Comprehensive Dissolution Study on Two Double Ce(IV) Phosphates with Evidence of Secondary CeO2 Nanoparticle Formation
Abstract
:1. Introduction
2. Results
Na-Ce Phosphate Dissolution
3. Discussion
4. Materials and Methods
4.1. Synthesis of CeO2 Nanoparticles
4.2. Hydrothermal Treatment
4.3. Dissolution Experiments
4.4. Inductively Coupled Plasma Mass Spectrometry (ICP-MS) Measurements
4.5. Thermodynamic Modelling
4.6. Characterisation Methods
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
XRD | X-ray diffraction |
SEM | Scanning electron microscopy |
ICP-MS | Inductively coupled plasma mass spectrometry |
NPs | Nanoparticles |
logKsp | Logarithmic value of the solubility product constant |
References
- Pica, M. Treatment of Wastewaters with Zirconium Phosphate Based Materials: A Review on Efficient Systems for the Removal of Heavy Metal and Dye Water Pollutants. Molecules 2021, 26, 2392. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Li, H.; Ma, Y.; Jiang, Y. Calcium Phosphate-Based Nanomaterials: Preparation, Multifunction, and Application for Bone Tissue Engineering. Molecules 2023, 28, 4790. [Google Scholar] [CrossRef] [PubMed]
- Nazaraly, M.; Wallez, G.; Chanéac, C.; Tronc, E.; Ribot, F.; Quarton, M.; Jolivet, J.P. The First Structure of a Cerium(IV) Phosphate: Ab Initio Rietveld Analysis of CeIV(PO4)(HPO4)0.5(H2O)0.5. Angew. Chem. Int. Ed. 2005, 44, 5691–5694. [Google Scholar] [CrossRef] [PubMed]
- Brandel, V.; Dacheux, N. Chemistry of Tetravalent Actinide Phosphates—Part I. J. Solid. State Chem. 2004, 177, 4743–4754. [Google Scholar] [CrossRef]
- Achary, S.N.; Bevara, S.; Tyagi, A.K. Recent Progress on Synthesis and Structural Aspects of Rare-Earth Phosphates. Coord. Chem. Rev. 2017, 340, 266–297. [Google Scholar] [CrossRef]
- Bamberger, C.E.; Haire, R.G.; Begun, G.M.; Hellwege, H.E. The Synthesis and Characterization of Crystalline Phosphates of Thorium, Uranium and Neptunium. J. Less-Common Met. 1984, 102, 179–186. [Google Scholar] [CrossRef]
- Du Fou de Kerdaniel, E.; Clavier, N.; Dacheux, N.; Terra, O.; Podor, R. Actinide Solubility-Controlling Phases during the Dissolution of Phosphate Ceramics. J. Nucl. Mater. 2007, 362, 451–458. [Google Scholar] [CrossRef]
- Burakov, B.E.; Ojovan, M.I.; Lee, W.; Bill, E. Crystalline Materials for Actinide Immobilisation; Imperial College Press: London, UK, 2010; Volume 1, ISBN 978-1-84816-418-5. [Google Scholar]
- Terra, O.; Dacheux, N.; Audubert, F.; Podor, R. Immobilization of Tetravalent Actinides in Phosphate Ceramics. J. Nucl. Mater. 2006, 352, 224–232. [Google Scholar] [CrossRef]
- Vinokurov, S.E.; Kulyako, Y.M.; Slyuntchev, O.M.; Rovny, S.I.; Myasoedov, B.F. Low-Temperature Immobilization of Actinides and Other Components of High-Level Waste in Magnesium Potassium Phosphate Matrices. J. Nucl. Mater. 2009, 385, 189–192. [Google Scholar] [CrossRef]
- Rafiuddin, M.R.; Donato, G.; McCaugherty, S.; Mesbah, A.; Grosvenor, A.P. Review of Rare-Earth Phosphate Materials for Nuclear Waste Sequestration Applications. ACS Omega 2022, 7, 39482–39490. [Google Scholar] [CrossRef]
