An Attomolar-Level Optical Device for Monitoring Receptor–Analyte Interactions Without Functionalization Steps: A Case Study of Cytokine Detection
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Fabrication of the POF-Based Sensitive Patch with Micro Holes
2.3. SPR-POF Probe Fabrication
2.4. Experimental Setup
2.5. Ligand–Receptor Binding Measurement Protocols and Data Processing
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Schett, G.; Elewaut, D.; McInnes, I.B.; Dayer, J.-M.; Neurath, M.F. How Cytokine Networks Fuel Inflammation: Toward a Cytokine-Based Disease Taxonomy. Nat. Med. 2013, 19, 822–824. [Google Scholar] [CrossRef] [PubMed]
- Briukhovetska, D.; Dörr, J.; Endres, S.; Libby, P.; Dinarello, C.A.; Kobold, S. Interleukins in Cancer: From Biology to Therapy. Nat. Rev. Cancer 2021, 21, 481–499. [Google Scholar] [CrossRef]
- Liu, C.; Chu, D.; Kalantar-Zadeh, K.; George, J.; Young, H.A.; Liu, G. Cytokines: From Clinical Significance to Quantification. Adv. Sci. 2021, 8, 2004433. [Google Scholar] [CrossRef] [PubMed]
- Silva, R.C.M.C.; Travassos, L.H.; Dutra, F.F. The Dichotomic Role of Single Cytokines: Fine-Tuning Immune Responses. Cytokine 2024, 173, 156408. [Google Scholar] [CrossRef]
- Dinarello, C.A. Overview of the IL-1 family in innate inflammation and acquired immunity. Immunol. Rev. 2017, 281, 8–27. [Google Scholar] [CrossRef] [PubMed]
- Dissanayake, K.; Jayasinghe, C.; Wanigasekara, P.; Sominanda, A. Potential Applicability of Cytokines as Biomarkers of Disease Activity in Rheumatoid Arthritis: Enzyme-Linked Immunosorbent Spot Assay-Based Evaluation of TNF-α, IL-1β, IL-10 and IL-17A. PLoS ONE 2021, 16, e0246111. [Google Scholar] [CrossRef] [PubMed]
- Han, M.W.; Kim, S.H.; Oh, I.; Kim, Y.H.; Lee, J. Obesity Can Contribute to Severe Persistent Allergic Rhinitis in Children through Leptin and Interleukin-1β. Int. Arch. Allergy. Immunol. 2021, 182, 546–552. [Google Scholar] [CrossRef]
- Cannon, J.G.; Tompkins, R.G.; Gelfand, J.A.; Michie, H.R.; Stanford, G.G.; van der Meer, J.W.M.; Endres, S.; Lonnemann, G.; Corsetti, J.; Chernow, B.; et al. Circulating Interleukin-1 and Tumor Necrosis Factor in Septic Shock and Experimental Endotoxin Fever. J. Infect. Dis. 1990, 161, 79–84. [Google Scholar] [CrossRef] [PubMed]
- Garon, E.B.; Chih-Hsin Yang, J.; Dubinett, S.M. The Role of Interleukin 1β in the Pathogenesis of Lung Cancer. JTO Clin. Res. Rep. 2020, 1, 100001. [Google Scholar] [CrossRef]
- Yasuda, K.; Nakanishi, K.; Tsutsui, H. Interleukin-18 in Health and Disease. Int. J. Mol. Sci. 2019, 20, 649. [Google Scholar] [CrossRef]
- Brevi, A.; Cogrossi, L.L.; Grazia, G.; Masciovecchio, D.; Impellizzieri, D.; Lacanfora, L.; Grioni, M.; Bellone, M. Much More Than IL-17A: Cytokines of the IL-17 Family Between Microbiota and Cancer. Front. Immunol. 2020, 11, 565470. [Google Scholar] [CrossRef] [PubMed]
- O’Neill, C.M.; Lu, C.; Corbin, K.L.; Sharma, P.R.; Dula, S.B.; Carter, J.D.; Ramadan, J.W.; Xin, W.; Lee, J.K.; Nunemaker, C.S. Circulating Levels of IL-1B+IL-6 Cause ER Stress and Dysfunction in Islets From Prediabetic Male Mice. Endocrinology 2013, 154, 3077–3088. [Google Scholar] [CrossRef] [PubMed]
