Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (108)

Search Parameters:
Keywords = recrystallisation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 4374 KiB  
Article
Fast Alkaline Hydrothermal Synthesis of Pyrophosphate BaCr2(P2O7)2 Nanoparticles and Their NIR Spectral Reflectance
by Diego Emiliano Carrillo-Ramírez, Juan Carlos Rendón-Angeles, Zully Matamoros-Veloza, Jorge López-Cuevas, Isaías Juárez-Ramírez and Tadaharu Ueda
Nanomaterials 2025, 15(13), 982; https://doi.org/10.3390/nano15130982 - 25 Jun 2025
Viewed by 305
Abstract
Recently, the development of nanoparticle pigments has attracted interest in chemical preparation due to their potential functional properties, such as phosphate-based pigments. The present research focuses on the feasibility of synthesising the BaCr2(P2O7)2 pigment under hydrothermal [...] Read more.
Recently, the development of nanoparticle pigments has attracted interest in chemical preparation due to their potential functional properties, such as phosphate-based pigments. The present research focuses on the feasibility of synthesising the BaCr2(P2O7)2 pigment under hydrothermal conditions. The effect of the microstructural features of ceramic pigments (the crystalline structure, morphology, and particle size) on their optical properties (colour and reflectance) was also studied. The BaCr2(P2O7)2 compound was prepared in different fluid media, including water and NaOH solutions (0.5–1.0 M), at several reaction temperatures (170–240 °C) and intervals (6–48 h). The single-phase BaCr2(P2O7)2 did not crystallise without by-products (BaCr2O10, BaCr2(PO7)2) in water and the alkaline solutions, even at 240 °C for 48 h; in these fluids, the ionic Cr3+ species oxidised to Cr6+. In contrast, the BaCr2(P2O7)2 single-phase crystallisation was favoured by adding urea as a reductant agent (25.0–300.0 mmol). Monodispersed BaCr2(P2O7)2 fine particles with a mean size of 44.0 nm were synthesised at a low temperature of 170 °C for 6 h with 0.5 M NaOH solution in the presence of 50.0 mmol urea. The phosphate pigment particle grew to approximately 62.0 nm by increasing the treatment temperature to 240 °C. A secondary dissolution–recrystallisation achieved after 24 h triggered a change in the particle morphology coupled with the incrementation of the concentration of NaOH in the solution. The pyrophosphate BaCr2(P2O7)2 pigments prepared in this study belong to the green colour spectral space according to the CIELab coordinates measurement, and exhibit 67.5% high near-infrared (NIR) solar reflectance. Full article
(This article belongs to the Section Synthesis, Interfaces and Nanostructures)
Show Figures

Graphical abstract

15 pages, 5727 KiB  
Article
Influence of Zr on Al-Ti-B-Based Grain Refiners in AlSiMgCuZr Alloy
by Dawid Kapinos, Bogusław Augustyn, Sonia Boczkal, Kamila Limanówka, Bartłomiej Płonka, Aldona Garbacz-Klempka, Marcin Piękoś and Janusz Kozana
Materials 2025, 18(13), 3000; https://doi.org/10.3390/ma18133000 - 24 Jun 2025
Viewed by 284
Abstract
One of the most effective methods of improving the properties of aluminium alloys is grain refining using Al-Ti-B master alloys. In contrast, zirconium is a key alloying element, used mainly in 2xxx and 7xxx series aluminium alloys, where it contributes to dispersion enhancement [...] Read more.
One of the most effective methods of improving the properties of aluminium alloys is grain refining using Al-Ti-B master alloys. In contrast, zirconium is a key alloying element, used mainly in 2xxx and 7xxx series aluminium alloys, where it contributes to dispersion enhancement and reduces the rate of dynamic recrystallisation. However, even trace amounts of zirconium—just a few hundredths of ppm—significantly reduce the performance of Al-Ti-B grain refiners, a phenomenon known as ‘Zr poisoning’. This study investigates the impact of holding time and the level of Al-5Ti-1B addition on the microstructure and properties of an AlMgSi(Cu) alloy containing 0.15 wt.% Zr, cast as 7-inch DC billets. The structure and phase distribution were characterised using optical microscopy (OM), scanning electron microscopy (SEM) with energy-dispersive spectroscopy (EDS), and transmission electron microscopy (TEM). Grain size and morphology were evaluated through macrostructure analysis (etched cross-sections and polarised light microscopy), while chemical and elemental distributions were analysed via SEM-EDS and STEM-EDS mapping. Additionally, Brinell hardness measurements were conducted across the billet diameter to assess the correlation between grain size and mechanical properties. The results show that reducing holding time and increasing the Al-5Ti-1B addition improves grain refinement efficiency despite the presence of Zr. The finest grain structure (150–170 μm) and most homogeneous hardness distribution were achieved when the grain refiner was continuously fed during casting at 80 ppm B. These findings are supported by the literature and contribute to a deeper understanding of the Zr poisoning effect and its mitigation through optimized casting practice. Full article
(This article belongs to the Section Metals and Alloys)
Show Figures