- Popa, K.; Cologna, M.; Martel, L.; Staicu, D.; Cambriani, A.; Ernstberger, M.; Raison, P.E.; Somers, J. CaTh(PO4)2 Cheralite as a Candidate Ceramic Nuclear Waste Form: Spark Plasma Sintering and Physicochemical Characterisation. J. Eur. Ceram. Soc. 2016, 36, 4115–4121. [Google Scholar] [CrossRef]
- Fourest, B.; Rard Lagarde, G.; Perrone, J.; Brandel, V.; Dacheux, N.; Genet, M. Solubility of Thorium Phosphate-Diphosphate. New J. Chem. 1999, 23, 645–649. [Google Scholar] [CrossRef]
- Rai, D.; Moore, D.A.; Felmy, A.R.; Rosso, K.M.; Bolton, H. PuPO4(Cr, Hyd.) Solubility Product and Pu3+ Complexes with Phosphate and Ethylenediaminetetraacetic Acid. J. Solut. Chem. 2010, 39, 778–807. [Google Scholar] [CrossRef]
- Gausse, C.; Szenknect, S.; Qin, D.W.; Mesbah, A.; Clavier, N.; Neumeier, S.; Bosbach, D.; Dacheux, N. Determination of the Solubility of Rhabdophanes LnPO4·0.667H2O (Ln = La to Dy). Eur. J. Inorg. Chem. 2016, 2016, 4615–4630. [Google Scholar] [CrossRef]
- Liu, X.; Byrne, R.H. Rare Earth and Yttrium Phosphate Solubilities in Aqueous Solution. Geochim. Cosmochim. Acta 1997, 61, 1625–1633. [Google Scholar] [CrossRef]
- Gorman-Lewis, D.; Shvareva, T.; Kubatko, K.A.; Burns, P.C.; Wellman, D.M.; Mcnamara, B.; Szymanowski, J.E.S.; Navrotsky, A.; Fein, J.B. Thermodynamic Properties of Autunite, Uranyl Hydrogen Phosphate, and Uranyl Orthophosphate from Solubility and Calorimetric Measurements. Environ. Sci. Technol. 2009, 43, 7416–7422. [Google Scholar] [CrossRef]
- Romanchuk, A.Y.; Vlasova, I.E.; Kalmykov, S.N. Speciation of Uranium and Plutonium From Nuclear Legacy Sites to the Environment: A Mini Review. Front. Chem. 2020, 8, 630. [Google Scholar] [CrossRef]
- Cetiner, Z.S.; Wood, S.A.; Gammons, C.H. The Aqueous Geochemistry of the Rare Earth Elements. Part XIV. The Solubility of Rare Earth Element Phosphates from 23 to 150 °C. Chem. Geol. 2005, 217, 147–169. [Google Scholar] [CrossRef]
- Gysi, A.P.; Harlov, D.; Miron, G.D. The Solubility of Monazite (CePO4), SmPO4, and GdPO4 in Aqueous Solutions from 100 to 250 °C. Geochim. Cosmochim. Acta 2018, 242, 143–164. [Google Scholar] [CrossRef]
- Hua, K.; Chen, X.; Shui, A.; Xi, X.; Gao, P.; Zheng, Y.; He, C. Preparation and Properties of High Sound-Absorbing Porous Ceramics Reinforced by In Situ Mullite Whisker from Construction Waste. Molecules 2024, 29, 3419. [Google Scholar] [CrossRef]
- Kaplin, I.Y.; Lokteva, E.S.; Golubina, E.V.; Lunin, V.V. Template Synthesis of Porous Ceria-Based Catalysts for Environmental Application. Molecules 2020, 25, 4242. [Google Scholar] [CrossRef] [PubMed]
- Grzybek, G.; Wójtowicz, A.; Legutko, P.; Greluk, M.; Słowik, G.; Sienkiewicz, A.; Adamski, A.; Kotarba, A. The Role of Synthesis Methods of Ceria-Based Catalysts in Soot Combustion. Molecules 2025, 30, 358. [Google Scholar] [CrossRef] [PubMed]
- Romanchuk, A.Y.; Shekunova, T.O.; Larina, A.I.; Ivanova, O.S.; Baranchikov, A.E.; Ivanov, V.K.; Kalmykov, S.N. Sorption of Radionuclides onto Cerium(IV) Hydrogen Phosphate Ce(PO4)(HPO4)0.5(H2O)0.5. Radiochemistry 2019, 61, 719–723. [Google Scholar] [CrossRef]