- Krawiec, P.; Pac-Kożuchowska, E. Serum Interleukin 17A and Interleukin 17F in Children with Inflammatory Bowel Disease. Sci. Rep. 2020, 10, 12617. [Google Scholar] [CrossRef] [PubMed]
- Dinarello, C.A.; Novick, D.; Kim, S.; Kaplanski, G. Interleukin-18 and IL-18 Binding Protein. Front. Immunol. 2013, 4, 289. [Google Scholar] [CrossRef] [PubMed]
- Sachdeva, N. Cytokine Quantitation: Technologies and Applications. Front. Biosci. 2007, 12, 4682. [Google Scholar] [CrossRef] [PubMed]
- Ploner, M.; Petrelli, M.; Shkodra, B.; Tagliaferri, A.; Lugli, P.; Resnati, D.; Petti, L.; Costa Angeli, M.A. A Comprehensive Review on Electrochemical Cytokine Detection in Sweat. Cell Rep. Phys. Sci. 2024, 5, 101985. [Google Scholar] [CrossRef]
- Baraket, A.; Lee, M.; Zine, N.; Sigaud, M.; Bausells, J.; Errachid, A. A Fully Integrated Electrochemical Biosensor Platform Fabrication Process for Cytokines Detection. Biosens. Bioelectron. 2017, 93, 170–175. [Google Scholar] [CrossRef]
- Tanak, A.S.; Muthukumar, S.; Krishnan, S.; Schully, K.L.; Clark, D.V.; Prasad, S. Multiplexed Cytokine Detection Using Electrochemical Point-of-Care Sensing Device towards Rapid Sepsis Endotyping. Biosens. Bioelectron. 2021, 171, 112726. [Google Scholar] [CrossRef] [PubMed]
- Ryan, A.K.; Rahman, S.; Williams, R.M. Optical Aptamer-Based Cytokine Nanosensor Detects Macrophage Activation by Bacterial Toxins. ACS Sens. 2024, 9, 3697–3706. [Google Scholar] [CrossRef]
- Chiang, C.-Y.; Hsieh, M.-L.; Huang, K.-W.; Chau, L.-K.; Chang, C.-M.; Lyu, S.-R. Fiber-Optic Particle Plasmon Resonance Sensor for Detection of Interleukin-1β in Synovial Fluids. Biosens. Bioelectron. 2010, 26, 1036–1042. [Google Scholar] [CrossRef] [PubMed]
- Cennamo, N.; Piccirillo, A.; Bencivenga, D.; Arcadio, F.; Annunziata, M.; Della Ragione, F.; Guida, L.; Zeni, L.; Borriello, A. Towards a Point-of-Care Test to Cover Atto-Femto and Pico-Nano Molar Concentration Ranges in Interleukin 6 Detection Exploiting PMMA-Based Plasmonic Biosensor Chips. Talanta 2023, 256, 124284. [Google Scholar] [CrossRef]
- Cennamo, N.; Bencivenga, D.; Annunziata, M.; Arcadio, F.; Stampone, E.; Piccirillo, A.; Della Ragione, F.; Zeni, L.; Guida, L.; Borriello, A. Plasmon Resonance Biosensor for Interleukin-1β Point-of-Care Determination: A Tool for Early Periodontitis Diagnosis. iScience 2024, 27, 108741. [Google Scholar] [CrossRef]
- Cennamo, N.; Pesavento, M.; Arcadio, F.; Morrone, B.; Seggio, M.; Zeni, L. Plasmonic Sensor Combined with a Microcuvette Device for Monitoring Molecule Binding Processes at Ultra-Low Concentrations. Sens. Actuat. B Chem. 2024, 416, 136050. [Google Scholar] [CrossRef]
- Cennamo, N.; Arcadio, F.; Zeni, L.; Alberti, G.; Pesavento, M. Optical-Chemical Sensors Based on Plasmonic Phenomena Modulated via Micro-Holes in Plastic Optical Fibers Filled by Molecularly Imprinted Polymers. Sens. Actuat. B Chem. 2022, 372, 132672. [Google Scholar] [CrossRef]
