Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (95)

Search Parameters:
Keywords = receptor–analyte interactions

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
36 pages, 2877 KiB  
Article
Dual-Oriented Targeted Nanostructured SERS Label-Free Immunosensor for Detection, Quantification, and Analysis of Breast Cancer Biomarker Concentrations in Blood Serum
by Mohammad E. Khosroshahi, Christine Gaoiran, Vithurshan Umashanker, Hayagreev Veeru and Pranav Panday
Biosensors 2025, 15(7), 447; https://doi.org/10.3390/bios15070447 - 11 Jul 2025
Viewed by 378
Abstract
In clinical applications of surface-enhanced Raman spectroscopy (SERS) immunosensors, accurately determining analyte biomarker concentrations is essential. This study presents a non-invasive approach for quantifying various breast cancer biomarkers—including human epidermal growth factor receptor II (HER-II) (2+, 3+ (I), 3+ (II), 3+ (III), and [...] Read more.
In clinical applications of surface-enhanced Raman spectroscopy (SERS) immunosensors, accurately determining analyte biomarker concentrations is essential. This study presents a non-invasive approach for quantifying various breast cancer biomarkers—including human epidermal growth factor receptor II (HER-II) (2+, 3+ (I), 3+ (II), 3+ (III), and positive IV) and CA 15-3—using a directional, plasmonically active, label-free SERS sensor. Each stage of sensor functionalization, conjugation, and biomarker interaction was verified by UV–Vis spectroscopy. Atomic force microscopy (AFM) characterized the morphology of gold nanourchin (GNU)-immobilized printed circuit board (PCB) substrates. An enhancement factor of ≈ 0.5 × 105 was achieved using Rhodamine 6G as the probe molecule. Calibration curves were initially established using standard HER-II solutions at concentrations ranging from 1 to 100 ng/mL and CA 15-3 at concentrations from 10 to 100 U/mL. The SERS signal intensities in the 620–720 nm region were plotted against concentration, yielding linear sensitivity with R2 values of 0.942 and 0.800 for HER-II and CA15-3, respectively. The same procedure was applied to breast cancer serum (BCS) samples, allowing unknown biomarker concentrations to be determined based on the corresponding calibration curves. SERS data were processed using the filtfilt filter from scipy.signal for smoothing and then baseline-corrected with the Improved Asymmetric Least Squares (IASLS) algorithm from the pybaselines.Whittaker library. Principal Component Analysis (PCA) effectively distinguished the sample groups and revealed spectral differences before and after biomarker interactions. Key Raman peaks were attributed to functional groups including N–H (primary and secondary amines), C–H antisymmetric stretching, C–N (amines), C=O antisymmetric stretching, NH3+ (amines), carbohydrates, glycine, alanine, amides III, C=N stretches, and NH2 in primary amides. Full article
Show Figures

Figure 1

26 pages, 11307 KiB  
Article
Integrated Metabolomics and Network Pharmacology to Reveal the Mechanisms of Forsythia suspensa Extract Against Respiratory Syncytial Virus
by Haitao Du, Jie Ding, Yaxuan Du, Xinyi Zhou, Lin Wang, Xiaoyan Ding, Wen Cai, Cheng Wang, Mengru Zhang, Yi Wang and Ping Wang
Int. J. Mol. Sci. 2025, 26(11), 5244; https://doi.org/10.3390/ijms26115244 - 29 May 2025
Viewed by 656
Abstract
To investigate the therapeutic impact of Forsythia suspensa extract (FS) on RSV-infected mice and explore its antiviral pharmacodynamic foundations. Methods: An integrated analytical approach, combining UPLC-Q-TOF/MS with network pharmacology, was employed to analyze and identify the chemical constituents in FS, particularly those exhibiting [...] Read more.
To investigate the therapeutic impact of Forsythia suspensa extract (FS) on RSV-infected mice and explore its antiviral pharmacodynamic foundations. Methods: An integrated analytical approach, combining UPLC-Q-TOF/MS with network pharmacology, was employed to analyze and identify the chemical constituents in FS, particularly those exhibiting antiviral properties against RSV. The study integrated network pharmacology and metabolomics for further analysis, and molecular docking and interaction experiments were conducted to validate the pharmacodynamic mechanisms. Finally, an RSV pneumonia mouse model was employed to evaluate the therapeutic influence of FS, including pathological and immunohistochemistry assessments. Twenty-five components in FS were identified through UPLC-Q-TOF/MS analysis. Integrated network pharmacology data revealed 43 effective components and predicted 113 potential targets of FS for anti-RSV activity. Metabolomics analysis identified 14 metabolite biomarkers closely linked to RSV-induced metabolic disruptions involving pathways. Moreover, molecular docking and Biacore experiments provided additional confirmation that FS primarily exerts its effects through compounds such as rutin, quercetin, and kaempferol. Immunohistochemistry experiments demonstrated a significant reduction in the expression of relevant proteins following FS administration, affirming its capacity to ameliorate lung inflammation induced by RSV infection through the modulation of Toll-like receptor signaling pathways. The data presented in this study illustrate that FS exerts its anti-RSV effects by regulating the Toll-like receptor signaling pathway and the arachidonic acid metabolism pathway via rutin, quercetin, and kaempferol. Furthermore, the approach of combining network pharmacology with metabolomics proves to be an effective research strategy for investigating the bioactive constituents of medicinal plants and elucidating their pharmacological effects. Full article
(This article belongs to the Special Issue Novel Antivirals against Respiratory Viruses)
Show Figures

