kamwa RA, Wantou Ngueko E, NgonNgon GF, Bitom D, Etame J. The Physico-Mechanical, Mineralogical, and Thermal Characterization of Geopolymeric Laterite Bricks Containing Polyethylene Terephthalate Bottle Powder. Journal of Composites Science. 2025; 9(7):320. https://doi.org/10.3390/jcs9070320
Chicago/Turabian StyleHagbe Ntod, Marcel Bertrand, Michel Bertrand Mbog, Lionelle Bitom-Mamdem, Elie Constantin Bayiga, Rolande Aurelie Tchouateu Kamwa, Emmanuel Wantou Ngueko, Gilbert François NgonNgon, Dieudonné Bitom, and Jacques Etame. 2025. "The Physico-Mechanical, Mineralogical, and Thermal Characterization of Geopolymeric Laterite Bricks Containing Polyethylene Terephthalate Bottle Powder" Journal of Composites Science 9, no. 7: 320. https://doi.org/10.3390/jcs9070320
APA StyleHagbe Ntod, M. B., Mbog, M. B., Bitom-Mamdem, L., Bayiga, E. C., Tchouateu Kamwa, R. A., Wantou Ngueko, E., NgonNgon, G. F., Bitom, D., & Etame, J. (2025). The Physico-Mechanical, Mineralogical, and Thermal Characterization of Geopolymeric Laterite Bricks Containing Polyethylene Terephthalate Bottle Powder. Journal of Composites Science, 9(7), 320. https://doi.org/10.3390/jcs9070320