In Vitro Corrosion Resistance and Mechanical Properties of Ag-SiO2-TiO2 Coatings Electrophoretically Deposited on NiTi Alloy
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods of Testing
2.2.1. Scratch Resistance
2.2.2. Scanning Electron Microscopy
2.2.3. Electrochemical Measurements of Corrosion Resistance In Vitro
2.2.4. Measurements Using the Kelvin Probe Scanning Method
3. Results and Discussion
3.1. Morphology, Structure and Chemical Composition of the Coating
3.2. Adhesion of the Coatings
3.3. Corrosion Resistance of the Coatings
3.3.1. Evaluation of Corrosion Behavior
3.3.2. Characterization of Pitting Corrosion Susceptibility
3.3.3. Assessment of Corrosion Damage After Electrochemical Testing
3.3.4. Mechanism of Pitting Corrosion of the Ag-SiO2-TiO2 Coating in Ringer’s Solution
3.4. Electronic Behavior and Surface Potential
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Akay, S.; Yaghmur, A. Recent Advances in Antibacterial Coatings to Combat Orthopedic Implant-Associated Infections. Molecules 2024, 29, 1172. [Google Scholar] [CrossRef]
- Akshaya, S.; Rowlo, P.K.; Dukle, A.; Nathanael, A.J. Antibacterial Coatings for Titanium Implants: Recent Trends and Future Perspectives. Antibiotics 2022, 11, 1719. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Zhou, J.; Qian, Y.; Zhao, L. Antibacterial Coatings on Orthopedic Implants. Mater. Today Bio 2023, 19, 100586. [Google Scholar] [CrossRef] [PubMed]
- Skjöldebrand, C.; Tipper, J.L.; Hatto, P.; Bryant, M.; Hall, R.M.; Persson, C. Current Status and Future Potential of Wear-Resistant Coatings and Articulating Surfaces for Hip and Knee Implants. Mater. Today Bio 2022, 15, 100270. [Google Scholar] [CrossRef]
- Neto, J.V.C.; Teixeira, A.B.V.; Cândido dos Reis, A. Hydroxyapatite Coatings versus Osseointegration in Dental Implants: A Systematic Review. J. Prosthet. Dent. 2023, 134, 92–99. [Google Scholar] [CrossRef] [PubMed]
- Baakili, S.E.; Semlali, A.; Issa, H.; Bricha, M.; Mabrouk, K.E. Tailored Electrophoretic Coatings for Enhanced Corrosion Resistance of 316L Stainless Steel Implants Using Bioactive Glasses. New J. Chem. 2024, 48, 5696–5709. [Google Scholar] [CrossRef]
- Guo, T.; Scimeca, J.-C.; Ivanovski, S.; Verron, E.; Gulati, K. Enhanced Corrosion Resistance and Local Therapy from Nano-Engineered Titanium Dental Implants. Pharmaceutics 2023, 15, 315. [Google Scholar] [CrossRef]
- Gautam, S.; Bhatnagar, D.; Bansal, D.; Batra, H.; Goyal, N. Recent Advancements in Nanomaterials for Biomedical Implants. Biomed. Eng. Adv. 2022, 3, 100029. [Google Scholar] [CrossRef]
- Marasli, C.; Katifelis, H.; Gazouli, M.; Lagopati, N. Nano-Based Approaches in Surface Modifications of Dental Implants: A Literature Review. Molecules 2024, 29, 3061. [Google Scholar] [CrossRef]
- Smołka, A.; Rodak, K.; Dercz, G.; Dudek, K.; Łosiewicz, B. Electrochemical Formation of Self-Organized Nanotubular Oxide Layers on Ti13Zr13Nb Alloy for Biomedical Applications. Acta Phys. Pol. A 2014, 125, 932–935. [Google Scholar] [CrossRef]