Figure 1

15 pages, 1544 KiB  
Article
Valerenic Acid and Pinoresinol as Positive Allosteric Modulators: Unlocking the Sleep-Promoting Potential of Valerian Extract Ze 911
by Roman Senn, Lukas Schertler, Hendrik Bussmann, Juergen Drewe, Georg Boonen and Veronika Butterweck
Molecules 2025, 30(11), 2344; https://doi.org/10.3390/molecules30112344 - 27 May 2025
Viewed by 875
Abstract
Valerian root extracts are widely used as mild sedatives to promote sleep, with clinical studies confirming their efficacy. Their sleep-promoting effects are associated with the adenosine A1 receptor (A1AR), a key regulator of sleep through neural activity inhibition. Adenosine, a neuromodulator that accumulates [...] Read more.
Valerian root extracts are widely used as mild sedatives to promote sleep, with clinical studies confirming their efficacy. Their sleep-promoting effects are associated with the adenosine A1 receptor (A1AR), a key regulator of sleep through neural activity inhibition. Adenosine, a neuromodulator that accumulates during wakefulness, activates A1ARs to facilitate sleep transitions. Using advanced analytics, we detected adenosine at 0.05% in the valerian extract Ze 911, supporting direct A1AR activation in vitro. Additionally, we explored A1ARs’ allosteric sites for modulatory activity. Valerenic acid and pinoresinol, key constituents of Ze 911, were identified as positive allosteric modulators (PAMs) of A1ARs. Valerenic acid exhibited strong PAM activity, with high cooperativity (αβ = 4.79 for adenosine and αβ = 23.38 for CPA) and intrinsic efficacy (τB = 5.98 for adenosine and τB = 3.14 for CPA). Pinoresinol displayed weaker PAM activity, with moderate cooperativity (αβ = 3.42 for adenosine and αβ = 0.79 for CPA) and limited efficacy (τB = 0.93 for adenosine and τB = 1.66 for CPA). The allosteric modulation observed in valerian extract Ze 911 suggests a mechanism of action in which valerenic acid and pinoresinol enhance receptor activation through allosteric interactions, potentially amplifying the effects of endogenous adenosine. By targeting A1ARs’ allosteric sites, valerian extract Ze 911 offers increased therapeutic selectivity and reduced off-target effects, emphasizing its potential for managing sleep disorders. Full article
(This article belongs to the Section Natural Products Chemistry)
Show Figures