- Kozlova, T.O.; Vasilyeva, D.N.; Kozlov, D.A.; Kolesnik, I.V.; Teplonogova, M.A.; Tronev, I.V.; Sheichenko, E.D.; Protsenko, M.R.; Kolmanovich, D.D.; Ivanova, O.S.; et al. A Comparative Study of Cerium(III) and Cerium(IV) Phosphates for Sunscreens. Molecules 2024, 29, 2157. [Google Scholar] [CrossRef]
- Shcherbakov, A.B.; Zholobak, N.M.; Ivanov, V.K. Biological, Biomedical and Pharmaceutical Applications of Cerium Oxide. In Cerium Oxide (CeO2): Synthesis, Properties and Applications; Metal Oxides Series; Elsevier: Amsterdam, The Netherlands, 2019; pp. 279–328. ISBN 9780128156612. [Google Scholar]
- Dahle, J.T.; Livi, K.; Arai, Y. Effects of pH and Phosphate on CeO2 Nanoparticle Dissolution. Chemosphere 2015, 119, 1365–1371. [Google Scholar] [CrossRef]
- Plakhova, T.V.; Romanchuk, A.Y.; Yakunin, S.N.; Dumas, T.; Demir, S.; Wang, S.; Minasian, S.G.; Shuh, D.K.; Tyliszczak, T.; Shiryaev, A.A.; et al. Solubility of Nanocrystalline Cerium Dioxide: Experimental Data and Thermodynamic Modeling. J. Phys. Chem. C 2016, 120, 22615–22626. [Google Scholar] [CrossRef]
- Plakhova, T.V.; Vyshegorodtseva, M.A.; Seregina, I.F.; Svetogorov, R.D.; Trigub, A.L.; Kozlov, D.A.; Egorov, A.V.; Shaulskaya, M.D.; Tsymbarenko, D.M.; Romanchuk, A.Y.; et al. Unexpected Nanoscale CeO2 Structural Transformations Induced by Ecologically Relevant Phosphate Species. Chemosphere 2024, 368, 143664. [Google Scholar] [CrossRef]
- Romer, I.; Briffa, S.M.; Dasilva, Y.A.R.; Hapiuk, D.; Trouillet, V.; Palmer, R.E.; Valsami-Jones, E. Impact of Particle Size, Oxidation State and Capping Agent of Different Cerium Dioxide Nanoparticles on the Phosphate-Induced Transformations at Different pH and Concentration. PLoS ONE 2019, 14, e0217483. [Google Scholar] [CrossRef]
- Grulke, E.A.; Beck, M.; Yokel, R.A.; Unrine, J.; Graham, U.M.; Hancock, M.L. Surface-Controlled Dissolution Rates: A Case Study of Nanoceria in Carboxylic Acid Solutions. Environ. Sci. Nano 2019, 6, 1478–1492. [Google Scholar] [CrossRef]
- Yokel, R.A.; Hancock, M.L.; Grulke, E.A.; Unrine, J.M.; Dozier, A.K.; Graham, U.M. Carboxylic Acids Accelerate Acidic Environment-Mediated Nanoceria Dissolution. Nanotoxicology 2019, 13, 455–475. [Google Scholar] [CrossRef]
- Kozlova, T.O.; Mironov, A.V.; Istomin, S.Y.; Birichevskaya, K.V.; Gippius, A.A.; Zhurenko, S.V.; Shatalova, T.B.; Baranchikov, A.E.; Ivanov, V.K. Meet the Cerium(IV) Phosphate Sisters: CeIV(OH)PO4 and CeIV2O(PO4)2. Chem. Eur. J. 2020, 26, 12188–12193. [Google Scholar] [CrossRef] [PubMed]
- Baranchikov, A.E.; Kozlova, T.O.; Istomin, S.Y.; Mironov, A.V.; Vasilchikova, T.M.; Gippius, A.A.; Plakhova, T.V.; Vasilyeva, D.N.; Ivanov, V.K. Sodium Cerium Phosphate, (Na,Ce)2Ce(PO4)2⋅xH2O, with Mixed Cerium Oxidation States. ChemistrySelect 2024, 9, e202401010. [Google Scholar] [CrossRef]
- Salvadó, M.A.; Pertierra, P.; Trobajo, C.; García, J.R. Crystal Structure of a Cerium(IV) Bis(Phosphate) Derivative. J. Am. Chem. Soc. 2007, 129, 10970–10971. [Google Scholar] [CrossRef] [PubMed]