- Sahoo, J.; Sarkhel, S.; Mukherjee, N.; Jaiswal, A. Nanomaterial-Based Antimicrobial Coating for Biomedical Implants: New Age Solution for Biofilm-Associated Infections. ACS Omega 2022, 7, 45962–45980. [Google Scholar] [CrossRef]
- Burdușel, A.-C.; Gherasim, O.; Grumezescu, A.M.; Mogoantă, L.; Ficai, A.; Andronescu, E. Biomedical Applications of Silver Nanoparticles: An Up-to-Date Overview. Nanomaterials 2018, 8, 681. [Google Scholar] [CrossRef]
- Astasov-Frauenhoffer, M.; Koegel, S.; Waltimo, T.; Zimmermann, A.; Walker, C.; Hauser-Gerspach, I.; Jung, C. Antimicrobial Efficacy of Copper-Doped Titanium Surfaces for Dental Implants. J. Mater. Sci. Mater. Med. 2019, 30, 84. [Google Scholar] [CrossRef]
- Memarzadeh, K.; Sharili, A.S.; Huang, J.; Rawlinson, S.C.F.; Allaker, R.P. Nanoparticulate Zinc Oxide as a Coating Material for Orthopedic and Dental Implants. J. Biomed. Mater. Res. A 2015, 103, 981–989. [Google Scholar] [CrossRef]
- Morozova, O.V.; Klinov, D.V.; Morozova, O.V.; Klinov, D.V. Nanosilver in Biomedicine: Advantages and Restrictions. In Silver Micro-Nanoparticles-Properties, Synthesis, Characterization, and Applications; IntechOpen: London, UK, 2021; ISBN 978-1-83968-660-3. [Google Scholar]
- Dulski, M.; Dudek, K.; Chalon, D.; Kubacki, J.; Sulowicz, S.; Piotrowska-Seget, Z.; Mrozek-Wilczkiewicz, A.; Gawecki, R.; Nowak, A. Toward the Development of an Innovative Implant: NiTi Alloy Functionalized by Multifunctional β-TCP+Ag/SiO2 Coatings. ACS Appl. Bio Mater. 2019, 2, 987–998. [Google Scholar] [CrossRef] [PubMed]
- Dudek, K.; Strach, A.; Wasilkowski, D.; Łosiewicz, B.; Kubisztal, J.; Mrozek-Wilczkiewicz, A.; Zioła, P.; Barylski, A. Comparison of Key Properties of Ag-TiO2 and Hydroxyapatite-Ag-TiO2 Coatings on NiTi SMA. J. Funct. Biomater. 2024, 15, 264. [Google Scholar] [CrossRef] [PubMed]
- Pajor, K.; Michalicha, A.; Belcarz, A.; Pajchel, L.; Zgadzaj, A.; Wojas, F.; Kolmas, J. Antibacterial and Cytotoxicity Evaluation of New Hydroxyapatite-Based Granules Containing Silver or Gallium Ions with Potential Use as Bone Substitutes. Int. J. Mol. Sci. 2022, 23, 7102. [Google Scholar] [CrossRef] [PubMed]
- Morimoto, T.; Hirata, H.; Eto, S.; Hashimoto, A.; Kii, S.; Kobayashi, T.; Tsukamoto, M.; Yoshihara, T.; Toda, Y.; Mawatari, M. Development of Silver-Containing Hydroxyapatite-Coated Antimicrobial Implants for Orthopaedic and Spinal Surgery. Medicina 2022, 58, 519. [Google Scholar] [CrossRef]
- Zhang, L.; Jin, Z. Antibacterial Activities of Titanium Dioxide (TiO2) Nanotube with Planar Titanium Silver (TiAg) to Prevent Orthopedic Implant Infection. J. Orthop. Surg. Res. 2024, 19, 144. [Google Scholar] [CrossRef]
- Dudek, K.; Dulski, M.; Podwórny, J.; Kujawa, M.; Rawicka, P. Optimization of the Electrophoretic Deposition Parameters and Mechanism of Formation of Ag-TiO2 Nanocoatings on a NiTi Shape Memory Alloy: Part I. Coatings 2024, 14, 44. [Google Scholar] [CrossRef]