Figure 1

22 pages, 14953 KiB  
Article
Tapping into Metabolomics for Understanding Host and Rotavirus Group A Interactome
by Phiona Moloi Mametja, Mmei Cheryl Motshudi, Clarissa Marcelle Naidoo, Kebareng Rakau, Luyanda Mapaseka Seheri and Nqobile Monate Mkolo
Life 2025, 15(5), 765; https://doi.org/10.3390/life15050765 - 10 May 2025
Viewed by 774
Abstract
Group A rotavirus continues to be a leading global etiological agent of severe gastroenteritis in young children under 5 years of age. The replication of this virus in the host is associated with the occurrence of Lewis antigens and the secretor condition. Moreover, [...] Read more.
Group A rotavirus continues to be a leading global etiological agent of severe gastroenteritis in young children under 5 years of age. The replication of this virus in the host is associated with the occurrence of Lewis antigens and the secretor condition. Moreover, histo-blood group antigens (HBGAs) act as attachment factors to the outer viral protein of VP4 for rotavirus. Therefore, in this study, we employed a metabolomic approach to reveal potential signature metabolic molecules and metabolic pathways specific to rotavirus P[8] strain infection (VP4 genotype), which is associated with the expression of HBGA combined secretor and Lewis (Le) phenotypes, specifically secretor/Le(a+b+). Further integration of the achieved metabolomics results with lipidomic and proteomics metadata analyses was performed. Saliva samples were collected from children diagnosed as negative or positive for rotavirus P[8] strain infection (VP4 genotype), which is associated with the HBGA combined secretor/Le(a+b+). A total of 22 signature metabolic molecules that were downregulated include butyrate, putrescine, lactic acid, and 7 analytes. The upregulated metabolic molecule was 2,3-Butanediol. Significant pathway alterations were also specifically observed in various metabolism processes, including galactose and butanoate metabolisms. Butyrate played a significant role in viral infection and was revealed to exhibit different reactions with glycerolipids, glycerophospholipids, sphingolipids, sterol lipids, and fatty acyls. Moreover, butyrate might interact with protein receptors of free fatty acid receptor 2 (FFAR2) and free fatty acid receptor 3 (FFAR3). The revealed metabolic pathways and molecule might provide fundamental insight into the status of rotavirus P[8] strain infection for monitoring its effects on humans. Full article
(This article belongs to the Section Microbiology)
Show Figures

Figure 1

22 pages, 2532 KiB  
Review
A Review on Xanthine Oxidase-Based Electrochemical Biosensors: Food Safety and Quality Control Applications
by Totka Dodevska
Chemosensors 2025, 13(5), 159; https://doi.org/10.3390/chemosensors13050159 - 1 May 2025
Viewed by 991
Abstract
Electrochemical biosensors are integrated bio-receptor–transducer devices that convert specific biological interactions into measurable electrical signals. Over the past decade, the use of novel nanomaterials, advanced enzyme immobilization techniques, and enhanced sensor architectures have been extensively studied, yielding significant progress in the design of [...] Read more.
Electrochemical biosensors are integrated bio-receptor–transducer devices that convert specific biological interactions into measurable electrical signals. Over the past decade, the use of novel nanomaterials, advanced enzyme immobilization techniques, and enhanced sensor architectures have been extensively studied, yielding significant progress in the design of highly sensitive, rapid, and reliable electrochemical biosensors. In the modern food industry various types of electrochemical biosensors are used, playing essential roles in the processes monitoring and optimization. This review highlights the strategies implemented to improve the analytical performance of electrochemical enzyme biosensors based on xanthine oxidase (XOx) for the quantitative detection of xanthine (X) and hypoxanthine (Hx), analytes relevant to the field of food quality control. The article covers recent developments (mainly original studies reported from 2010 to date) in the substrate materials, different electrode designs, working principles, advantages, limitations, and applications of XOx biosensors for meat freshness assessment. The article is meant to be a valuable resource that provides insights for improving design for the next generation bio-electroanalytical platforms to ensure food safety. Full article
Show Figures

