Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,166)

Search Parameters:
Keywords = reactive modifiers

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 3665 KB  
Article
Creation of Modified Aluminum Powders with Increased Reactivity for Energy Systems
by Аyagoz E. Bakkara, Ainur S. Khairullina, Аida B. Аrtykbayeva, Alua E. Maten, Aizhan O. Nugymanova, Anar O. Zhapekova and Bakhtiyar S. Sadykov
Crystals 2025, 15(10), 888; https://doi.org/10.3390/cryst15100888 (registering DOI) - 14 Oct 2025
Abstract
Aluminium plays a key role in developing modern energy technologies, from electrical systems to high-energy materials, providing a combination of functionality, economy, and reliability, but the oxide film on its particles reduces the effective reactivity. This work aims to increase the reactivity of [...] Read more.
Aluminium plays a key role in developing modern energy technologies, from electrical systems to high-energy materials, providing a combination of functionality, economy, and reliability, but the oxide film on its particles reduces the effective reactivity. This work aims to increase the reactivity of aluminum powder by mechanochemical treatment using modifiers. The materials used were aluminum powder of the ASD brand and graphite of the GL-1 brand. The experiment subjected aluminum powder to mechanochemical treatment (MCT) with different graphite contents. It was shown that MCT significantly increases active aluminum content in the powder due to partial destruction of the oxide film on its surface. In addition, morphological analyses confirm the destruction of the oxide, the graphite coating, and the appearance of lamellar structures measuring 0–58 µm. Thermal analysis shows that the primary exothermic peak shifts from 662.6 °C to 653.9 °C for Al + 10% graphite, and the heat released increases by 27%, which means lower activation energy and more complete oxidation. However, at 20% graphite, the thermal gain decreases, since carbon shields the metal areas. Thus, the optimal content is 10% graphite: at this ratio, the best thermochemical behavior of the powder is achieved. The data obtained indicate that the MCT of aluminum powder with graphite effectively increases its reactivity. The resulting aluminum powders with modified particle surfaces facilitate the development of new technologies for the creation of various high-energy solid propellant systems. For rocket engines, preference is given to solid rocket propellant (SRP), which is a mixture of substances (components) capable of burning in the absence of air, producing a large amount of gaseous working fluid heated to a high temperature, providing thrust. Full article
(This article belongs to the Section Hybrid and Composite Crystalline Materials)
16 pages, 5688 KB  
Article
Alkali-Melting-Induced g-C3N4 Nitrogen Defect Construction and Band Structure Regulation: Efficient Photocatalytic Dye Degradation and Solar-Driven Applications
by Hongwei Pang, Guangyao Liu, Xinming Wang, Shuhe Liu, Juan Wang, Jinxian Cui, Jie Zhou and Ziyan Zhou
Chemistry 2025, 7(5), 168; https://doi.org/10.3390/chemistry7050168 - 14 Oct 2025
Abstract
Photocatalytic oxidation technology harnesses solar energy for pollutant mineralization, presenting significant potential for environmental applications. A critical bottleneck remains the development of high-performance photocatalysts. This study centers on the non-metallic semiconductor material graphitic carbon nitride (g-C3N4). To overcome the [...] Read more.
Photocatalytic oxidation technology harnesses solar energy for pollutant mineralization, presenting significant potential for environmental applications. A critical bottleneck remains the development of high-performance photocatalysts. This study centers on the non-metallic semiconductor material graphitic carbon nitride (g-C3N4). To overcome the inherent limitations of pristine g-C3N4, including limited surface area, rapid charge carrier recombination, and inadequate active sites, it implements surface engineering strategies employing acidic (H2SO4) or basic (K2CO3) agents to modulate microstructure, introduce defect sites (cyano/amino groups), and optimize bandgap engineering. These modifications synergistically enhanced photogenerated charge carrier separation efficiency and surface reactivity, leading to efficient dye degradation. Notably, the K2CO3-modified catalyst (g-C3N4-OH), synthesized with a mass ratio of m(g-C3N4):m(K2CO3) = 1:1, achieved 92.2% Rhodamine B degradation within 50 min under visible light, surpassing pristine g-C3N4 (20.6%), the optimized H2SO4-modified sample (g-C3N4-HS, 60.9%), and even template-synthesized g-C3N4-SBA (79.6%). The g-C3N4-OH catalyst demonstrated exceptional performance under both visible light and natural solar illumination. Combining facile synthesis, cost-effectiveness, superior activity, and robust stability, this work provides a novel approach for developing high-efficiency non-metallic photocatalysts applicable to dye wastewater. Full article
Show Figures