Figure 1

17 pages, 4192 KiB  
Article
Significant Enhancement of Strength and Ductility in Bioresorbable Zn–0.1Mg Alloy via ECAP Processing
by Iryna Cuperová, Martin Fujda, Róbert Kočiško, Patrik Petroušek, Zuzana Molčanová, Miloš Matvija, Róbert Džunda, Beáta Ballóková, Dávid Csík, Katarína Gáborová and Karel Saksl
Inorganics 2025, 13(6), 193; https://doi.org/10.3390/inorganics13060193 - 10 Jun 2025
Viewed by 498
Abstract
Zinc (Zn)-based alloys are considered promising bioresorbable materials for intracorporeal implants due to their good biocompatibility and suitable degradation rate in physiological environments. However, their broader application is hindered by insufficient mechanical properties, which are essential for fulfilling the therapeutic function of bioresorbable [...] Read more.
Zinc (Zn)-based alloys are considered promising bioresorbable materials for intracorporeal implants due to their good biocompatibility and suitable degradation rate in physiological environments. However, their broader application is hindered by insufficient mechanical properties, which are essential for fulfilling the therapeutic function of bioresorbable implants. This study investigates the effect of severe plastic deformation on the microstructure and mechanical properties of as-cast Zn–0.1Mg (wt.%) alloy. The as-cast alloy, characterised by a coarse-grained microstructure with intermetallic phases at grain boundaries and low strength and ductility, was subjected to two passes of Equal Channel Angular Pressing (ECAP). The intense plastic deformation transformed the coarse-grained structure into an ultrafine-grained solid solution matrix. This substantial microstructural refinement led to a significant enhancement in mechanical performance. The yield strength (YS) and ultimate tensile strength (UTS) more than doubled, reaching 198 MPa and 215 MPa, respectively. Remarkably, the elongation increased from 2.2% to 187% in tensile testing. These findings confirm the beneficial effect of grain refinement and dynamic recrystallisation on the mechanical behaviour of bioresorbable Zn–0.1Mg alloy and highlight the high potential of ECAP processing for optimising the mechanical properties of Zn-based biodegradable materials. Full article
Show Figures