- Dudek, K.; Dulski, M.; Podwórny, J.; Kujawa, M.; Rawicka, P. Mechanism of Ag-SiO2-TiO2 Nanocomposite Coating Formation on NiTi Substrate for Enhanced Functionalization. Coatings 2024, 14, 1055. [Google Scholar] [CrossRef]
- Dulski, M.; Peszke, J.; Włodarczyk, J.; Sułowicz, S.; Piotrowska-Seget, Z.; Dudek, K.; Podwórny, J.; Malarz, K.; Mrozek-Wilczkiewicz, A.; Zubko, M.; et al. Physicochemical and Structural Features of Heat Treated Silver-Silica Nanocomposite and Their Impact on Biological Properties. Mater. Sci. Eng. C 2019, 103, 109790. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi, Y.; Katakami, H.; Mine, E.; Nagao, D.; Konno, M.; Liz-Marzán, L.M. Silica Coating of Silver Nanoparticles Using a Modified Stöber Method. J. Colloid. Interface Sci. 2005, 283, 392–396. [Google Scholar] [CrossRef]
- Amirtharaj Mosas, K.K.; Chandrasekar, A.R.; Dasan, A.; Pakseresht, A.; Galusek, D. Recent Advancements in Materials and Coatings for Biomedical Implants. Gels 2022, 8, 323. [Google Scholar] [CrossRef] [PubMed]
- Nasakina, E.O.; Sudarchikova, M.A.; Sergienko, K.V.; Konushkin, S.V.; Sevost’yanov, M.A. Ion Release and Surface Characterization of Nanostructured Nitinol during Long-Term Testing. Nanomaterials 2019, 9, 1569. [Google Scholar] [CrossRef]
- Xijing, L.; Yong, C. Effect of SiO2 Nanoparticles on the Hardness and Corrosion Resistance of NiW/SiO2 Nano Composite Coating Prepared by Electrodeposition. Int. J. Electrochem. Sci. 2023, 18, 100138. [Google Scholar] [CrossRef]
- Basiaga, M.; Walke, W.; Paszenda, Z.; Karasiński, P.; Szewczenko, J. The Effects of a SiO2 Coating on the Corrosion Parameters cpTi and Ti-6Al-7Nb Alloy. Biomatter 2014, 4, e28535. [Google Scholar] [CrossRef] [PubMed]
- Stambolova, I.; Yordanov, S.; Lakov, L.; Vassilev, S.; Blaskov, V.; Jivov, B. Preparation of Sol-Gel SiO2 Coatings on Steel and Their Corrosion Resistance. MATEC Web Conf. 2018, 145, 05011. [Google Scholar] [CrossRef]
- Nadachowski, F. Zarys Technologii Materiałów Ogniotrwałych; Śląskie Wydawnicwto Techniczne: Katowice, Poland, 1995. [Google Scholar]
- Svidró, J.; Diószegi, A.; Svidró, J.T. The Origin of Thermal Expansion Differences in Various Size Fractions of Silica Sand. Int. J. Cast. Met. Res. 2020, 33, 242–249. [Google Scholar] [CrossRef]
- Dhiflaoui, H.; Zayani, W.; Dabaki, Y.; Hajjaji, M.A.; Bessadok-Jemai, A.; Khezami, L.; Karrech, A.; Gaidi, M.; Amlouk, M.; Larbi, A.B.C.; et al. Corrosion Study of TiO2 Nanotubes Decorated with Ag Silver Nanoparticles Prepared by Photoreduction Process. J. Mater. Eng. Perform. 2025, 34, 16230–16243. [Google Scholar] [CrossRef]
- Yetim, T. An Investigation of the Corrosion Properties of Ag-Doped TiO2-Coated Commercially Pure Titanium in Different Biological Environments. Surf. Coat. Technol. 2017, 309, 790–794. [Google Scholar] [CrossRef]
- Yetim, T. Corrosion Behavior of Ag-Doped TiO2 Coatings on Commercially Pure Titanium in Simulated Body Fluid Solution. J. Bionic Eng. 2016, 13, 397–405. [Google Scholar] [CrossRef]
- ISO 19252:2025(En); Plastics—Determination of Scratch Properties. ISO: Geneva, Switzerland, 2025.