Figure 1

16 pages, 2871 KB  
Article
PK11007 Covalently Inhibits Thioredoxin Reductase 1 to Induce Oxidative Stress and Autophagy Impairment in NSCLC Cells
by Hanziyi Zhou, Shibo Sun, Haowen Liu, Tong Li, Yiran Xu, Rui Yang, Haiyan Liu, Leiyu He, Weiping Xu, Shui Guan and Jianqiang Xu
Antioxidants 2025, 14(10), 1222; https://doi.org/10.3390/antiox14101222 - 11 Oct 2025
Viewed by 253
Abstract
Selenoprotein thioredoxin reductase 1 (TXNRD1) is frequently upregulated in various cancer cells to sustain cellular redox homeostasis, and its inhibition has emerged as a promising anti-cancer strategy. In this study, we identified PK11007, a thiol-modifying compound previously characterized as a p53 reactivator, as [...] Read more.
Selenoprotein thioredoxin reductase 1 (TXNRD1) is frequently upregulated in various cancer cells to sustain cellular redox homeostasis, and its inhibition has emerged as a promising anti-cancer strategy. In this study, we identified PK11007, a thiol-modifying compound previously characterized as a p53 reactivator, as a potent inhibitor of TXNRD1. PK11007 irreversibly inhibited recombinant TXNRD1 in a time- and dose-dependent manner. Using differential scanning fluorimetry (DSF) and LC–MS/MS analysis, we confirmed that PK11007 covalently modifies the C-terminal redox motif (Cys497-Sec498) of TXNRD1. In non-small cell lung cancer (NSCLC) H1299 cells, PK11007-induced TXNRD1 inhibition disrupted cellular redox balance, leading to impaired autophagy flux and cell death. Similar autophagy suppression was observed in TXNRD1-knockdown cells, as well as pharmacological inhibition of TXNRD1 by Auranofin (AF) and TXNRD1 inhibitor 1 (TRi-1). Taken together, these findings highlight that oxidative stress contributes to the cytotoxic effects of PK11007 and uncover autophagy disorder as a downstream consequence of TXNRD1 inhibition. Full article
(This article belongs to the Section Antioxidant Enzyme Systems)
Show Figures

Graphical abstract

25 pages, 1540 KB  
Review
Beyond Antioxidants: The Emerging Role of Nrf2 Activation in Amyotrophic Lateral Sclerosis (ALS)
by Minoo Sharbafshaaer, Roberta Pepe, Rosaria Notariale, Fabrizio Canale, Gioacchino Tedeschi, Alessandro Tessitore, Paolo Bergamo and Francesca Trojsi
Int. J. Mol. Sci. 2025, 26(20), 9872; https://doi.org/10.3390/ijms26209872 - 10 Oct 2025
Viewed by 174
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder involving the progressive degeneration of upper and lower motor neurons. While oxidative stress, RNA-binding protein (RBP) pathology, mitochondrial dysfunction, and glial–neuronal dysregulation is involved in ALS pathogenesis, current therapies provide limited benefit, underscoring the need [...] Read more.
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder involving the progressive degeneration of upper and lower motor neurons. While oxidative stress, RNA-binding protein (RBP) pathology, mitochondrial dysfunction, and glial–neuronal dysregulation is involved in ALS pathogenesis, current therapies provide limited benefit, underscoring the need for multi-target disease-modifying strategies. Nuclear factor erythroid 2-related factor 2 (Nrf2), classically regarded as a master regulator of redox homeostasis, has recently emerged as a central integrator of cellular stress responses relevant to ALS. Beyond its canonical antioxidant function, Nrf2 regulates critical pathways involved in mitochondrial quality control, proteostasis, nucleocytoplasmic transport, RNA surveillance, and glial reactivity. Experimental models demonstrate that astrocyte-specific Nrf2 activation enhances glutathione metabolism, suppresses neuroinflammation, promotes stress granule disassembly, and reduces RBP aggregation. In C9orf72-linked ALS, Nrf2 activation mitigates dipeptide repeat protein toxicity and restores RNA processing fidelity via modulation of nonsense-mediated decay and R-loop resolution. Recent advances in Nrf2-targeted interventions including Keap1–Nrf2 protein–protein interaction inhibitors, dual Nrf2/HSF1 activators, and cell-type-selective Adeno-associated virus 9 (AAV9) vectors show promise in preclinical ALS models. These multimodal approaches highlight Nrf2’s therapeutic versatility and potential to address the upstream convergence points of ALS pathogenesis. Taken together, positioning Nrf2 as a systems-level regulator offers a novel framework for developing precision-based therapies in ALS. Integrating Nrf2 activation with RNA- and glia-directed strategies may enable comprehensive modulation of disease progression at its molecular roots. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