Figure 1

21 pages, 7266 KiB  
Article
High-Performance NIR Laser-Beam Shaping and Materials Processing at 350 W with a Spatial Light Modulator
by Shuchen Zuo, Shuai Wang, Cameron Pulham, Yin Tang, Walter Perrie, Olivier J. Allegre, Yue Tang, Martin Sharp, Jim Leach, David J. Whitehead, Matthew Bilton, Wajira Mirihanage, Paul Mativenga, Stuart P. Edwardson and Geoff Dearden
Photonics 2025, 12(6), 544; https://doi.org/10.3390/photonics12060544 - 28 May 2025
Viewed by 1035
Abstract
Shaping or splitting of a Gaussian beam is often desired to optimise laser–material interactions, improving throughput and quality. This can be achieved holographically using liquid crystal-on-silicon spatial light modulators (LC-SLMs). Until recently, maximum exposure has been limited to circa 120 W average power [...] Read more.
Shaping or splitting of a Gaussian beam is often desired to optimise laser–material interactions, improving throughput and quality. This can be achieved holographically using liquid crystal-on-silicon spatial light modulators (LC-SLMs). Until recently, maximum exposure has been limited to circa 120 W average power with a Gaussian profile, restricting potential applications due to the non-linear (NL) phase response of the liquid crystal above this threshold. In this study, we present experimental tests of a new SLM device, demonstrating high first-order diffraction efficiency of η = 0.98 ± 0.01 at 300 W average power and a phase range Δφ > 2π at P = 383 W, an exceptional performance. The numerically calculated device temperature response with power closely matches that measured, supporting the higher power-handling capability. Surface modification of mild steel and molybdenum up to P = 350 W exposure is demonstrated when employing a single-mode (SM) fibre laser source. Exposure on mild steel with a vortex beam (m = +6) displays numerous ringed regions with varying micro-structures and clear elemental separation created by the radial heat flow. On molybdenum, with multi-spot Gaussian exposure, both MoO3 films and recrystallisation rings were observed, exposure-dependent. The step change in device capability will accelerate new applications for this LC-SLM in both subtractive and additive manufacturing. Full article
(This article belongs to the Special Issue Fundamentals and Applications of Vortex Beams)
Show Figures

Figure 1

18 pages, 3855 KiB  
Article
Comprehensive Dissolution Study on Two Double Ce(IV) Phosphates with Evidence of Secondary CeO2 Nanoparticle Formation
by Anastasiia L. Listova, Anastasiia S. Kuzenkova, Mikhail A. Gerasimov, Elizaveta S. Kulikova, Roman D. Svetogorov, Daniil A. Novichkov, Alexei A. Averin, Vasiliy O. Yapaskurt, Anna Yu. Romanchuk, Stepan N. Kalmykov and Tatiana V. Plakhova
Molecules 2025, 30(10), 2105; https://doi.org/10.3390/molecules30102105 - 9 May 2025
Viewed by 432
Abstract
Herein, we present a comprehensive study on the dissolution behaviour of two sodium–cerium(IV) phosphate phases synthesised hydrothermally from CeO2 nanoparticles: crystalline Na2Ce(PO4)2 and nanocrystalline NaCe2(PO4)3. For the first time, experimental dissolution [...] Read more.
Herein, we present a comprehensive study on the dissolution behaviour of two sodium–cerium(IV) phosphate phases synthesised hydrothermally from CeO2 nanoparticles: crystalline Na2Ce(PO4)2 and nanocrystalline NaCe2(PO4)3. For the first time, experimental dissolution data were obtained for both compounds over a wide pH range (1.5–10) under long-term equilibration. The crystalline phase undergoes pH-dependent transformation, including recrystallisation at a near-neutral pH and the formation of secondary CeO2 nanoparticles above pH 7. In contrast, the nanophase NaCe2(PO4)3 exhibits exceptional structural and chemical stability, showing no signs of recrystallisation, phase transformation, or CeO2 formation, even after extended ageing. The experimental results help refine the thermodynamic stability conditions for cerium phosphate and oxide phases, providing insights into the reversible transformation pathways between CeO2 and Ce(IV) phosphates as governed by pH. Full article
(This article belongs to the Section Physical Chemistry)
Show Figures