- Cennamo, N.; Massarotti, D.; Conte, L.; Zeni, L. Low Cost Sensors Based on SPR in a Plastic Optical Fiber for Biosensor Implementation. Sensors 2011, 11, 11752–11760. [Google Scholar] [CrossRef] [PubMed]
- Kurganov, B.I.; Lobanov, A.V.; Borisov, I.A.; Reshetilov, A.N. Criterion for Hill Equation Validity for Description of Biosensor Calibration Curves. Anal. Chim. Acta 2001, 427, 11–19. [Google Scholar] [CrossRef]
- Thompson, M.; Ellison, S.L.R.; Wood, R. Harmonized Guidelines for Single-Laboratory Validation of Methods of Analysis (IUPAC Technical Report). Pure Appl. Chem. 2002, 74, 835–855. [Google Scholar] [CrossRef]
- Potere, N.; Bonaventura, A.; Abbate, A. Novel Therapeutics and Upcoming Clinical Trials Targeting Inflammation in Cardiovascular Diseases. Arterioscler. Thromb. Vasc. Biol. 2024, 44, 2371–2395. [Google Scholar] [CrossRef] [PubMed]
- Abbate, A.; Toldo, S.; Marchetti, C.; Kron, J.; Van Tassell, B.W.; Dinarello, C.A. Interleukin-1 and the Inflammasome as Therapeutic Targets in Cardiovascular Disease. Circ. Res. 2020, 126, 1260–1280. [Google Scholar] [CrossRef] [PubMed]
- Toldo, S.; Abbate, A. The Role of the NLRP3 Inflammasome and Pyroptosis in Cardiovascular Diseases. Nat. Rev. Cardiol. 2023, 21, 219–237. [Google Scholar] [CrossRef]
Cytokines | |Δλ0| | |Δλmax| | K | Statistics | |
---|---|---|---|---|---|
[nm] | [nm] | [aM] | Red. Χ2 | Adj. R2 | |
IL-1β | 0.468 ± 0.02 | 1.397 ± 0.03 | 101.863 ± 24.2 | 0.144 | 0.991 |
IL-17A | 0.306 ± 0.04 | 1.481 ± 0.04 | 53.244 ± 15.0 | 0.334 | 0.985 |
IL-18 | 0.241 ± 0.03 | 1.288 ± 0.03 | 71.013 ± 19.5 | 0.251 | 0.987 |
Cytokines | LOD | Slowc | Kaff |
---|---|---|---|
IL-1β | 4.6 aM | 0.014 nm/aM | 0.01 (aM)−1 |
IL-17A | 4.2 aM | 0.028 nm/aM | 0.02 (aM)−1 |
IL-18 | 4.8 aM | 0.018 nm/aM | 0.01 (aM)−1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cennamo, N.; Arcadio, F.; Marzano, C.; Pitruzzella, R.; Seggio, M.; Pesavento, M.; Toldo, S.; Abbate, A.; Zeni, L. An Attomolar-Level Optical Device for Monitoring Receptor–Analyte Interactions Without Functionalization Steps: A Case Study of Cytokine Detection. Sensors 2025, 25, 930. https://doi.org/10.3390/s25030930
Cennamo N, Arcadio F, Marzano C, Pitruzzella R, Seggio M, Pesavento M, Toldo S, Abbate A, Zeni L. An Attomolar-Level Optical Device for Monitoring Receptor–Analyte Interactions Without Functionalization Steps: A Case Study of Cytokine Detection. Sensors. 2025; 25(3):930. https://doi.org/10.3390/s25030930
Chicago/Turabian StyleCennamo, Nunzio, Francesco Arcadio, Chiara Marzano, Rosalba Pitruzzella, Mimimorena Seggio, Maria Pesavento, Stefano Toldo, Antonio Abbate, and Luigi Zeni. 2025. "An Attomolar-Level Optical Device for Monitoring Receptor–Analyte Interactions Without Functionalization Steps: A Case Study of Cytokine Detection" Sensors 25, no. 3: 930. https://doi.org/10.3390/s25030930
APA StyleCennamo, N., Arcadio, F., Marzano, C., Pitruzzella, R., Seggio, M., Pesavento, M., Toldo, S., Abbate, A., & Zeni, L. (2025). An Attomolar-Level Optical Device for Monitoring Receptor–Analyte Interactions Without Functionalization Steps: A Case Study of Cytokine Detection. Sensors, 25(3), 930. https://doi.org/10.3390/s25030930