25 pages, 21140 KB  
Article
Biodegradable PLA/PHB Composites with Inorganic Fillers and Modifiers
by Jozef Feranc, Martina Repiská, Roderik Plavec, Katarína Tomanová, Michal Ďurfina, Zuzana Vanovčanová, Ida Vašková, Leona Omaníková, Mária Fogašová, Slávka Hlaváčiková, Ján Kruželák, Zuzana Kramárová, Eduard Oswald and Pavol Alexy
Polymers 2025, 17(20), 2721; https://doi.org/10.3390/polym17202721 - 10 Oct 2025
Viewed by 239
Abstract
The work is focused on the study of the influence of different types of inorganic fillers, in combination with modifiers, on the rheological, thermal, and mechanical properties of a biodegradable mixture based on PLA/PHB. Ten types of inorganic fillers based on talc, magnesium [...] Read more.
The work is focused on the study of the influence of different types of inorganic fillers, in combination with modifiers, on the rheological, thermal, and mechanical properties of a biodegradable mixture based on PLA/PHB. Ten types of inorganic fillers based on talc, magnesium hydroxide, aluminum hydroxide, calcium carbonate, and silicon dioxide were used in the study, along with three types of modifiers. It was concluded that fillers containing reactive OH groups on their surface act as strong pro-degradants in PLA/PHB blends, and their degrading effect can be suppressed by the addition of reactive modifiers. Each modifier acts specifically with different types of fillers. Therefore, it is necessary to select a suitable filler/modifier combination not only for fillers with different chemical compositions but also for fillers with different morphologies within the same chemical type. Moreover, the preparation of PLA/PHB/magnesium hydroxide blends with suitable processing and application properties opens the possibility of developing environmentally friendly polymeric materials with a reduced flammability. The addition of talc, which has a platelet structure, can increase the barrier properties of the mixture. Full article
(This article belongs to the Special Issue Advances in Biocompatible and Biodegradable Polymers, 4th Edition)
Show Figures

Figure 1

30 pages, 3410 KB  
Review
Application of Rejuvenators in Asphalt Binders: Classification and Micro- and Macro-Properties
by Chengwei Xing, Weichao Zhou, Bohan Zhu, Haozongyang Li and Shixian Tang
Coatings 2025, 15(10), 1177; https://doi.org/10.3390/coatings15101177 - 8 Oct 2025
Viewed by 338
Abstract
Rejuvenating aged asphalt is critical for sustainable road construction and resource utilization. This paper systematically reviews the current research on rejuvenators, focusing on their classification and the micro-, and macro-properties of rejuvenated asphalt. Rejuvenators are categorized into mineral oil-based, bio-based, and compound types. [...] Read more.
Rejuvenating aged asphalt is critical for sustainable road construction and resource utilization. This paper systematically reviews the current research on rejuvenators, focusing on their classification and the micro-, and macro-properties of rejuvenated asphalt. Rejuvenators are categorized into mineral oil-based, bio-based, and compound types. Each type offers distinct advantages in recovering the performance of aged asphalt. Mineral oil-based rejuvenators primarily enhance low-temperature cracking resistance through physical dilution, while bio-based rejuvenators demonstrate superior environmental sustainability and stability. Compound rejuvenators, particularly those incorporating reactive compounds, show the best results in repairing degraded polymer modifiers and improving both low- and high-temperature properties of aged, modified asphalt. Atomic Force Microscopy (AFM), Fluorescence Microscopy (FM), and Scanning Electron Microscopy (SEM) have been applied to analyze the micro-properties of rejuvenated asphalt. These techniques have revealed that rejuvenators can restore the microstructure of aged asphalt by dispersing agglomerated asphaltenes and promoting molecular mobility. Functional groups and molecular weight changes, characterized by Fourier Transform Infrared Spectroscopy (FTIR) and Gel Permeation Chromatography (GPC), indicate that rejuvenators effectively reduce oxidation products and molecular weight of aged asphalt, restoring its physicochemical properties. Macro-property evaluations show that rejuvenators significantly improve penetration, ductility, and fatigue resistance. Finally, this review identifies the key characteristics and challenges associated with rejuvenator applications and provides an outlook on future research directions. Full article
(This article belongs to the Section Environmental Aspects in Colloid and Interface Science)
Show Figures