Figure 1

19 pages, 2384 KiB  
Article
Exploring the Relationship Between Stability and Dynamics in Polymer-Based Amorphous Solid Dispersions for Pharmaceutical Applications
by Emeline Dudognon, Jeanne-Annick Bama and Frédéric Affouard
Polymers 2025, 17(9), 1210; https://doi.org/10.3390/polym17091210 - 28 Apr 2025
Viewed by 531
Abstract
Mixing polymeric excipients with drugs in amorphous solid dispersions (ASD) is known to enhance the bioavailability of drugs by inhibiting their recrystallisation. However, the mechanisms underlying stabilisation remain not fully understood. This study aims to improve our understanding of the role of dynamics, [...] Read more.
Mixing polymeric excipients with drugs in amorphous solid dispersions (ASD) is known to enhance the bioavailability of drugs by inhibiting their recrystallisation. However, the mechanisms underlying stabilisation remain not fully understood. This study aims to improve our understanding of the role of dynamics, particularly the molecular movements that drive instabilities, through investigations of ASD made of Polyvinylpyrrolidone (PVP K12) and a model drug, Terfenadine. The analyses combine temperature modulated differential scanning calorimetry (MDSC) and dielectric relaxation spectroscopy. The results reveal that the produced ASDs are supersaturated with Terfenadine, regardless of the content, and that PVP slows down the dynamics of the blends, limiting the recrystallisation of the drug during heating. Although the ASDs appear homogeneous based on thermal analysis with a single glass transition consistently detected by MDSC, the investigation of the dynamics reveals a dissociation of the main relaxation into two components for PVP contents below 30 wt.%. This dynamic heterogeneity suggests a structural heterogeneity with the coexistence of two amorphous phases of different compositions, each characterised by its own dynamics. The complex evolution of these dynamics under recrystallisation is rationalised by the confrontation with the phase and state diagram of Terfenadine/PVP blends established by MDSC. Full article
Show Figures

Graphical abstract

24 pages, 12903 KiB  
Article
Advances in Glendonite Understanding and Its Potential for Carbon Capture
by Bo Pagh Schultz and Jennifer Huggett
Minerals 2025, 15(4), 410; https://doi.org/10.3390/min15040410 - 13 Apr 2025
Cited by 1 | Viewed by 919
Abstract
This article reviews recent advances made by the authors through evaluation of samples in museum collections, in the context of our recent advances in novel observations, of cleavage in a recrystallising ikaite crystal, that may guide future research in understanding the morphology of [...] Read more.
This article reviews recent advances made by the authors through evaluation of samples in museum collections, in the context of our recent advances in novel observations, of cleavage in a recrystallising ikaite crystal, that may guide future research in understanding the morphology of ikaite, which traditional crystallography has so far not achieved, as traditional crystallography cannot be applied to the morphology of ikaite. Having reviewed over 1100 samples in museum collections, using a combination of morphology and petrology, we are able to define how samples can be classified as glendonite. The topics covered include: (1) a historical review of ikaite and glendonite; (2) evidence supporting ikaite as the precursor mineral of glendonite; (3) the discovery of mega-sized Danish glendonites; and (4) Holocene glendonite coastal sites. Our reassessment of existing knowledge of ikaite shows that when ikaite forms in marine settings, it forms in specific zones before other carbonate phases, and that in sedimentary environments, pressure and pH are not the primary factors controlling its precipitation. Instead, the availability of magnesium (Mg2⁺) and phosphate (PO43−) ions appear to play a more significant role. Furthermore, the conditions required for ikaite precipitation in laboratory experiments differ from those observed in natural ikaite or glendonite formation. Ikaite’s ability to capture carbon at low temperatures and its rapid recrystallisation into its more stable calcite pseudomorph, glendonite, suggest a potential application in carbon capture strategies. Full article
Show Figures

