Assessment of Organic and Inorganic Waste Suitability for Functionalization with Aminosilanes: A Comparative Study of APTMS and PEI
Abstract
1. Introduction
2. Materials and Methods
2.1. Reagents and Materials
2.2. Preparation of Waste Substratres
2.2.1. Organic Waste
2.2.2. Inorganic Waste
2.3. Surface Functionalization
2.3.1. Functionalization with APTMS
2.3.2. Functionalization with PEI
2.4. Characterization
2.4.1. Drying Kinetics Method
2.4.2. Fourier-Transform Infrared (FTIR) Spectroscopy Method
2.4.3. ζ-Potential
2.4.4. pH and Conductivity
2.4.5. Boehm Titration: Quantification of Surface Acidic and Basic Groups
- (a)
- In the first, excess HCl was used to quantify basic surface groups (e.g., amines, basic –OH sites, residual carbonates). The unreacted HCl was titrated with NaOH.
- (b)
- Positive meq/g values indicate consumption of HCl by basic groups, while values near zero or negative suggest an absence of basic sites or experimental inconsistencies.
2.5. Applicability Assessment
3. Results and Discussion
3.1. Drying Kinetics
3.2. Fourier-Transform Infrared (FTIR) Spectroscopy
3.3. ζ-Potential
3.3.1. Organic Substrates ζ-Potential
3.3.2. Inorganic Substrates ζ-Potential
3.4. Acid–Base Properties
3.4.1. Organic Substrates Titration Value
3.4.2. Inorganic Substrates Titration Value
3.4.3. pH, Electric Potential, and Conductivity
3.5. Flow Properties
3.5.1. Organic Substrates Carr Index
3.5.2. Inorganic Substrates Carr Index
3.5.3. Process Implications
4. Conclusions
Future Work and Scalability Considerations
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, Q.; Luo, J.; Zhong, Z.; Borgna, A. CO2 capture by solid adsorbents and their applications: Current status and new trends. Energy Environ. Sci. 2011, 4, 42–55. [Google Scholar] [CrossRef]
- Shah, D.S.; Moravkar, K.K.; Jha, D.K.; Lonkar, V.; Amin, P.D.; Chalikwar, S.S. A concise summary of powder processing methodologies for flow enhancement. Heliyon 2023, 9, e16498. [Google Scholar] [CrossRef] [PubMed]
- Samanta, A.; Zhao, A.; Shimizu, G.K.H.; Sarkar, P.; Gupta, R. Post-combustion CO2 capture using solid sorbents: A review. Ind. Eng. Chem. Res. 2012, 51, 1438–1463. [Google Scholar] [CrossRef]
- Nugent, P.; Belmabkhout, Y.; Burd, S.D.; Cairns, A.J.; Luebke, R.; Forrest, K.; Pham, T.; Ma, S.; Space, B.; Wojtas, L.; et al. Porous materials with optimal adsorption thermodynamics and kinetics for CO2 separation. Nature 2013, 495, 80–84. [Google Scholar] [CrossRef]
- IPCC. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2021. [Google Scholar]
- Pachauri, R.K.; Allen, M.R.; Barros, V.R.; Broome, J.; Cramer, W.; Christ, R.; Church, J.A.; Clarke, L.; Dahe, Q.; Dasgupta, P.; et al. Climate Change 2014: Synthesis Report; IPCC: Geneva, Switzerland, 2014. [Google Scholar]
- de Quadros Melo, D.; de Oliveira Sousa Neto, V.; de Freitas Barros, F.C.; Raulino, G.S.C.; Vidal, C.B.; do Nascimento, R.F. Chemical modifications of lignocellulosic materials and their application for removal of cations and anions from aqueous solutions. J. Appl. Polym. Sci. 2016, 133, 1–22. [Google Scholar] [CrossRef]
- Singh, D.; Kumar, R.; Kumar, A.; Rai, K.N. Synthesis and characterization of rice husk silica, silica-carbon composite and H3PO4 activated silica. Ceramica 2008, 54, 203–212. [Google Scholar] [CrossRef]
- Wegman, R.F.; van Twisk, J. Surface Preparation Techniques for Adhesive Bonding, 2nd ed.; Elsevier Science: Amsterdam, The Netherlands, 2012; pp. 31–35, 48–49. [Google Scholar]