Graphical abstract

20 pages, 6904 KB  
Article
In Vitro Corrosion Resistance and Mechanical Properties of Ag-SiO2-TiO2 Coatings Electrophoretically Deposited on NiTi Alloy
by Bożena Łosiewicz, Julian Kubisztal, Adrian Barylski and Karolina Dudek
Coatings 2025, 15(10), 1176; https://doi.org/10.3390/coatings15101176 - 8 Oct 2025
Viewed by 241
Abstract
NiTi alloys are widely used in biomedical applications due to their shape memory and superelastic properties. However, their surface reactivity requires protective, biofunctional coatings. To enhance NiTi performance, its surface was modified with an Ag-SiO2-TiO2 nanocoating containing small amounts of [...] Read more.
NiTi alloys are widely used in biomedical applications due to their shape memory and superelastic properties. However, their surface reactivity requires protective, biofunctional coatings. To enhance NiTi performance, its surface was modified with an Ag-SiO2-TiO2 nanocoating containing small amounts of silica and silver. The coating’s primary phase was rutile with structural defects and a silver solid solution. It showed good adhesion, high scratch resistance, and improved corrosion behavior in Ringer’s solution, as demonstrated by EIS and cyclic polarization. EIS revealed high low-frequency impedance and two time constants, suggesting both barrier protection and slower electrochemical processes. Despite low breakdown and repassivation potentials, the coating effectively limited uniform corrosion. SEM/EDS confirmed localized degradation and partial substrate exposure, while elemental mapping showed well-dispersed silica and silver in a TiO2-rich matrix. The proposed pitting mechanism involves chloride-induced depassivation and galvanic effects. Surface potential mapping indicated electrostatic heterogeneity, mitigated by silica. The coating offers a balanced combination of corrosion protection and biofunctionality, supporting its potential for implant use. Full article
(This article belongs to the Special Issue Recent Advances in Surface Functionalisation, 2nd Edition)
Show Figures

Graphical abstract

13 pages, 2436 KB  
Article
4-Phenylbutyric Acid Improves Gait Ability of UBAP1-Related Spastic Paraplegia Mouse Model: Therapeutic Potential for SPG80
by Keisuke Shimozono, Yeon-Jeong Kim, Takanori Hata, Haitian Nan, Kozo Saito, Yasunori Mori, Yuji Ueno, Fujio Isono, Masaru Iwasaki, Schuichi Koizumi, Toshihisa Ohtsuka and Yoshihisa Takiyama
Int. J. Mol. Sci. 2025, 26(19), 9779; https://doi.org/10.3390/ijms26199779 - 8 Oct 2025
Viewed by 260
Abstract
Spastic paraplegia 80 (SPG80), caused by mutations in ubiquitin-associated protein 1 (UBAP1), is a pure form of juvenile-onset hereditary spastic paraplegia (HSP) and leads to progressive motor dysfunction. Despite recent advances in the molecular analyses of HSP, disease-modifying therapy has not been [...] Read more.
Spastic paraplegia 80 (SPG80), caused by mutations in ubiquitin-associated protein 1 (UBAP1), is a pure form of juvenile-onset hereditary spastic paraplegia (HSP) and leads to progressive motor dysfunction. Despite recent advances in the molecular analyses of HSP, disease-modifying therapy has not been established for HSP including SPG80. In the present study, we evaluated the therapeutic potential of 4-phenylbutyric acid (4-PBA), a chemical chaperone and histone deacetylase inhibitor, in Ubap1 knock-in (KI) mice expressing a disease-associated truncated UBAP1 variant. We found that 4-PBA administration significantly improved the motor performance of KI mice in the rotarod and beam walk tests, with maximal benefits achieved when given during pre- or early-symptomatic stages. Partial efficacy was also observed when treatment began after symptom onset in KI mice. Furthermore, 4-PBA attenuated spinal microglial activation and partially restored microglial morphology, although astrocytic reactivity remained unchanged. These findings support 4-PBA as a candidate therapeutic compound for SPG80 and highlight the potential of proteostasis-targeted interventions in HSPs. Full article
Show Figures