Figure 1

32 pages, 29310 KiB  
Article
Microstructure Evolution, Tensile/Nanoindentation Response, and Work-Hardening Behaviour of Prestrained and Subsequently Annealed LPBF 316L Stainless Steel
by Bohdan Efremenko, Yuliia Chabak, Ivan Petryshynets, Vasily Efremenko, Kaiming Wu, Sundas Arshad and František Kromka
Materials 2025, 18(5), 1102; https://doi.org/10.3390/ma18051102 - 28 Feb 2025
Cited by 1 | Viewed by 1036
Abstract
Additive manufacturing is increasingly used to produce metallic biomaterials, and post-processing is gaining increasing attention for improving the properties of as-built components. This study investigates the effect of work hardening followed by recrystallisation annealing on the tensile and nanoindentation behaviour of laser powder [...] Read more.
Additive manufacturing is increasingly used to produce metallic biomaterials, and post-processing is gaining increasing attention for improving the properties of as-built components. This study investigates the effect of work hardening followed by recrystallisation annealing on the tensile and nanoindentation behaviour of laser powder bed-fused (LPBF) 316L stainless steel, with the aim of optimising its mechanical properties. As-built and thermally stabilised (at 900 °C) specimens were prestrained in a uniaxially tensile manner at room temperature (0.12 plastic strain, ~75% of maximum work hardening) and subsequently annealed (at 900 °C or 1050 °C for 1 h). The microstructure and mechanical properties were then characterised by optical microscopy, SEM, EBSD, XRD, nanoindentation, and tensile testing. It was found that prestraining increased yield tensile strength (YTS) 1.2–1.7 times (to 690–699 MPa) and ultimate tensile strength (UTS) ~1.2 times (to 762–770 MPa), but decreased ductility 1.5 times. Annealing led to recovery and partial static recrystallisation, decreasing YTS (to 403–427 MPa), restoring ductility, and increasing the strain hardening rate; UTS and indentation hardness were less affected. Notably, the post-LPBF thermal stabilisation hindered recrystallisation and increased its onset temperature. Mechanical property changes under prestraining and annealing are discussed with respect to microstructure and crystalline features (microstrain, crystal size, dislocation density). All specimens exhibited ductile fractures with fine/ultra-fine dimples consistent with the as-built cellular structure. The combined treatment enhanced tensile strength whilst preserving sufficient ductility, achieving a strength–ductility product of 40.3 GPa·%. This offers a promising approach for tailoring LPBF 316L for engineering applications. Full article
(This article belongs to the Special Issue Research and Development of New Metal-Based Biomaterials)
Show Figures

Figure 1

14 pages, 59884 KiB  
Article
Analysis of the Structure and Properties of Welded Joints Made from Aluminum Alloys by Electron Beam Welding (EBW) and Friction Stir Welding (FSW)
by Sonia Boczkal, Monika Mitka, Joanna Hrabia-Wiśnios, Bartłomiej Płonka, Marek St. Węglowski, Aleksandra Węglowska and Piotr Śliwiński
Crystals 2025, 15(3), 208; https://doi.org/10.3390/cryst15030208 - 22 Feb 2025
Cited by 1 | Viewed by 667
Abstract
One of the new areas that requires extensive study of the structure and properties of welded joints is the heat-affected zone (HAZ). This issue is particularly important for new constructions made of aluminium alloys intended for battery housing for powering electric car engines. [...] Read more.
One of the new areas that requires extensive study of the structure and properties of welded joints is the heat-affected zone (HAZ). This issue is particularly important for new constructions made of aluminium alloys intended for battery housing for powering electric car engines. Modern welding methods, such as EBW and FSW, meet the requirements related to the high precision of the process and the quality of the welded joint itself. This article presents the results of an analysis of the structure and strengthening of the HAZ of chemically modified AlMgSi(Cu) alloys via EBW and FSW. Microstructural observation was performed via SEM for each welded joint to determine the morphology of the precipitates. In the HAZ, β-Mg2Si, Q-Al,MgCu,Si and α-Al,Fe,Si (Mn,Cu) phases with larger sizes and rounded shapes were visible than they were directly in the weld made via the EBW method. The joints produced by the FSW method were characterised by a wide weld area and an irregular weld line. Analysis of the crystallographic orientation via EBSD and grain orientation spread (GOS) revealed differences in the shape of the grains and the degree of recrystallisation in the weld area between the FSW and EBW methods. The distributions of HB (FSW) hardness and HV (EBW) microhardness measurements revealed a slight decrease in hardening in the HAZ. In joints welded by both methods, the hardness of the welds for alloys with increased copper and chromium contents increased by approximately 5%. Full article
(This article belongs to the Special Issue Recent Advances in Microstructure and Properties of Metals and Alloys)
Show Figures