Graphical abstract

12 pages, 2709 KiB  
Article
An Attomolar-Level Optical Device for Monitoring Receptor–Analyte Interactions Without Functionalization Steps: A Case Study of Cytokine Detection
by Nunzio Cennamo, Francesco Arcadio, Chiara Marzano, Rosalba Pitruzzella, Mimimorena Seggio, Maria Pesavento, Stefano Toldo, Antonio Abbate and Luigi Zeni
Sensors 2025, 25(3), 930; https://doi.org/10.3390/s25030930 - 4 Feb 2025
Viewed by 1058
Abstract
A plastic optical fiber (POF)-based device for biosensing strategies has been developed to monitor several protein–protein interactions at ultra-low concentrations without functionalization processes, exploiting plasmonic phenomena. In this work, novel tests were applied to different kinds of analyte–receptor interactions, such as interleukins, where [...] Read more.
A plastic optical fiber (POF)-based device for biosensing strategies has been developed to monitor several protein–protein interactions at ultra-low concentrations without functionalization processes, exploiting plasmonic phenomena. In this work, novel tests were applied to different kinds of analyte–receptor interactions, such as interleukins, where the bioreceptor’s (protein antibody) molecular weight is roughly ten times that of the analyte (protein interleukin), while intracellular bioreceptors and small molecules at low molecular weight interactions have already been demonstrated via the same point-of-care test (POCT). The POCT was implemented by a white light source and a spectrometer connected via two POF-based chips connected in series: an innovative microcuvette chip and a D-shaped POF surface plasmon resonance (SPR) probe. In particular, the POF microcuvette chip was achieved by drilling three micro holes in the core of a modified POF. Instead of performing a functionalization step, the micro holes were filled with a specific receptor solution for the analyte (one microliter at the femtomolar level), which selectively captured the target (e.g., cytokine) when the samples were dropped over the filled micro holes (twenty microliters at the attomolar level). Three interleukins, IL-1β, IL-17A, and IL-18, were detected in the attomolar concentrations range by monitoring the resonance wavelength shift over time due to the cytokine/antibody (protein–protein) interaction. The POF-based device was proven to be effective for detecting several interleukins at the attomolar level in a few minutes and without functionalization processes. Full article
(This article belongs to the Special Issue Advanced Optics and Photonics Technologies for Sensing Applications)
Show Figures

Figure 1

24 pages, 10605 KiB  
Article
Focal Molography Allows for Affinity and Concentration Measurements of Proteins in Complex Matrices with High Accuracy
by Lorin Dirscherl, Laura S. Merz, Ronya Kobras, Peter Spies, Andreas Frutiger, Volker Gatterdam and Dominik M. Meinel
Biosensors 2025, 15(2), 66; https://doi.org/10.3390/bios15020066 - 22 Jan 2025
Viewed by 2114
Abstract
Characterizing biomolecular receptor–ligand interactions is critical for research and development. However, performing analyses in complex, biologically relevant matrices, such as serum, remains challenging due to non-specific binding that often impairs measurements. Here, we evaluated Focal Molography (FM) for determining KD and kinetic [...] Read more.
Characterizing biomolecular receptor–ligand interactions is critical for research and development. However, performing analyses in complex, biologically relevant matrices, such as serum, remains challenging due to non-specific binding that often impairs measurements. Here, we evaluated Focal Molography (FM) for determining KD and kinetic constants in comparison to gold-standard methods using single-domain heavy-chain antibodies in various systems. FM provided kinetic constants highly comparable to SPR and BLI in standard buffers containing blocking proteins, with KDs of soluble CD4 (sCD4) interactions within a 2.4-fold range across technologies. In buffers lacking blocking proteins, FM demonstrated greater robustness against non-specific binding and rebinding effects. In serum, FM exhibited stable baseline signals, unlike SPR and BLI, and yielded KDs of sCD4 interaction in 50% Bovine Serum within a 1.8-fold range of those obtained in standard buffers. For challenging molecules prone to non-specific binding (Granzyme B), FM successfully determined kinetic constants without external referencing. Finally, FM enabled direct analyte quantification in complex matrices. sCD4 quantification in cell culture media and 50% FBS showed recovery rates of 97.8–100.3% with an inter-assay CV below 1.3%. This study demonstrates the high potential of FM for kinetic affinity determination and biomarker quantification in complex matrices, enabling reliable measurements under biologically relevant conditions. Full article
(This article belongs to the Special Issue Emerging Applications of Label-Free Optical Biosensors)
Show Figures