Figure 1

12 pages, 830 KB  
Article
Effect of Acute Grape Seed Extract Supplementation on Heart Rate Recovery in Young Individuals
by Dae Sik Song, William Boyer, Trevor Gillum, Sean Sullivan, Iltark Yoon, Junbei Bai, Seung-Jae Kim and Jong-Kyung Kim
J. Cardiovasc. Dev. Dis. 2025, 12(10), 387; https://doi.org/10.3390/jcdd12100387 - 1 Oct 2025
Viewed by 282
Abstract
Evidence has suggested that post-exercise heart rate recovery (PHRR) is a useful tool in evaluating cardiac autonomic function. Altered cardiac autonomic function is characterized by heightened sympathetic activation and the abnormal reactivation of the parasympathetic nervous system and is associated with delayed HRR. [...] Read more.
Evidence has suggested that post-exercise heart rate recovery (PHRR) is a useful tool in evaluating cardiac autonomic function. Altered cardiac autonomic function is characterized by heightened sympathetic activation and the abnormal reactivation of the parasympathetic nervous system and is associated with delayed HRR. Although grape seed extract (GSE) supplementation has been shown to increase nitric oxide production and modify sympathetic output, there is limited evidence on its potential beneficial effects on PHRR. We investigated the effect of GSE supplementation on PHRR during sympathetic overactivation induced by muscle metaboreflex activation (MMA) in young individuals. Participants were randomly assigned, via a double-blind, cross-over design, to either receive GSE (300 mg, two capsules) or PL (300 mg, two capsules), with a washout period of at least 72 h. between trials. A submaximal exercise test was performed using a cycle ergometer combined with an isometric handgrip exercise using a handgrip dynamometer and blood flow occlusion by placing a cuff over the brachial artery of the dominant arm. PHRR was measured at 5 s. intervals throughout the experiment. The PHRR was evaluated between GSE and PL at every min. for 300 s. PHRR kinetics significantly improved following GSE supplementation (74.3 ± 7.5 s) compared with the PL condition (86.2 ± 10.4 s). Our results suggest that GSE is effective in improving HRR kinetics during heightened sympathetic activity induced by MMA in young individuals (p = 0.034; ES = 0.4). Thus, regular treatment with GSE may provide a nonpharmacological intervention to reduce sympathetic hyperactivity in conditions where excessive sympathetic activity is consistently present. Full article
(This article belongs to the Special Issue Exercise Testing and Interventions in Cardiovascular Disease)
Show Figures