Figure 1

9 pages, 8181 KiB  
Communication
Forming Rate Dependence of Novel Austenitising Bending Process for a High-Strength Quenched Micro-Alloyed Steel: Experiments and Simulation
by Yao Lu, Jun Wang, Zhou Li, Fei Lin, Di Pan, Fanghui Jia, Jingtao Han and Zhengyi Jiang
Processes 2025, 13(2), 441; https://doi.org/10.3390/pr13020441 - 6 Feb 2025
Viewed by 831
Abstract
This austenitising bending investigation was carried out in a vacuum environment with the forming rates of 1, 10, and 100 mm/min under a certain bending temperature of 900 °C by a thermomechanical simulator. The enhanced strength at the accelerated forming rate and on [...] Read more.
This austenitising bending investigation was carried out in a vacuum environment with the forming rates of 1, 10, and 100 mm/min under a certain bending temperature of 900 °C by a thermomechanical simulator. The enhanced strength at the accelerated forming rate and on the compression/tension zones throughout the thickness of the bent plates was discussed in detail in terms of dislocation pile-up, smaller prior austenite grain size, dynamic recrystallisation, smaller martensite packet, and stress-neutral layer. Since the simulation results were validated to match the experimental trend, this investigation could be applied as a valuable reference to simulate the practical manufacturing process of railway fasteners. Full article
(This article belongs to the Special Issue Processing, Manufacturing and Properties of Metal and Alloys)
Show Figures

Figure 1

21 pages, 3195 KiB  
Review
Bone Diagenesis and Extremes of Preservation in Forensic Science
by Rhys Williams, Tim Thompson, Caroline Orr and Gillian Taylor
Humans 2025, 5(1), 2; https://doi.org/10.3390/humans5010002 - 24 Jan 2025
Cited by 1 | Viewed by 4101
Abstract
Understanding the composition and diagenetic processes of the deposition environment is pivotal to understanding why bone undergoes preservation or diagenesis. This research explores the complex nexus of diagenesis at the extremes of preservation, via the interdependent chemical, and short- and long-term microbial processes [...] Read more.
Understanding the composition and diagenetic processes of the deposition environment is pivotal to understanding why bone undergoes preservation or diagenesis. This research explores the complex nexus of diagenesis at the extremes of preservation, via the interdependent chemical, and short- and long-term microbial processes that influence diagenesis. These processes include dissolution, ion exchange, hydrolysis, recrystallisation, waterlogging, acidity and alkalinity, soil composition, redox potential, bacterial activity, and microbiome composition. Diagenetic processes are discussed in relation to typical sites and sites with extremes of preservation. Understanding site conditions that impact diagenetic processes is critical to understanding the visual features presented in recovered skeletal material, ensuring an appropriate post-mortem interval is assigned, and for subsequent post hoc analysis of bone. Full article
Show Figures