Figure 1

13 pages, 992 KiB  
Review
The Application of Molecularly Imprinted Polymers in Forensic Toxicology: Issues and Perspectives
by Susan Mohamed, Simone Santelli, Arianna Giorgetti, Guido Pelletti, Filippo Pirani, Paolo Fais and Jennifer P. Pascali
Chemosensors 2024, 12(12), 279; https://doi.org/10.3390/chemosensors12120279 - 23 Dec 2024
Cited by 4 | Viewed by 1597
Abstract
Molecularly imprinted polymers (MIPs) are synthetic receptors designed to selectively bind specific molecules, mimicking natural antibody–antigen interactions. Produced through polymerization around a target molecule (template), MIPs create imprints that confer high specificity and binding affinity upon template removal. Initially developed in the 1970s [...] Read more.
Molecularly imprinted polymers (MIPs) are synthetic receptors designed to selectively bind specific molecules, mimicking natural antibody–antigen interactions. Produced through polymerization around a target molecule (template), MIPs create imprints that confer high specificity and binding affinity upon template removal. Initially developed in the 1970s with organic polymers, MIPs now play critical roles in separation sciences, catalysis, drug delivery, and sensor technology. In forensic science, MIPs offer potential for sample preparation, pre-concentration, and analyte detection, especially with complex biological and non-biological matrices. They exhibit superior stability under extreme conditions, enabling their use in challenging forensic contexts such as detecting new psychoactive substances or trace explosives. Despite advantages like reusability and high selectivity, MIPs face limitations in forensic analysis due to their complex synthesis, potential template leakage, and non-specific binding. Moreover, the lack of standardized protocols limits their mainstream adoption, as forensic applications require validated, reproducible methods. This review systematically assesses MIPs in forensic toxicology, focusing on their current capabilities, limitations, and potential for broader integration into forensic workflows. Future research should address standardization and evaluate MIPs’ effectiveness in diverse forensic applications to realize their full potential. Full article
(This article belongs to the Special Issue Chemical Sensing and Analytical Methods for Forensic Applications)
Show Figures

Figure 1

10 pages, 3626 KiB  
Article
Turn-On Fluorescence Probe for Cancer-Related γ-Glutamyltranspeptidase Detection
by Muhammad Saleem, Muhammad Hanif, Samuel Bonne, Muhammad Zeeshan, Salahuddin Khan, Muhammad Rafiq, Tehreem Tahir, Changrui Lu and Rujie Cai
Molecules 2024, 29(19), 4776; https://doi.org/10.3390/molecules29194776 - 9 Oct 2024
Cited by 1 | Viewed by 1749
Abstract
The design and development of fluorescent materials for detecting cancer-related enzymes are crucial for cancer diagnosis and treatment. Herein, we present a substituted rhodamine derivative for the chromogenic and fluorogenic detection of the cancer-relevant enzyme γ-glutamyltranspeptidase (GGT). Initially, the probe is non-chromic [...] Read more.
The design and development of fluorescent materials for detecting cancer-related enzymes are crucial for cancer diagnosis and treatment. Herein, we present a substituted rhodamine derivative for the chromogenic and fluorogenic detection of the cancer-relevant enzyme γ-glutamyltranspeptidase (GGT). Initially, the probe is non-chromic and non-emissive due to its spirolactam form, which hinders extensive electronic delocalization over broader pathway. However, selective enzymatic cleavage of the side-coupled group triggers spirolactam ring opening, resulting in electronic flow across the rhodamine skeleton, and reduces the band gap for low-energy electronic transitions. This transformation turns the reaction mixture from colorless to intense pink, with prominent UV and fluorescence bands. The sensor’s selectivity was tested against various human enzymes, including urease, alkaline phosphatase, acetylcholinesterase, tyrosinase, and cyclooxygenase, and showed no response. Absorption and fluorescence titration analyses of the probe upon incremental addition of GGT into the probe solution revealed a consistent increase in both absorption and emission spectra, along with intensified pink coloration. The cellular toxicity of the receptor was evaluated using the MTT assay, and bioimaging analysis was performed on BHK-21 cells, which produced bright red fluorescence, demonstrating the probe’s excellent cell penetration and digestion capabilities for intracellular analytical detection. Molecular docking results supported the fact that probe-4 made stable interactions with the GGT active site residues. Full article
(This article belongs to the Special Issue Research Progress of Fluorescent Probes)
Show Figures