Figure 1

24 pages, 1980 KB  
Review
Natural and Synthetic Compounds Against Colorectal Cancer: An Update of Preclinical Studies in Saudi Arabia
by Mansoor-Ali Vaali-Mohammed, Adhila Nazar, Mohamad Meeramaideen and Saleha Khan
Curr. Oncol. 2025, 32(10), 546; https://doi.org/10.3390/curroncol32100546 - 29 Sep 2025
Viewed by 345
Abstract
Colorectal cancer (CRC) remains a major contributor to global cancer-related mortality, with rising incidence observed in several regions, including Saudi Arabia. This review compiles and critically analyzes recent preclinical research from Saudi-based institutions that investigates the anti-CRC potential of natural and synthetic compounds. [...] Read more.
Colorectal cancer (CRC) remains a major contributor to global cancer-related mortality, with rising incidence observed in several regions, including Saudi Arabia. This review compiles and critically analyzes recent preclinical research from Saudi-based institutions that investigates the anti-CRC potential of natural and synthetic compounds. Numerous natural products such as Nigella sativa, Moringa oleifera, Curcuma longa, and marine-derived metabolites have demonstrated cytotoxic effects through pathways involving apoptosis induction, reactive oxygen species (ROS) generation, and inhibition of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and cyclooxygenase-2 (COX-2). In parallel, synthetic and semi-synthetic agents, including C4–G4 (semi-synthetic hybrids designed from flavonoids and benzoxazole scaffolds that act as dual epidermal growth factor receptor (EGFR)/COX-2 inhibitors)), oxazole derivatives, and camptothecin-based nanocarriers, exhibit promising anti-tumor activity via molecular targeting of cyclin-dependent kinase 8 (CDK8), phosphatidylinositol 3-kinase/protein kinase B (PI3K/Akt), and β-catenin pathways. Selected in vivo studies primarily utilizing xenograft and chemically induced rodent models have shown reductions in tumor volume and modulation of apoptotic and inflammatory biomarkers. Additionally, green-synthesized metallic nanoparticles (NPs) and polyethylene glycol (PEG)-modified carriers have been investigated to improve bioavailability and tumor targeting of lead compounds. While these findings are encouraging, the majority remain in preclinical phases. Limitations such as poor solubility, lack of pharmacokinetic data, and absence of clinical trials impede translational progress. This review highlights the need for standardized evaluation protocols, mechanistic validation, and region-specific clinical studies to assess efficacy and safety. Given Saudi Arabia’s rich biodiversity and growing research capacity under national strategies like Vision 2030, the country is well-positioned to contribute meaningfully to CRC drug discovery. By integrating bioactive natural products, rationally designed synthetics, and advanced delivery platforms, a pipeline of innovative CRC therapeutics tailored to local and global contexts may be realized. Full article
(This article belongs to the Section Gastrointestinal Oncology)
Show Figures

Figure 1

18 pages, 1656 KB  
Article
Assessment of Organic and Inorganic Waste Suitability for Functionalization with Aminosilanes: A Comparative Study of APTMS and PEI
by Mariana G. Peña-Juarez, Angelica M. Bello, Albino Martinez-Sibaja, Rubén Posada-Gómez, José P. Rodríguez-Jarquin and Alejandro Alvarado-Lassman
Processes 2025, 13(10), 3117; https://doi.org/10.3390/pr13103117 - 29 Sep 2025
Viewed by 288
Abstract
Waste materials have emerged as attractive low-cost feedstocks for adsorbent development in environmental remediation and materials engineering. Organic wastes are particularly rich in cellulose, hemicellulose, lignin, and pectin, which provide reactive oxygenated groups such as hydroxyls and carboxyls. While inorganic wastes offer stability, [...] Read more.
Waste materials have emerged as attractive low-cost feedstocks for adsorbent development in environmental remediation and materials engineering. Organic wastes are particularly rich in cellulose, hemicellulose, lignin, and pectin, which provide reactive oxygenated groups such as hydroxyls and carboxyls. While inorganic wastes offer stability, lower water retention makes them promising candidates. This study explores the functionalization of waste-derived organic and inorganic matrices using two amine-based agents: 3-aminopropyltrimethoxysilane (APTMS) and polyethylenimine (PEI). The materials were categorized as organic (orange peel, corn cob) or inorganic (silica gel, eggshell) and subjected to a pretreatment process involving drying, grinding, and sieving; inorganic substrates additionally underwent acid activation with citric acid. Surface modification was carried out in ethanolic (APTMS) or aqueous (PEI) media. To assess their suitability and processability as particulate sorbents, drying kinetics, physicochemical properties (FTIR, ζ-potential, pH, conductivity, Boehm titration), and flow characteristics (Carr and Hausner indices) were evaluated. The findings enable a comparative analysis of the functionalization efficiency and elucidate the relationship between substrate type (organic vs. inorganic) and its performance as a modified adsorbent. This approach advances the development of novel sorbent matrices for greenhouse gas mitigation while reinforcing circular economy principles through the valorization of low-cost, readily available waste materials. Full article
(This article belongs to the Special Issue Circular Economy on Production Processes and Systems Engineering)
Show Figures