- Bae, J.Y.; Jang, S.G.; Cho, J.; Kang, M. Amine-Functionalized Mesoporous Silica for Efficient CO2 Capture: Stability, Performance, and Industrial Feasibility. Int. J. Mol. Sci. 2025, 26, 4313. [Google Scholar] [CrossRef]
- Choi, S.; Drese, J.H.; Jones, C.W. Adsorbent materials for carbon dioxide capture from large anthropogenic point sources. ChemSusChem Chem. Sustain. Energy Mater. 2009, 2, 796–854. [Google Scholar] [CrossRef]
- Didas, S.A.; Choi, S.; Chaikittisilp, W.; Jones, C.W. Amine–oxide hybrid materials for CO2 capture from ambient air. Acc. Chem. Res. 2015, 48, 2680–2687. [Google Scholar] [CrossRef]
- Tonle, I.K.; Diaco, T.; Ngameni, E.; Detellier, C. Nanohybrid kaolinite-based materials obtained from the interlayer grafting of 3-aminopropyltriethoxysilane and their potential use as electrochemical sensors. Chem. Mater. 2007, 19, 6629–6636. [Google Scholar] [CrossRef]
- Gómez-Pozuelo, G.; Sanz-Pérez, E.S.; Arencibia, A.; Pizarro, P.; Sanz, R.; Serrano, D.P. CO2 adsorption on amine-functionalized clays. Microporous Mesoporous Mater. 2019, 282, 38–47. [Google Scholar] [CrossRef]
- Zakaria, D.S.; Rozi, S.K.M.; Halim, H.N.A.; Mohamad, S.; Zheng, G.K. New porous amine-functionalized biochar-based desiccated coconut waste as efficient CO2 adsorbents. Environ. Sci. Pollut. Res. 2024, 31, 16309–16327. [Google Scholar] [CrossRef] [PubMed]
- Gholidoust, A.; Atkinson, J.D.; Hashisho, Z. Enhancing CO2 adsorption via amine-impregnated activated carbon from oil sands coke. Energy Fuels 2017, 31, 1756–1763. [Google Scholar] [CrossRef]
- Oriez, V.; Peydecastaing, J.; Pontalier, P.Y. Lignocellulosic biomass fractionation by mineral acids and resulting extract purification processes: Conditions, yields, and purities. Molecules 2019, 24, 4273. [Google Scholar] [CrossRef]
- Rezaei, F. Optimization of Structured Adsorbents for Gas Separation Processes. Ph.D. Thesis, Department of Chemical Engineering Monash University, Melbourne, Australia, 2011. [Google Scholar]
- Lebrun, P.; Krier, F.; Mantanus, J.; Grohganz, H.; Yang, M.; Rozet, E. Design space approach in the optimization of the spray-drying process. Eur. J. Pharm. Biopharm. 2012, 80, 226–234. [Google Scholar] [CrossRef]
- Maurya, D.P.; Singla, A.; Negi, S. An overview of key pretreatment processes for biological conversion of lignocellulosic biomass to bioethanol. 3 Biotech 2015, 5, 597–609. [Google Scholar] [CrossRef]
- Ioannidou, O.; Zabaniotou, A. Agricultural residues as precursors for activated carbon production—A review. Renew. Sustain. Energy Rev. 2007, 11, 1966–2005. [Google Scholar] [CrossRef]
- Abolore, R.S.; Jaiswal, S.; Jaiswal, A.K. Green and sustainable pretreatment methods for cellulose extraction from lignocellulosic biomass and its applications: A review. Carbohydr. Polym. Technol. Appl. 2024, 7, 100396. [Google Scholar] [CrossRef]
- Razola-Díaz, M.D.C.; Verardo, V.; Gómez-Caravaca, A.M.; García-Villanova, B.; Guerra-Hernández, E.J. Mathematical modelling of convective drying of orange by-product and its influence on phenolic compounds and ascorbic acid content, and its antioxidant activity. Foods 2023, 12, 500. [Google Scholar] [CrossRef]
- Pankaj, K.; Dhritiman, S. Drying kinetics of maize cob using mathematical modelling. J. Agric. Eng. 2021, 58, 40–49. [Google Scholar] [CrossRef]
- Souza, G.F.M.V.; Miranda, R.F.; Arruda, E.B.; Mendoza, O.S.; Barrozo, M.A. Drying kinetics of silica gel: Statistical discrimination using nonlinearity measures. Chem. Eng. Technol. 2012, 35, 797–802. [Google Scholar] [CrossRef]