Figure 1

13 pages, 2510 KiB  
Article
Sandwich-Type Electrochemical Aptasensor with Supramolecular Architecture for Prostate-Specific Antigen
by Anabel Villalonga, Raúl Díaz, Irene Ojeda, Alfredo Sánchez, Beatriz Mayol, Paloma Martínez-Ruiz, Reynaldo Villalonga and Diana Vilela
Molecules 2024, 29(19), 4714; https://doi.org/10.3390/molecules29194714 - 5 Oct 2024
Cited by 4 | Viewed by 1392
Abstract
A novel sandwich-type electrochemical aptasensor based on supramolecularly immobilized affinity bioreceptor was prepared via host–guest interactions. This method utilizes an adamantane-modified, target-responsive hairpin DNA aptamer as a capture molecular receptor, along with a perthiolated β-cyclodextrin (CD) covalently attached to a gold-modified electrode surface [...] Read more.
A novel sandwich-type electrochemical aptasensor based on supramolecularly immobilized affinity bioreceptor was prepared via host–guest interactions. This method utilizes an adamantane-modified, target-responsive hairpin DNA aptamer as a capture molecular receptor, along with a perthiolated β-cyclodextrin (CD) covalently attached to a gold-modified electrode surface as the transduction element. The proposed sensing strategy employed an enzyme-modified aptamer as the signalling element to develop a sandwich-type aptasensor for detecting prostate-specific antigen (PSA). To achieve this, screen-printed carbon electrodes (SPCEs) with electrodeposited reduced graphene oxide (RGO) and gold nanoferns (AuNFs) were modified with the CD derivative to subsequently anchor the adamantane-modified anti-PSA aptamer via supramolecular associations. The sensing mechanism involves the affinity recognition of PSA molecules on the aptamer-enriched electrode surface, followed by the binding of an anti-PSA aptamer–horseradish peroxidase complex as a labelling element. This sandwich-type arrangement produces an analytical signal upon the addition of H2O2 and hydroquinone as enzyme substrates. The aptasensor successfully detected the biomarker within a concentration range of 0.5 ng/mL to 50 ng/mL, exhibiting high selectivity and a detection limit of 0.11 ng/mL in PBS. Full article
(This article belongs to the Special Issue Nano-Functional Materials for Sensor Applications)
Show Figures

Graphical abstract

20 pages, 3010 KiB  
Article
Salmonella Detection in Food Using a HEK-hTLR5 Reporter Cell-Based Sensor
by Esma Eser, Victoria A. Felton, Rishi Drolia and Arun K. Bhunia
Biosensors 2024, 14(9), 444; https://doi.org/10.3390/bios14090444 - 18 Sep 2024
Viewed by 2984
Abstract
The development of a rapid, sensitive, specific method for detecting foodborne pathogens is paramount for supplying safe food to enhance public health safety. Despite the significant improvement in pathogen detection methods, key issues are still associated with rapid methods, such as distinguishing living [...] Read more.
The development of a rapid, sensitive, specific method for detecting foodborne pathogens is paramount for supplying safe food to enhance public health safety. Despite the significant improvement in pathogen detection methods, key issues are still associated with rapid methods, such as distinguishing living cells from dead, the pathogenic potential or health risk of the analyte at the time of consumption, the detection limit, and the sample-to-result. Mammalian cell-based assays analyze pathogens’ interaction with host cells and are responsive only to live pathogens or active toxins. In this study, a human embryonic kidney (HEK293) cell line expressing Toll-Like Receptor 5 (TLR-5) and chromogenic reporter system (HEK dual hTLR5) was used for the detection of viable Salmonella in a 96-well tissue culture plate. This cell line responds to low concentrations of TLR5 agonist flagellin. Stimulation of TLR5 ligand activates nuclear factor-kB (NF-κB)—linked alkaline phosphatase (AP-1) signaling cascade inducing the production of secreted embryonic alkaline phosphatase (SEAP). With the addition of a ρ-nitrophenyl phosphate as a substrate, a colored end product representing a positive signal is quantified. The assay’s specificity was validated with the top 20 Salmonella enterica serovars and 19 non-Salmonella spp. The performance of the assay was also validated with spiked food samples. The total detection time (sample-to-result), including shortened pre-enrichment (4 h) and selective enrichment (4 h) steps with artificially inoculated outbreak-implicated food samples (chicken, peanut kernel, peanut butter, black pepper, mayonnaise, and peach), was 15 h when inoculated at 1–100 CFU/25 g sample. These results show the potential of HEK-DualTM hTLR5 cell-based functional biosensors for the rapid screening of Salmonella. Full article
(This article belongs to the Special Issue Advancements in Biosensors for Foodborne Pathogens Detection)
Show Figures