Figure 1

15 pages, 1329 KB  
Article
Engineering the Bacterial Laccase CotA for Functional Expression and Dye Decolorization Through Site-Directed Mutagenesis
by Zhiguo Zhou, Shuyuan Yao, Sitie Ying, Mengyan Yu, Zhihua Song, Yongtao Sun, Lisheng Qian and Yue Zhang
Biology 2025, 14(10), 1335; https://doi.org/10.3390/biology14101335 - 28 Sep 2025
Viewed by 311
Abstract
The relationship between the structure and function of bacterial laccases has garnered significant research attention thanks to their straightforward molecular structure. Nevertheless, studies examining the impact of an altered molecular structure on the heterologous expression of bacterial laccases in Escherichia coli remain scarce. [...] Read more.
The relationship between the structure and function of bacterial laccases has garnered significant research attention thanks to their straightforward molecular structure. Nevertheless, studies examining the impact of an altered molecular structure on the heterologous expression of bacterial laccases in Escherichia coli remain scarce. Our research focuses on elucidating the impact of incorporating copper ions into the molecular structure of modified CotA on its exogenous expression in E. coli as well as its impact on the significance of the amino acid residues surrounding the internal electron channels and water molecule channels of the enzyme molecule. The results show that single-site mutation may affect the expression of CotA by affecting its soluble expression with different binding capacities for copper ions. In addition, the mutants exhibited different laccase activity levels. The catalytic efficiency of T466A was found to be significantly enhanced, reaching 2.29 times that of the wild type. We used structural models to illustrate the correlation between molecular structure and function after the replacement of three mutation sites with alanine. The reduction of hydrogen bonds may be an important factor influencing Cu2+’s binding ability and the water molecule production rate. The T466A mutant exhibited strong decolorization ability for Reactive Blue 19 and Eriochrome Black T with 42.2% and 58.2% decolorization rates after one hour of reaction, respectively. This study demonstrates that the molecular mutation studied influences the CotA expression level, enzyme activity, and dye decolorization. Full article
(This article belongs to the Special Issue Advances in Microbial Enzyme Engineering)
Show Figures

Figure 1

17 pages, 8683 KB  
Article
Activation of Persulfate by Sulfide-Modified Nanoscale Zero-Valent Iron Supported on Biochar for 2,4-Dichlorophenol Degradation: Efficiency, Sustainability, and Mechanism Investigation
by Mu Wang, Yan Zhao, Zongsheng An and Changming Dou
Sustainability 2025, 17(19), 8721; https://doi.org/10.3390/su17198721 - 28 Sep 2025
Viewed by 216
Abstract
The activation of persulfate (PS) to oxidize and degrade 2,4-dichlorophenol (2,4-DCP) in aqueous solution represents a prevalent advanced oxidation technology. This study established a PS activation system using sulfide-modified nanoscale zero-valent iron supported on biochar (S-nZVI@BC). The optimal conditions included a PS:2,4-DCP mass [...] Read more.
The activation of persulfate (PS) to oxidize and degrade 2,4-dichlorophenol (2,4-DCP) in aqueous solution represents a prevalent advanced oxidation technology. This study established a PS activation system using sulfide-modified nanoscale zero-valent iron supported on biochar (S-nZVI@BC). The optimal conditions included a PS:2,4-DCP mass ratio of 70:1 and S-nZVI@BC:PS of 1.5:1. The activator had excellent stability after being reused five times, which lead to high cost-effectiveness and sustainable usability. This system exhibited broad pH adaptability (3–11), with enhanced efficiency under acidic/neutral conditions. Chloride ion, nitrate, and carbonate had effects during the degradation. During the initial degradation phase, S-nZVI@BC played a primary role, with a greater contribution rate of adsorption than reduction. Fe0 played a dominant role in the PS activation process; reactive species—including HO•, SO4, and O2—were identified as key agents in subsequent degradation stages. The overall degradation processes comprised three distinct stages: dechlorination, ring-opening, and mineralization. Full article
(This article belongs to the Topic Advanced Oxidation Processes for Wastewater Purification)
Show Figures