- ISO 20502:2005; Fine Ceramics (Advanced Ceramics, Advanced Technical Ceramics)-Determination of Adhesion of Ceramic Coatings by Scratch Testing. ISO: Geneva, Switzerland, 2005.
- ASTM C1624-22(2022); Standard Test Method for Adhesion Strength and Mechanical Failure Modes of Ceramic Coatings by Quantitative Single Point Scratch Testing. ASTM International: West Conshohocken, PA, USA, 2022.
- ASTM D7027-20(2020); Standard Test Method for Evaluation of Scratch Resistance of Polymeric Coatings and Plastics Using an Instrumented Scratch Machine. ASTM International: West Conshohocken, PA, USA, 2020.
- ISO 10271:2021; Dentistry-Corrosion Test Methods for Metallic Materials. ISO: Geneva, Switzerland, 2021.
- AUTOLAB. Electrochemical Instruments, Description of the Instrument; Eco Chemie B.V., Ed.; Kanaalweg: Utrecht, The Netherlands, 1998. [Google Scholar]
- Zhao, Q.; Wu, J.; Li, Y.; Xu, R.; Zhu, X.; Jiao, Y.; Luo, R.; Ni, X. Promotion of Bone Formation and Antibacterial Properties of Titanium Coated with Porous Si/Ag-Doped Titanium Dioxide. Front. Bioeng. Biotechnol. 2022, 10, 1001514. [Google Scholar] [CrossRef]
- Buzaev, A.A.; Lyutova, E.S.; Tkachuk, V.A.; Borilo, L.P.; Chen, Y.-W. Synthesis of TiO2–SiO2–Ag/Fiberglass with Antibacterial Properties and Its Application for Air Cleaning. ACS Omega 2023, 8, 23521–23527. [Google Scholar] [CrossRef] [PubMed]
- Ali, A.; Polepalli, L.; Chowdhury, S.; Carr, M.A.; Janorkar, A.V.; Marquart, M.E.; Griggs, J.A.; Bumgardner, J.D.; Roach, M.D. Silver-Doped Titanium Oxide Layers for Improved Photocatalytic Activity and Antibacterial Properties of Titanium Implants. J. Funct. Biomater. 2024, 15, 163. [Google Scholar] [CrossRef]
- Dudek, K.; Dulski, M.; Łosiewicz, B. Functionalization of the NiTi Shape Memory Alloy Surface by HAp/SiO2/Ag Hybrid Coatings Formed on SiO2-TiO2 Glass Interlayer. Materials 2020, 13, 1648. [Google Scholar] [CrossRef]
- Kowalski, K.; Łosiewicz, B.; Budniok, A.; Kupka, M. Effect of Alloying on Corrosion Resistance of B2 FeAl Alloy in Aqueous Solution of Sulfuric Acid. Mater. Chem. Phys. 2011, 126, 314–318. [Google Scholar] [CrossRef]
Element | Content [wt%] | Standard Deviation |
---|---|---|
Ti | 53.5 | 0.2 |
O | 38.3 | 0.2 |
Ni | 6.8 | 0.1 |
Ag | 0.8 | 0.1 |
Si | 0.6 | 0.1 |
Lc1 | Lc2 | Lc3 | |||
---|---|---|---|---|---|
Ft [N] | AE [%] | Ft [N] | AE [%] | Ft [N] | AE [%] |
1.56 ± 0.22 | 1.54 ± 0.23 | 4.56 ± 0.08 | 4.59 ± 0.13 | 20.54 ± 1.6 | 20.51 ± 1.51 |
Electrode Type | EIS Model | T1 [F cm−2 s ϕ−1] | ϕ1 | Rct1 [Ω cm2] | T2 [F cm−2 s ϕ−1] | ϕ2 | Rct2 [Ω cm2] |
---|---|---|---|---|---|---|---|