- Shekunova, T.O.; Istomin, S.Y.; Mironov, A.V.; Baranchikov, A.E.; Yapryntsev, A.D.; Galstyan, A.A.; Simonenko, N.P.; Gippius, A.A.; Zhurenko, S.V.; Shatalova, T.B.; et al. Crystallization Pathways of Cerium(IV) Phosphates Under Hydrothermal Conditions: A Search for New Phases with a Tunnel Structure. Eur. J. Inorg. Chem. 2019, 3242–3248. [Google Scholar] [CrossRef]
- Bevara, S.; Achary, S.N.; Patwe, S.J.; Sinha, A.K.; Tyagi, A.K. Preparation and Crystal Structure of K2Ce(PO4)2: A New Complex Phosphate of Ce(IV) Having Structure with One-Dimensional Channels. Dalton Trans. 2016, 45, 980–991. [Google Scholar] [CrossRef]
- Kurajica, S.; Brleković, F.; Keser, S.; Dražić, G.; Mužina, K.; Mihajlović, V. Evaluation of Mechanochemically Prepared CePO4∙H2O Nanoparticles as UV Filter for Photoprotective Formulations. Molecules 2025, 30, 405. [Google Scholar] [CrossRef]
- Bevara, S.; Mishra, K.K.; Patwe, S.J.; Ravindran, T.R.; Gupta, M.K.; Mittal, R.; Krishna, P.S.R.; Sinha, A.K.; Achary, S.N.; Tyagi, A.K. Phase Transformation, Vibrational and K2Ce(PO4)2: A Combined Experimental and Theoretical Study. Inorg. Chem. 2017, 56, 3335–3348. [Google Scholar] [CrossRef]
- Kozlova, T.O.; Vasilyeva, D.N.; Kozlov, D.A.; Teplonogova, M.A.; Baranchikov, A.E.; Simonenko, N.P.; Ivanov, V.K. Synthesis and Thermal Behavior of KCe2(PO4)3, a New Full-Member in the AIMIV2(PO4)3 Family. Nanosyst. Phys. Chem. Math. 2023, 14, 112–119. [Google Scholar] [CrossRef]
- Kramar, B.V.; Plakhova, T.V.; Kuzenkova, A.S.; Trigub, A.L.; Svetogorov, R.D.; Shiryaev, A.A.; Nevolin, I.M.; Yapryntsev, A.D.; Baranchikov, A.E.; Peters, G.; et al. Formation of a New Hydrated Sodium-Thorium Phosphate from Thorium Dioxide and Its Subsequent Phase Evolution. Dalton Trans. 2025. [Google Scholar] [CrossRef]
- Kvashnina, K.O. Electronic-Structure Interpretation: How Much Do We Understand Ce L3 XANES? Chem. Eur. J. 2024, 30, e202400755. [Google Scholar] [CrossRef]
- Bianconi, A.; Marcelli, A.; Dexpert, H.; Karnatak, R.; Kotani, A.; Jo, T.; Petiau, J. Specific Intermediate-Valence State of Insulating 4 Compounds Detected by L3 x-Ray Absorption. Phys. Rev. B 1987, 35, 806–812. [Google Scholar] [CrossRef] [PubMed]
- Soldatov, A.V.; Ivanchenko, T.S.; Della Longa, S.; Kotani, A.; Iwamoto, Y.; Bianconi, A. Crystal-Structure Effects in the Ce L3 -Edge x-Ray-Absorption Spectrum of CeO2: Multiple-Scattering Resonances and Many-Body Final States. Phy.s Rev. B 1994, 50, 5074–5080. [Google Scholar] [CrossRef] [PubMed]
- Yoshida, H.; Yuliati, L.; Hamajima, T.; Hattori, T. Valence of Highly Dispersed Cerium Oxide Species on Silica Quantitatively Estimated by Ce LIII-Edge XANES. Mater. Trans. 2004, 45, 2062–2067. [Google Scholar] [CrossRef]
- Plakhova, T.V.; Romanchuk, A.Y.; Konyukhova, A.D.; Seregina, I.F.; Baranchikov, A.E.; Svetogorov, R.D.; Terban, M.W.; Ivanov, V.K.; Kalmykov, S.N. Overlooked Impact of Surface Hydroxylation on the Solubility of Less-Soluble Compounds: A Case Study of CeO2. Environ. Sci. Nano 2024, 11, 3551–3562. [Google Scholar] [CrossRef]
- Wu, Z.; Li, M.; Howe, J.; Meyer, H.M.; Overbury, S.H. Probing Defect Sites on CeO2 Nanocrystals with Well-Defined Surface Planes by Raman Spectroscopy and O2 Adsorption. Langmuir 2010, 26, 16595–16606. [Google Scholar] [CrossRef]
