Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (44,914)

Search Parameters:
Keywords = reactivators

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
35 pages, 1608 KB  
Article
The Predator-Prey Model of Tax Evasion: Foundations of a Dynamic Fiscal Ecology
by Miroslav Gombár, Nella Svetozarovová and Štefan Tóth
Mathematics 2026, 14(2), 337; https://doi.org/10.3390/math14020337 (registering DOI) - 19 Jan 2026
Abstract
Tax evasion is a dynamic process reflecting continuous interaction between taxpayers and regulatory institutions rather than a static deviation from fiscal equilibrium. This study introduces a predator-prey model of tax evasion that translates the Lotka-Volterra framework from biology into budgetary dynamics. The model [...] Read more.
Tax evasion is a dynamic process reflecting continuous interaction between taxpayers and regulatory institutions rather than a static deviation from fiscal equilibrium. This study introduces a predator-prey model of tax evasion that translates the Lotka-Volterra framework from biology into budgetary dynamics. The model captures the feedback between the volume of tax evasion and the intensity of regulation, incorporating nonlinearity, implicit reactive lag, and adaptive response. Theoretical derivation and numerical simulation identify three dynamic regimes—stable equilibrium, limit-cycle oscillation, and instability—that arise through a Hopf bifurcation. Bifurcation maps in the (r, a), (r, b), and (r, c) parameter spaces reveal how control efficiency, institutional inertia, and behavioral feedback jointly determine fiscal stability. Results show that excessive enforcement may destabilize the system by inducing regulatory fatigue, while weak control enables exponential growth in evasion. The model provides a dynamic analytical tool for evaluating fiscal policy efficiency and identifying stability thresholds. Its findings suggest that adaptive, feedback-based regulation is essential for maintaining long-term tax discipline. The study contributes to closing the research gap by providing a unified dynamic framework linking micro-behavioral decision-making with macro-fiscal stability, offering a foundation for future empirical calibration and behavioral extensions of fiscal systems. Full article
41 pages, 3913 KB  
Review
Advancing Bioconjugated Quantum Dots with Click Chemistry and Artificial Intelligence to Image and Treat Glioblastoma
by Pranav Kalaga and Swapan K. Ray
Cells 2026, 15(2), 185; https://doi.org/10.3390/cells15020185 - 19 Jan 2026
Abstract
Glioblastoma (GB) is one of the most aggressive and invasive cancers. Current treatment protocols for GB include surgical resection, radiotherapy, and chemotherapy with temozolomide. However, despite these treatments, physicians still struggle to effectively image, diagnose, and treat GB. As such, patients frequently experience [...] Read more.
Glioblastoma (GB) is one of the most aggressive and invasive cancers. Current treatment protocols for GB include surgical resection, radiotherapy, and chemotherapy with temozolomide. However, despite these treatments, physicians still struggle to effectively image, diagnose, and treat GB. As such, patients frequently experience recurrence of GB, demanding innovative strategies for early detection and effective therapy. Bioconjugated quantum dots (QDs) have emerged as powerful nanoplatforms for precision imaging and targeted drug delivery due to their unique optical properties, tunable size, and surface versatility. Due to their extremely small size, QDs can cross the blood–brain barrier and be used for precision imaging of GB. This review explores the integration of QDs with click chemistry for robust bioconjugation, focusing on artificial intelligence (AI) to advance GB therapy, mechanistic insights into cellular uptake and signaling, and strategies for mitigating toxicity. Click chemistry enables site-specific and stable conjugation of targeting ligands, peptides, and therapeutic agents to QDs, enhancing selectivity and functionalization. Algorithms driven by AI may facilitate predictive modeling, image reconstruction, and personalized treatment planning, optimizing QD design and therapeutic outcomes. We discuss molecular mechanisms underlying interactions of QDs with GB, including receptor-mediated endocytosis and intracellular trafficking, which influence biodistribution and therapeutic efficacy. Use of QDs in photodynamic therapy, which uses reactive oxygen species to induce apoptotic cell death in GB cells, is an innovative therapy that is covered in this review. Finally, this review addresses concerns associated with the toxicity of metal-based QDs and highlights how QDs can be coupled with AI to develop new methods for precision imaging for detecting and treating GB for induction of apoptosis. By converging nanotechnology and computational intelligence, bioconjugated QDs represent a transformative platform for paving a safer path to smarter and more effective clinical interventions of GB. Full article
(This article belongs to the Special Issue Cell Death Mechanisms and Therapeutic Opportunities in Glioblastoma)
Show Figures