Ag-SiO2-TiO2/NiTi | 2CPE | 1.14 × 10−5 | 0.867 | 7.10 × 103 | 2.53 × 10−5 | 0.845 | 7.76 × 105 |
±7.09 × 10−7 | ±0.008 | ±6.14 × 102 | ±2.19 × 10−6 | ±0.043 | ±2.65 × 103 | ||
Ag-TiO2/NiTi [17] | 1CPE | 8.37 × 10−5 | 0.982 | 4.40 × 105 | − | − | − |
±0.16 × 10−5 | ±0.004 | ±1.00 × 104 | |||||
NiTi after mechanical polishing [44] | 1CPE | 3.10 × 10−5 | 0.920 | 4.00 × 106 | − | − | − |
±7.00 × 10−7 | ±0.005 | ±5.30 × 105 | |||||
NiTi after passivation in a steam autoclave [44] | 1CPE | 1.50 × 10−5 | 0.954 | 5.90 × 107 | − | − | − |
±2.90 × 10−7 | ±0.003 | ±5.90 × 105 |
Electrode Type | Ecor [V] | Ebd [V] | Ep [V] | Pitting Corrosion Susceptibility |
---|---|---|---|---|
Ag-SiO2-TiO2/NiTi | −0.211 | 0.347 | −0.235 | High susceptibility—low Ebd and negative Ep, poor repassivation and rapid pit propagation, but long-term protection against both micro- and macro-corrosion, 2CPE model indicating a complex corrosion mechanism. |
Ag-TiO2/NiTi [17] | −0.267 | 1.986 | 1.790 | Low susceptibility—high Ebd/Ep, effective pitting protection, although the 1CPE model suggests a simplified corrosion mechanism. |
NiTi after mechanical polishing [44] | −0.292 | 1.020 | 1.620 | Moderate susceptibility—moderate values of Ebd/Ep, good natural passivation, but absence of a functional layer. |
NiTi after passivation in a steam autoclave [44] | 0.195 | 1.078 | 1.675 | Low susceptibility—positive Ecor and high Ebd/Ep, good passivation and stability, but absence of a functional layer. |
Element | Content [wt.%] | Standard Deviation |
---|---|---|
O | 30.4 | 0.5 |
Ti | 29.1 | 1.6 |
Ni | 40.5 | 2.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Łosiewicz, B.; Kubisztal, J.; Barylski, A.; Dudek, K. In Vitro Corrosion Resistance and Mechanical Properties of Ag-SiO2-TiO2 Coatings Electrophoretically Deposited on NiTi Alloy. Coatings 2025, 15, 1176. https://doi.org/10.3390/coatings15101176
Łosiewicz B, Kubisztal J, Barylski A, Dudek K. In Vitro Corrosion Resistance and Mechanical Properties of Ag-SiO2-TiO2 Coatings Electrophoretically Deposited on NiTi Alloy. Coatings. 2025; 15(10):1176. https://doi.org/10.3390/coatings15101176
Chicago/Turabian StyleŁosiewicz, Bożena, Julian Kubisztal, Adrian Barylski, and Karolina Dudek. 2025. "In Vitro Corrosion Resistance and Mechanical Properties of Ag-SiO2-TiO2 Coatings Electrophoretically Deposited on NiTi Alloy" Coatings 15, no. 10: 1176. https://doi.org/10.3390/coatings15101176
APA StyleŁosiewicz, B., Kubisztal, J., Barylski, A., & Dudek, K. (2025). In Vitro Corrosion Resistance and Mechanical Properties of Ag-SiO2-TiO2 Coatings Electrophoretically Deposited on NiTi Alloy. Coatings, 15(10), 1176. https://doi.org/10.3390/coatings15101176