Graphical abstract

34 pages, 4877 KB  
Article
Climate-Adaptive Residential Demand Response Integration with Power Quality-Aware Distributed Generation Systems: A Comprehensive Multi-Objective Optimization Framework for Smart Home Energy Management
by Mahmoud Kiasari and Hamed Aly
Electronics 2025, 14(19), 3846; https://doi.org/10.3390/electronics14193846 - 28 Sep 2025
Viewed by 159
Abstract
Climate change is transforming energy use at the residential level by increasing temperature fluctuations and sustaining extreme weather events. This study proposes a climate-reactive, multi-objective approach to integrate the demand response (DR) with distributed generation (DG) and power quality improvement under a multi-objective [...] Read more.
Climate change is transforming energy use at the residential level by increasing temperature fluctuations and sustaining extreme weather events. This study proposes a climate-reactive, multi-objective approach to integrate the demand response (DR) with distributed generation (DG) and power quality improvement under a multi-objective framework of an integrated climate-adaptive approach to residential energy management. A cognitive neural network combination model with bidirectional long short-term memory networks (bidirectional) and a self-attention mechanism was used to successfully predict temperature-sensitive loads. The hybrid deep learning solution, which applies convolutional and bidirectional long short-term memory (LSTM) networks with attention, predicted the temperature-dependent load profiles optimized with an enhanced modified grey wolf optimizer (MGWO). The results of the experimental studies indicated significant gains in performance: in energy expenditure, the studies reduced it by 32.7%; in peak demand, they were able to reduce it by 45.2%; and in self-generated renewable energy, the results were 28.9% higher. The solution reliability rate provided by the MGWO was 94.5%, and it converged more quickly, thus providing better diversity in the Pareto-optimal frontier than that of traditional metaheuristic algorithms. Sensitivity tests with climate conditions of +2 °C and +4 °C showed strategy changes as high as 18.3%, thus establishing the flexibility of the system. Empirical evidence indicates that the energy and peak demand are to be cut, renewable integration is enhanced, and performance is strong in fluctuating climate conditions, highlighting the adaptability of the system to future resilient smart homes. Full article
(This article belongs to the Special Issue Energy Technologies in Electronics and Electrical Engineering)
Show Figures

Figure 1

15 pages, 1486 KB  
Article
Investigating Neural Reward Sensitivity in the School Grade Incentive Delay Task and Its Relation to Academic Buoyancy
by Myrthe J. B. Vel Tromp, Hilde M. Huizenga, Brenda R. J. Jansen, Anna C. K. van Duijvenvoorde and Ilya M. Veer
Behav. Sci. 2025, 15(10), 1321; https://doi.org/10.3390/bs15101321 - 26 Sep 2025
Viewed by 175
Abstract
Understanding the mechanisms behind academic buoyancy, the ability to effectively cope with everyday academic challenges, is essential for identifying the factors and mechanisms that help students maintain their motivation and cope with routine academic pressures. One potential underlying mechanism is reward sensitivity, or [...] Read more.
Understanding the mechanisms behind academic buoyancy, the ability to effectively cope with everyday academic challenges, is essential for identifying the factors and mechanisms that help students maintain their motivation and cope with routine academic pressures. One potential underlying mechanism is reward sensitivity, or the capacity to experience pleasure both in anticipating and receiving reward-related stimuli. We hypothesized that individuals with higher sensitivity to anticipated reward would exhibit greater academic buoyancy. To test this in an academic context, we modified the Monetary Incentive Delay (MID) task into a School Grade Incentive Delay (SGID) task, where participants work towards a fictitious school grade by winning or losing points on each of the trials. In this study, we investigated whether the SGID activates the neural reward circuitry similar to the traditional MID and whether this is associated with academic buoyancy. The SGID task activated key brain regions associated with reward anticipation, validating its use for studying reward processing in academic contexts. Importantly, we found a negative association between academic buoyancy and right amygdala activation during reward anticipation, suggesting that buoyant students may benefit from reduced emotional reactivity when anticipating rewards. Further research in larger samples is needed to capture the full complexity of reward processing in relation to academic buoyancy. Full article
Show Figures

Figure 1

Back to TopTop