- Babitha, K.K.; Sreedevi, A.; Priyanka, P.; Sabu, B.; Varghese, T. Structural Characterization and Optical Studies of CeO2 Nanoparticles Synthesised by Chemical Precipitation. Nanosyst. Phys. Chem. Math. 2015, 53, 596–603. [Google Scholar] [CrossRef]
- Katta, L.; Sudarsanam, P.; Mallesham, B.; Reddy, B.M. Preparation of Silica Supported Ceria-Lanthana Solid Solutions Useful for Synthesis of 4-Methylpent-1-Ene and Dehydroacetic Acid. Catal. Sci. Technol. 2012, 2, 995–1004. [Google Scholar] [CrossRef]
- Navrotsky, A.; Mazeina, L.; Majzlan, J. Size-Driven Structural and Thermodynamic Complexity in Iron Oxides. Science 2008, 319, 1635–1638. [Google Scholar] [CrossRef]
- Birkner, N.; Navrotsky, A. Thermodynamics of Manganese Oxides: Effects of Particle Size and Hydration on Oxidation-Reduction Equilibria among Hausmannite, Bixbyite, and Pyrolusite. Am. Mineral. 2012, 97, 1291–1298. [Google Scholar] [CrossRef]
- Navrotsky, A. Nanoscale Effects on Thermodynamics and Phase Equilibria in Oxide Systems. ChemPhysChem 2011, 12, 2207–2215. [Google Scholar] [CrossRef]
- McHale, J.M.; Auroux, A.; Perrotta, A.J.; Navrotsky, A. Surface Energies and Thermodynamic Phase Stability in Nanocrystalline Aluminas. Science 1997, 277, 788–789. [Google Scholar] [CrossRef]
- Guo, X.; Wu, D.; Ushakov, S.V.; Shvareva, T.; Xu, H.; Navrotsky, A. Energetics of Hydration on Uranium Oxide and Peroxide Surfaces. J. Mater. Res. 2019, 34, 3319–3325. [Google Scholar] [CrossRef]
- Trail, D. Redox-Controlled Dissolution of Monazite in Fluids and Implications for Phase Stability in the Lithosphere. Am. Mineral. 2018, 103, 453–461. [Google Scholar] [CrossRef]
- Shannon, R.; Prewitt, C.T. Effective Ionic Radii in Oxides and Fluorides. Acta Crystallogr. B 1969, 25, 925–946. [Google Scholar] [CrossRef]
- Salvadó, M.A.; Pertierra, P.; Bortun, A.I.; Trobajo, C.; García, J.R. Phosphorous Acid and Urea: Valuable Sources of Phosphorus and Nitrogen in the Hydrothermal Synthesis of Ammonium-Thorium Phosphates. Inorg. Chem. 2008, 47, 7207–7210. [Google Scholar] [CrossRef]
- Matković, B.; Kojić-Prodić, B.; Šlijukić, M.; Topić, M.; Willett, R.; Pullen, F. The Crystal Structure of a New Ferroelectric Compound, NaTh2(PO4)3. Inorg. Chim. Acta 1970, 4, 571–576. [Google Scholar] [CrossRef]
- Matkovic, B.; Prodic, B.; Sljukic, M.; Peterson, S.W. The Crystal Structure of Potassium Dithorium Trisphosphate, KTh2(PO4)3. Chroatica Chem. Acta 1968, 40, 147–161. [Google Scholar]
- Plakhova, T.V.; Romanchuk, A.Y.; Seregina, I.F.; Svetogorov, R.D.; Kozlov, D.A.; Teterin, Y.A.; Kuzenkova, A.S.; Egorov, A.V.; Kalmykov, S.N. From X-Ray Amorphous ThO2 to Crystalline Nanoparticles through Long-Term Aging at Room Temperature. J. Phys. Chem. C 2022, 127, 187–195. [Google Scholar] [CrossRef]
- Parkhurst, D.; Appelo, T. User’s Guide to PHREEQC (Version 2)—A Computer Program for Speciation, Batch-Reaction, One-Dimensional Transport, and Inverse Geochemical Calculations; U.S. Geological Survey, Techniques of Water-Resources Investigation: Reston, VA, USA, 2000.