Figure 1

13 pages, 2521 KiB  
Article
Sensitive Coatings Based on Molecular-Imprinted Polymers for Triazine Pesticides’ Detection
by Usman Latif, Sadaf Yaqub and Franz L. Dickert
Sensors 2024, 24(18), 5934; https://doi.org/10.3390/s24185934 - 13 Sep 2024
Cited by 1 | Viewed by 1221
Abstract
Triazine pesticide (atrazine and its derivatives) detection sensors have been developed to thoroughly check for the presence of these chemicals and ultimately prevent their exposure to humans. Sensitive coatings were designed by utilizing molecular imprinting technology, which aims to create artificial receptors for [...] Read more.
Triazine pesticide (atrazine and its derivatives) detection sensors have been developed to thoroughly check for the presence of these chemicals and ultimately prevent their exposure to humans. Sensitive coatings were designed by utilizing molecular imprinting technology, which aims to create artificial receptors for the detection of chlorotriazine pesticides with gravimetric transducers. Initially, imprinted polymers were developed, using acrylate and methacrylate monomers containing hydrophilic and hydrophobic side chains, specifically for atrazine, which shares a basic heterocyclic triazine structure with its structural analogs. By adjusting the ratio of the acid to the cross-linker and introducing acrylate ester as a copolymer, optimal non-covalent interactions were achieved with the hydrophobic core of triazine molecules and their amino groups. A maximum sensor response of 546 Hz (frequency shift/layer height equal to 87.36) was observed for a sensitive coating composed of 46% methacrylic acid and 54% ethylene glycol dimethacrylate, with a demonstrated layer height of 250 nm (6.25 kHz). The molecularly imprinted copolymer demonstrated fully reversible sensor responses, not only for atrazine but also for its metabolites, like des-ethyl atrazine, and structural analogs, such as propazine and terbuthylazine. The efficiency of modified molecularly imprinted polymers for targeted analytes was tested by combining them with a universally applicable quartz crystal microbalance transducer. The stable selectivity pattern of the developed sensor provides an excellent basis for a pattern recognition procedure. Full article
(This article belongs to the Section Chemical Sensors)
Show Figures

Figure 1

15 pages, 5811 KiB  
Project Report
The Effects of Khat Chewing among Djiboutians: Dental Chemical Studies, Gingival Histopathological Analyses and Bioinformatics Approaches
by Fatouma Mohamed Abdoul-Latif, Ayoub Ainane, Ali Merito, Ibrahim Houmed Aboubaker, Houda Mohamed, Sanaa Cherroud and Tarik Ainane
Bioengineering 2024, 11(7), 716; https://doi.org/10.3390/bioengineering11070716 - 15 Jul 2024
Cited by 4 | Viewed by 2788
Abstract
This study examined the effects of khat chewing on oral gingival conditions by adopting a targeted process which combined physicochemical analyses of the teeth, histopathological examinations of the gums, and bioinformatics modeling. The physicochemical evaluation of teeth in khat consumers compared to non-consumers [...] Read more.
This study examined the effects of khat chewing on oral gingival conditions by adopting a targeted process which combined physicochemical analyses of the teeth, histopathological examinations of the gums, and bioinformatics modeling. The physicochemical evaluation of teeth in khat consumers compared to non-consumers was carried out using specific analytical techniques; hence, the results of this initial investigation revealed significant erosion of the tooth enamel due to khat chewing, as well as an alteration of the essential chemical composition of the teeth. Additionally, the histopathological analyses complemented preliminary studies by showing severe inflammation of the gums and oral mucosa in khat users. The understanding of these studies was enriched by bioinformatics analysis, where modeling was carried out via computational methods. This analytical phase examined molecular docking mechanisms, including the interaction between cathinone, the main alkaloid of khat, and the protein receptors involved in the protection of gingival tissues against infections. In summary, this multidisciplinary research provided an in-depth view of the oral health issues related to khat chewing, combining experimental studies with bioinformatics perspectives. Full article
(This article belongs to the Special Issue Biomaterials in Dental Applications)
Show Figures