- Yaradoddi, J.S.; Banapurmath, N.R.; Ganachari, S.V.; Soudagar, M.E.M.; Sajjan, A.M.; Kamat, S.; Mujtaba, M.; Shettar, A.S.; Anqi, A.E.; Safaei, M.R.; et al. Bio-based material from fruit waste of orange peel for industrial applications. J. Mater. Res. Technol. 2022, 17, 3186–3197. [Google Scholar] [CrossRef]
- Haniffa, M.A.C.M.; Ching, Y.C.; Chuah, C.H.; Ching, K.Y.; Liou, N.S. Synergistic effect of (3-Aminopropyl) Trimethoxysilane treated ZnO and corundum nanoparticles under UV-irradiation on UV-cutoff and IR-absorption spectra of acrylic polyurethane based nanocomposite coating. Polym. Degrad. Stab. 2019, 159, 205–216. [Google Scholar] [CrossRef]
- Jiang, W.; Xing, Y.; Mo, L.; Liao, J.; Chen, W.; Wang, H.; Wang, T. Synthesis of polyethylenimine modified sugarcane bagasse cellulose and its competitive adsorption of Pb2+, Cu2+ and Zn2+ from aqueous solutions. Desalination Water Treat. 2022, 270, 172–184. [Google Scholar] [CrossRef]
- Xu, F.; Yu, J.; Tesso, T.; Dowell, F.; Wang, D. Qualitative and quantitative analysis of lignocellulosic biomass using infrared techniques: A mini-review. Appl. Energy 2013, 104, 801–809. [Google Scholar] [CrossRef]
- Awogbemi, O.; Vandi, D.; Aigbodion, V. Pathways for sustainable utilization of waste chicken eggshell. J. Renew. Mater. 2022, 10, 2217. [Google Scholar] [CrossRef]
- Vansant, E.F.; Van Der Voort, P.; Vrancken, K.C. Chapter 3 The surface chemistry of silica. Stud. Surf. Sci. Catal. 1995, 93, 59–77. [Google Scholar] [CrossRef]
- Zwawi, M. A review on natural fiber bio-composites, surface modifications and applications. Molecules 2021, 26, 404. [Google Scholar] [CrossRef]
- Zhuravlev, L.T. The surface chemistry of amorphous silica. Zhuravlev model. Colloids Surf. A Physicochem. Eng. Asp. 2000, 173, 1–38. [Google Scholar] [CrossRef]
- Al Mahrouqi, D.; Vinogradov, J.; Jackson, M.D. Zeta potential of artificial and natural calcite in aqueous solution. Adv. Colloid Interface Sci. 2017, 240, 60–76. [Google Scholar] [CrossRef]
- Perera, H.J.; Mortazavian, H.; Blum, F.D. Surface properties of silane-treated diatomaceous earth coatings: Effect of alkyl chain length. Langmuir 2017, 33, 2799–2809. [Google Scholar] [CrossRef]
- Boehm, H.P. Surface oxides on carbon and their analysis: A critical assessment. Carbon 2002, 40, 145–149. [Google Scholar] [CrossRef]
- Yan, J.; Oyedeji, O.; Leal, J.H.; Donohoe, B.S.; Semelsberger, T.A.; Li, C.; Hoover, A.N.; Webb, E.; Bose, E.A.; Zeng, Y.; et al. Characterizing variability in lignocellulosic biomass: A review. ACS Sustain. Chem. Eng. 2020, 8, 8059–8085. [Google Scholar] [CrossRef]
- Wu, Y.; Cao, F.; Jiang, H.; Zhang, Y. Preparation and characterization of aminosilane-functionalized cellulose nanocrystal aerogel. Mater. Res. Express 2017, 4, 085303. [Google Scholar] [CrossRef]
- Manzano, J.S.; Wang, H.; Kobayashi, T.; Naik, P.; Lai, K.C.; Evans, J.W.; Slowing, I.I. Kinetics of the functionalization of mesoporous silica nanoparticles: Implications on surface group distributions, adsorption and catalysis. Microporous Mesoporous Mater. 2020, 305, 110276. [Google Scholar] [CrossRef]
- Beagan, A.; Alotaibi, K.; Almakhlafi, M.; Algarabli, W.; Alajmi, N.; Alanazi, M.; Alwaalah, H.; Alharbi, F.; Alshammari, R.; Alswieleh, A. Amine and sulfonic acid functionalized mesoporous silica as an effective adsorbent for removal of methylene blue from contaminated water. J. King Saud Univ.-Sci. 2022, 34, 101762. [Google Scholar] [CrossRef]
- Rostami, M.; Mohseni, M.; Ranjbar, Z. Investigating the effect of pH on the surface chemistry of an amino silane treated nano silica. Pigment Resin Technol. 2011, 40, 363–373. [Google Scholar] [CrossRef]