Figure 1

21 pages, 2879 KiB  
Article
A Novel Eco-Friendly Process for the Synthesis and Purification of Ascorbyl-6-Oleates
by Ha-Eun Ji, Se-Young Kim, Heejin So, Vivian Prayitno, Ki-Teak Lee and Jung-Ah Shin
Foods 2025, 14(1), 70; https://doi.org/10.3390/foods14010070 - 30 Dec 2024
Viewed by 1426
Abstract
Commercial ascorbyl-6-O-esters (AEs) are composed of saturated fatty acids with relatively high melting points, resulting in limited solubility in lipophilic media. Therefore, a lipase-catalysed synthesis and purification method for ascorbyl-6-O-oleate (AO) was proposed in this study. The esterification synthesis (i.e., bonding of oleoyl [...] Read more.
Commercial ascorbyl-6-O-esters (AEs) are composed of saturated fatty acids with relatively high melting points, resulting in limited solubility in lipophilic media. Therefore, a lipase-catalysed synthesis and purification method for ascorbyl-6-O-oleate (AO) was proposed in this study. The esterification synthesis (i.e., bonding of oleoyl group to ascorbic acid) rate was 19.7% using acetone as the reaction solvent. The transesterification synthesis (i.e., exchange of acyl group with oleic acid (OA) in ascorbyl-6-O-palmitate (AP)) rate increased to 73.8% (AP:OA = 1:3, molar ratio). The esterification product was purified sequentially by liquid–liquid extraction using ethyl acetate and water, followed by hexane and acetonitrile, resulting in 94.8 area% AO confirmed by HPLC. When acetonitrile was replaced with 90% methanol, AO achieved 97.2 area%. Similarly, the transesterification product showed 94.3 area% AEs (AP:AO = 8.9:91.1) after recrystallisation and liquid–liquid extraction. Finally, all purified AO revealed peaks corresponding to the hydroxyl groups at the C-2 and C-3 carbons (11.10 and 8.41 ppm, 1H-NMR), whereas OA selectively esterified at the C-6 carbon (13C-NMR). FT-IR confirmed the presence of the ester bond (1733 cm−1) and olefin structure (3006 cm−1) of OA, and LC-ESI-MS/MS identified AO peaks at m/z 439.3. DSC analysis showed broad endothermic curves at 23.1–46.7 °C when the purified AO samples were pre-cooled at −25 °C. Full article
(This article belongs to the Special Issue The Development of New Functional Foods and Ingredients: 2nd Edition)
Show Figures

Figure 1

11 pages, 2643 KiB  
Article
Characterisation of the Electrical Properties of Wastes Vitrified from Canarian Island Basaltic Quarries: Original Glasses and Glass-Ceramics
by Jesús Ma. Rincón, Pío Callejas, María Belén Almendro-Candel and Manuel Jordan
Ceramics 2025, 8(1), 1; https://doi.org/10.3390/ceramics8010001 - 27 Dec 2024
Viewed by 930
Abstract
We obtained original glasses and glass-ceramics through the controlled melting and recrystallisation of basalt rocks extracted from several quarries in the Canary Islands. The electrical measurements of the resulting glasses and glass-ceramics were conducted in a complex impedance at temperatures in the 250–700 [...] Read more.
We obtained original glasses and glass-ceramics through the controlled melting and recrystallisation of basalt rocks extracted from several quarries in the Canary Islands. The electrical measurements of the resulting glasses and glass-ceramics were conducted in a complex impedance at temperatures in the 250–700 °C range. These electrical determinations made it possible to follow the nucleation and crystal growth processes. The main crystalline phases were pyroxenes, feldspar (anorthite) and magnetite, which decorate the dendritic crystallisation of pyroxenes. The magnetite is present as nanocrystals, being the component chiefly responsible for the electrical conduction properties of these glass-ceramics. Electrical conduction is facilitated by the presence of magnetite nanocrystals on the axes of dendrites of pyroxene crystals, enabling polar electron conduction in these materials. Thus, the Fe2+/Fe3+ ratio was related to the total Fe2+/Fe, which made it possible to express an electronic conduction model. Full article
(This article belongs to the Special Issue Ceramic and Glass Material Coatings)
Show Figures