- Svetogorov, R.D.; Dorovatovskii, P.V.; Lazarenko, V.A. Belok/XSA Diffraction Beamline for Studying Crystalline Samples at Kurchatov Synchrotron Radiation Source. Cryst. Res. Technol. 2020, 55, 1900184. [Google Scholar] [CrossRef]
- Novichkov, D.; Trigub, A.; Gerber, E.; Nevolin, I.; Romanchuk, A.; Matveev, P.; Kalmykov, S. Laboratory-Based X-Ray Spectrometer for Actinide Science. J. Synchrotron Radiat. 2023, 30, 1114–1126. [Google Scholar] [CrossRef]
- Ravel, B.; Newville, M. ATHENA, ARTEMIS, HEPHAESTUS: Data Analysis for X-Ray Absorption Spectroscopy Using IFEFFIT. J. Synchrotron Radiat. 2005, 12, 537–541. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Listova, A.L.; Kuzenkova, A.S.; Gerasimov, M.A.; Kulikova, E.S.; Svetogorov, R.D.; Novichkov, D.A.; Averin, A.A.; Yapaskurt, V.O.; Romanchuk, A.Y.; Kalmykov, S.N.; et al. Comprehensive Dissolution Study on Two Double Ce(IV) Phosphates with Evidence of Secondary CeO2 Nanoparticle Formation. Molecules 2025, 30, 2105. https://doi.org/10.3390/molecules30102105
Listova AL, Kuzenkova AS, Gerasimov MA, Kulikova ES, Svetogorov RD, Novichkov DA, Averin AA, Yapaskurt VO, Romanchuk AY, Kalmykov SN, et al. Comprehensive Dissolution Study on Two Double Ce(IV) Phosphates with Evidence of Secondary CeO2 Nanoparticle Formation. Molecules. 2025; 30(10):2105. https://doi.org/10.3390/molecules30102105
Chicago/Turabian StyleListova, Anastasiia L., Anastasiia S. Kuzenkova, Mikhail A. Gerasimov, Elizaveta S. Kulikova, Roman D. Svetogorov, Daniil A. Novichkov, Alexei A. Averin, Vasiliy O. Yapaskurt, Anna Yu. Romanchuk, Stepan N. Kalmykov, and et al. 2025. "Comprehensive Dissolution Study on Two Double Ce(IV) Phosphates with Evidence of Secondary CeO2 Nanoparticle Formation" Molecules 30, no. 10: 2105. https://doi.org/10.3390/molecules30102105
APA StyleListova, A. L., Kuzenkova, A. S., Gerasimov, M. A., Kulikova, E. S., Svetogorov, R. D., Novichkov, D. A., Averin, A. A., Yapaskurt, V. O., Romanchuk, A. Y., Kalmykov, S. N., & Plakhova, T. V. (2025). Comprehensive Dissolution Study on Two Double Ce(IV) Phosphates with Evidence of Secondary CeO2 Nanoparticle Formation. Molecules, 30(10), 2105. https://doi.org/10.3390/molecules30102105