Flowability | Carr Index (%) | Hausner Ratio |
---|---|---|
Excellent | 0–10 | 1.00–1.11 |
Good | 11–15 | 1.12–1.18 |
Fair | 16–20 | 1.19–1.25 |
Passable | 21–25 | 1.26–1.34 |
Poor | 26–31 | 1.35–1.45 |
Very poor | 32–37 | 1.46–1.59 |
Extremely poor | >38 | >1.60 |
Sample | ζ Potential (mV) |
---|---|
Orange peel | −22.6 |
Orange peel-APTMS | −25.2 |
Orange peel-PEI | −29.1 |
Corn cob | −24.2 |
Corn cob-APTMS | −13.3 |
Corn cob-PEI | −19.0 |
Spent silica | −16.6 |
Spent silica-APTMS | −2.8 |
Spent silica-PEI | −19.4 |
Eggshell | −17.6 |
Eggshell-APTMS | −14.6 |
Eggshell-PEI | −9.8 |
Sample | Titration | pH | Electric Potential (mV) | Conductivity (mS/cm) | |
---|---|---|---|---|---|
Acid Type (Meq/g) | Basic Type (Meq/g) | ||||
Orange peel | −1.92 × 10−5 | 3.50 × 10−5 | 5.35 | 130 | 0.008 |
Orange peel-APTMS | 2.87 × 10−6 | 2.50 × 10−5 | 5.34 | 117 | 0.009 |
Orange peel-PEI | 4.76 × 10−6 | 2.00 × 10−5 | 5.40 | 114 | 0.012 |
Corn cob | 1.10 × 10−5 | 3.50 × 10−5 | 6.10 | 7.3 | 0.018 |
Corn cob-APTMS | −1.01 × 10−5 | −3.50 × 10−6 | 7.77 | −16 | 0.015 |
Corn cob-PEI | −3.64 × 10−6 | −3.00 × 10−6 | 5.85 | 30 | 0.014 |
Spent silica | −1.00 × 10−5 | 6.00 × 10−5 | 7.24 | 7 | 0.020 |
Spent silica-APTMS | −7.00 × 10−6 | 2.00 × 10−5 | 4.87 | 144 | 0.013 |
Spent silica-PEI | −2.01 × 10−6 | 3.00 × 10−5 | 4.40 | 171 | 0.016 |
Eggshell | 4.04 × 10−6 | 4.00 × 10−5 | 10.09 | −156 | 0.024 |
Eggshell-APTMS | 1.55 × 10−5 | 4.00 × 10−5 | 9.80 | −140 | 0.023 |
Eggshell-PEI | 1.27 × 10−5 | 1.67 × 10−5 | 9.52 | −124 | 0.022 |
Sample | Carr Index (%) | Hausner Ratio | Flowability [21] |
---|---|---|---|
Orange peel | 25 | 1.33 | Passable |
Orange peel-APTMS | 20 | 1.25 | Passable |
Orange peel-PEI | 10 | 1.11 | Excellent |
Corn cob | 10 | 1.11 | Excellent |
Corn cob-APTMS | 15 | 1.18 | Good |
Corn cob-PEI | 10 | 1.11 | Excellent |
Spent silica | 30 | 1.43 | Poor |
Spent silica-APTMS | 20 | 1.25 | Fair |
Spent silica -PEI | 23 | 1.29 | Passable |
Eggshell | 13 | 1.14 | Good |
Eggshell-APTMS | 25 | 1.33 | Passable |
Eggshell-PEI | 23 | 1.29 | Passable |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peña-Juarez, M.G.; Bello, A.M.; Martinez-Sibaja, A.; Posada-Gómez, R.; Rodríguez-Jarquin, J.P.; Alvarado-Lassman, A. Assessment of Organic and Inorganic Waste Suitability for Functionalization with Aminosilanes: A Comparative Study of APTMS and PEI. Processes 2025, 13, 3117. https://doi.org/10.3390/pr13103117
Peña-Juarez MG, Bello AM, Martinez-Sibaja A, Posada-Gómez R, Rodríguez-Jarquin JP, Alvarado-Lassman A. Assessment of Organic and Inorganic Waste Suitability for Functionalization with Aminosilanes: A Comparative Study of APTMS and PEI. Processes. 2025; 13(10):3117. https://doi.org/10.3390/pr13103117
Chicago/Turabian StylePeña-Juarez, Mariana G., Angelica M. Bello, Albino Martinez-Sibaja, Rubén Posada-Gómez, José P. Rodríguez-Jarquin, and Alejandro Alvarado-Lassman. 2025. "Assessment of Organic and Inorganic Waste Suitability for Functionalization with Aminosilanes: A Comparative Study of APTMS and PEI" Processes 13, no. 10: 3117. https://doi.org/10.3390/pr13103117
APA StylePeña-Juarez, M. G., Bello, A. M., Martinez-Sibaja, A., Posada-Gómez, R., Rodríguez-Jarquin, J. P., & Alvarado-Lassman, A. (2025). Assessment of Organic and Inorganic Waste Suitability for Functionalization with Aminosilanes: A Comparative Study of APTMS and PEI. Processes, 13(10), 3117. https://doi.org/10.3390/pr13103117