Figure 1

43 pages, 43241 KiB  
Article
Excess 40Ar in Alkali Feldspar and 206,207Pb in Apatite Caused by Fluid-Induced Recrystallisation in a Semi-Closed Environment in Proterozoic (Meta)Granites of the Mt Isa Inlier, NE Australia
by Daniil Popov, Richard Spikings, André Navin Paul, Maria Ovtcharova, Massimo Chiaradia, Martin Kutzschbach, Alexey Ulianov, Gary O’Sullivan, David Chew, Kalin Kouzmanov, Eszter Badenszki, J. Stephen Daly and Joshua H. F. L. Davies
Geosciences 2024, 14(12), 358; https://doi.org/10.3390/geosciences14120358 - 21 Dec 2024
Cited by 1 | Viewed by 1244
Abstract
Interpretation of 40Ar/39Ar dates of alkali feldspar and U-Pb dates of apatite depends on the dominant mechanism of isotopic transport in these minerals, which can be either diffusion or fluid-assisted dissolution-reprecipitation. To clarify the contributions of these processes, we have [...] Read more.
Interpretation of 40Ar/39Ar dates of alkali feldspar and U-Pb dates of apatite depends on the dominant mechanism of isotopic transport in these minerals, which can be either diffusion or fluid-assisted dissolution-reprecipitation. To clarify the contributions of these processes, we have conducted a holistic study of alkali feldspar, apatite and other minerals from the Mt. Isa Inlier in NE Australia. Mineral characterisation by electron microscopy, optical cathodoluminescence imaging and element mapping reveal a complex interplay of textures resulting from magmatic crystallisation, deuteric recrystallisation, local deformation with subsequent higher-temperature alteration, and finally ubiquitous low-temperature alteration. U-Pb and Pb isotopic data for zircon, apatite, fluorite and alkali feldspar suggest that the latter event occurred at ~300 Ma and was associated with fluid-assisted exchange of Pb isotopes between minerals in the same rock, causing some apatite grains to have 207Pb-corrected U-Pb dates that exceed their crystallisation age. However, this event had no unequivocal effect on the 40Ar/39Ar or Rb-Sr systematics of the alkali feldspar, which were disturbed by higher-temperature alteration at ~1450 Ma. The age of the latter event is derived from Rb-Sr data. 40Ar/39Ar dates are very scattered and suggest that 40Ar redistribution proceeded by diffusion in the presence of traps in some places and by dissolution-reprecipitation with variable amounts of recycling in other places. Our results demonstrate the complex effects that interaction with limited amounts of fluids can have on 40Ar/39Ar dates of alkali feldspar and U-Pb dates of apatite and thereby reinforce previous critique of their suitability for thermochronological reconstructions. We further identify and discuss potential implications for noble gas geochronology of groundwaters and fission track dating of apatite. Full article
(This article belongs to the Section Geochemistry)
Show Figures

Figure 1

18 pages, 14264 KiB  
Article
An Investigation into the Ti-Nb-Ag Ternary System for Biocompatible Superelastic Alloys
by Ayush Prasad, Nicole L. Church and Nicholas G. Jones
Metals 2024, 14(12), 1426; https://doi.org/10.3390/met14121426 - 12 Dec 2024
Viewed by 1026
Abstract
Superelastic metastable β-Ti-Nb alloys are attractive low-modulus materials for use in biomedical implants. The antibacterial properties of silver and its ability to lower the modulus of Ti-Nb-based transforming alloys make it an appealing ternary addition, but the Ti-Nb-Ag system is poorly characterised [...] Read more.
Superelastic metastable β-Ti-Nb alloys are attractive low-modulus materials for use in biomedical implants. The antibacterial properties of silver and its ability to lower the modulus of Ti-Nb-based transforming alloys make it an appealing ternary addition, but the Ti-Nb-Ag system is poorly characterised at present. This study elucidates the microstructure, equilibrium phases, and mechanical behaviour of a systematic series of Ti–24Nb–XAg (X = 0, 2, 6) (at.%) alloys. The mutual solubility of Nb and Ag in Ti overcame the immiscibility of Nb and Ag and produced an alloy with a single-phase β microstructure for low Ag concentrations. However, at silver concentrations above approximately 5 at.%, the solubility limit was reached and precipitates began to form. These precipitates were found to form quickly during recrystallisation, refining the grain size by Zener pinning, and persisted even after a 500 h heat treatment at 1100 °C. All three alloys showed non-linear-elastic behaviour typical of transforming alloys. The addition of up to 2 at.% Ag to Ti–24Nb was found to decrease the elastic modulus, suppress formation of the ω phase, and cause the critical transformation stress to decrease, though the transformation stress increased above that of Ti–24Nb when 6 at.% Ag is added. These results indicate that Ti-Nb-Ag alloys are a promising candidate for developing new low-modulus implants. Full article
(This article belongs to the Special Issue Advanced Biomedical Materials (2nd Edition))
Show Figures

Figure 1

Back to TopTop