Graphical abstract

2 pages, 134 KiB  
Abstract
Mozambioside Degrades during Coffee Roasting into Newly Identified Pyrolysis Compounds with Lower Activation Thresholds for Bitter Receptors
by Coline Bichlmaier, Antonella Di Pizio, Maik Behrens and Roman Lang
Proceedings 2024, 109(1), 22; https://doi.org/10.3390/ICC2024-18034 - 6 Jul 2024
Cited by 2 | Viewed by 644
Abstract
As a global commodity with profound economic and social impact, coffee’s uniqueness is rooted in its distinctive flavor profile, characterized by roasty odors and a bitter taste. Mozambioside, a diterpene glucoside predominantly found in Arabica coffee, has emerged as a potent activator of [...] Read more.
As a global commodity with profound economic and social impact, coffee’s uniqueness is rooted in its distinctive flavor profile, characterized by roasty odors and a bitter taste. Mozambioside, a diterpene glucoside predominantly found in Arabica coffee, has emerged as a potent activator of human bitter receptors TAS2R43 and TAS2R46, exhibiting a bitterness threshold ten times lower than caffeine. The roasting process degrades mozambioside into new compounds. The roasting products were purified from model pyrolysis using liquid chromatographic techniques and their structures were elucidated and characterized by time-of-flight mass spectrometry (MS) and nuclear magnetic resonance spectroscopy. Mozambioside and its roasting products were quantified by targeted UHPLC-MS/MS in coffee powders and brews. Bitter receptor activation was investigated in HEK 293T-Gα16gust44 cells in terms of activation threshold and dose-response. Receptor activation thresholds of the major roasting products 11-O-β-D-glucosyl-(S)-16-desoxy-17-oxocafestol-2-on, 11-O-β-D-glucosyl-15,16-dehydrocafestol-2-on, 11-O-β-D-glucosyl-(R)-16-desoxy-17-oxocafestol-2-on, and bengalensol were lower than those of mozambioside. Molecular Modelling clarified the protein–molecule interaction. The compounds were formed during coffee roasting, reaching their maximum concentration in the final roasting grade. Quantitative analyses revealed that the degradation products were quantitatively extracted from the powder into the brew. During roasting, mozambioside undergoes degradation, giving rise to new compounds with a lower activation threshold for bitter receptors, putatively contributing to the bitterness of Arabica coffee brews. Advanced analytical techniques provide insights into the intricate chemistry underlying coffee’s unique flavor profile. Full article
(This article belongs to the Proceedings of ICC 2024)
22 pages, 3217 KiB  
Article
Safety Implications of Modulating Nuclear Receptors: A Comprehensive Analysis from Non-Clinical and Clinical Perspectives
by Mohan Rao, Eric McDuffie, Sanjay Srivastava, Warren Plaisted and Clifford Sachs
Pharmaceuticals 2024, 17(7), 875; https://doi.org/10.3390/ph17070875 - 3 Jul 2024
Cited by 3 | Viewed by 3162
Abstract
The unintended modulation of nuclear receptor (NR) activity by drugs can lead to toxicities amongst the endocrine, gastrointestinal, hepatic cardiovascular, and central nervous systems. While secondary pharmacology screening assays include NRs, safety risks due to unintended interactions of small molecule drugs with NRs [...] Read more.
The unintended modulation of nuclear receptor (NR) activity by drugs can lead to toxicities amongst the endocrine, gastrointestinal, hepatic cardiovascular, and central nervous systems. While secondary pharmacology screening assays include NRs, safety risks due to unintended interactions of small molecule drugs with NRs remain poorly understood. To identify potential nonclinical and clinical safety effects resulting from functional interactions with 44 of the 48 human-expressed NRs, we conducted a systematic narrative review of the scientific literature, tissue expression data, and used curated databases (OFF-X™) (Off-X, Clarivate) to organize reported toxicities linked to the functional modulation of NRs in a tabular and machine-readable format. The top five NRs associated with the highest number of safety alerts from peer-reviewed journals, regulatory agency communications, congresses/conferences, clinical trial registries, and company communications were the Glucocorticoid Receptor (GR, 18,328), Androgen Receptor (AR, 18,219), Estrogen Receptor (ER, 12,028), Retinoic acid receptors (RAR, 10,450), and Pregnane X receptor (PXR, 8044). Toxicities associated with NR modulation include hepatotoxicity, cardiotoxicity, endocrine disruption, carcinogenicity, metabolic disorders, and neurotoxicity. These toxicities often arise from the dysregulation of receptors like Peroxisome proliferator-activated receptors (PPARα, PPARγ), the ER, PXR, AR, and GR. This dysregulation leads to various health issues, including liver enlargement, hepatocellular carcinoma, heart-related problems, hormonal imbalances, tumor growth, metabolic syndromes, and brain function impairment. Gene expression analysis using heatmaps for human and rat tissues complemented the functional modulation of NRs associated with the reported toxicities. Interestingly, certain NRs showed ubiquitous expression in tissues not previously linked to toxicities, suggesting the potential utilization of organ-specific NR interactions for therapeutic purposes. Full article
(This article belongs to the Section Pharmacology)
Show Figures

Figure 1

Back to TopTop