Figure 1

21 pages, 1113 KB  
Review
Molecular Mechanisms of Insect Resistance in Rice and Their Application in Sustainable Pest Management
by Dilawar Abbas, Kamran Haider, Farman Ullah, Umer Liaqat, Naveed Akhtar, Yubin Li and Maolin Hou
Insects 2026, 17(1), 111; https://doi.org/10.3390/insects17010111 - 19 Jan 2026
Abstract
Rice is a key food crop worldwide, but its yield and quality are severely constrained by insect pests. As environmental and regulatory restrictions on chemical pesticides grow, developing insect-resistant rice varieties has become a sustainable way to protect food security. This review covers [...] Read more.
Rice is a key food crop worldwide, but its yield and quality are severely constrained by insect pests. As environmental and regulatory restrictions on chemical pesticides grow, developing insect-resistant rice varieties has become a sustainable way to protect food security. This review covers recent progress in functional genomics and molecular marker mapping related to insect resistance in rice. We highlight the identification, cloning, and functional analysis of resistance genes targeting major pests, including the brown planthopper, rice gall midge, white-backed planthopper, small brown planthopper, and rice leaf roller. Several important resistance genes (such as Bph14, Bph3, and Bph29) have been cloned, and their roles in rice immunity have been clarified—covering insect feeding signal recognition, activation of salicylic acid and jasmonic acid pathways, and regulation of MAPK cascades, calcium signaling, and reactive oxygen species production. We also discuss how molecular marker-assisted selection, gene pyramiding, and transgenic techniques are used in modern rice breeding. Finally, we address future challenges and opportunities, stressing the importance of utilizing wild rice germplasm, understanding insect effector–plant immune interactions, and applying molecular design breeding to create long-lasting insect-resistant rice varieties that can withstand changing pest pressures and climate conditions. Full article
(This article belongs to the Special Issue The 3M Approach to Insecticide Resistance in Insects)
Show Figures

Figure 1

16 pages, 5147 KB  
Article
5G RF-EMFs Mitigate UV-Induced Genotoxic Stress Through Redox Balance and p38 Pathway Regulation in Skin Cells
by Ju Hwan Kim, Hee Jin, Kyu Min Jang, Ji Eun Lee, Sanga Na, Sangbong Jeon, Hyung-Do Choi, Jung Ick Moon, Nam Kim, Kyung-Min Lim, Hak Rim Kim and Yun-Sil Lee
Antioxidants 2026, 15(1), 127; https://doi.org/10.3390/antiox15010127 - 19 Jan 2026
Abstract
The biological effects of radiofrequency electromagnetic fields (RF-EMFs) remain an unresolved scientific issue with important societal relevance, particularly in the context of the global deployment of fifth-generation (5G) wireless technologies. The skin is continuously exposed to both RF-EMFs and ultraviolet (UV) radiation, a [...] Read more.
The biological effects of radiofrequency electromagnetic fields (RF-EMFs) remain an unresolved scientific issue with important societal relevance, particularly in the context of the global deployment of fifth-generation (5G) wireless technologies. The skin is continuously exposed to both RF-EMFs and ultraviolet (UV) radiation, a well-established inducer of oxidative stress and DNA damage, making it a relevant model for assessing combined environmental exposures. In this study, we investigated whether post-exposure to 5G RF-EMFs (3.5 and 28 GHz) modulates ultraviolet A (UVA)-induced genotoxic stress in human keratinocytes (HaCaT) and murine melanoma (B16) cells. Post-UV RF-EMF exposure significantly reduced DNA damage markers, including phosphorylated histone H2AX (γH2AX) foci formation (by approximately 30–50%) and comet tail moments (by 60–80%), and suppressed intracellular reactive oxygen species (ROS) accumulation (by 56–93%). These effects were accompanied by selective attenuation of p38 mitogen-activated protein kinase (MAPK) phosphorylation (reduced by 55–85%). The magnitude of molecular protection was comparable to that observed with N-acetylcysteine treatment or pharmacological inhibition of p38 MAPK. In contrast, RF-EMF exposure did not reverse UV-induced reductions in cell viability or alterations in cell cycle distribution, indicating that its protective effects are confined to early molecular stress-response pathways rather than downstream survival outcomes. Together, these findings demonstrate that 5G RF-EMFs can facilitate recovery from UVA-induced molecular damage via redox-sensitive and p38-dependent mechanisms, providing mechanistic insight into the interaction between modern telecommunication frequencies and UV-induced skin stress. Full article
(This article belongs to the Section Health Outcomes of Antioxidants and Oxidative Stress)
Show Figures

Figure 1

17 pages, 309 KB  
Review
Anti-GQ1b Antibody Syndrome: A Clinician-Oriented Perspective on Diagnostics, Therapy, and Atypical Phenotypes—With an Illustrative 16-Case Institutional Series
by Taro Bannai, Minako Yamada, Tomonari Seki, Yasushi Shiio and Tatsuya Yamasoba
J. Clin. Med. 2026, 15(2), 801; https://doi.org/10.3390/jcm15020801 (registering DOI) - 19 Jan 2026
Abstract
Anti-GQ1b antibody syndrome (AGABS) unifies triad-defined Miller Fisher syndrome (MFS), Bickerstaff brainstem encephalitis (BBE), and the ophthalmoplegic variant of Guillain–Barré syndrome (GBS-O) under a post-infectious immune mechanism centered on IgG to disialosyl gangliosides. The spectrum also encompasses triad-minus phenotypes—acute ophthalmoparesis without ataxia, acute [...] Read more.
Anti-GQ1b antibody syndrome (AGABS) unifies triad-defined Miller Fisher syndrome (MFS), Bickerstaff brainstem encephalitis (BBE), and the ophthalmoplegic variant of Guillain–Barré syndrome (GBS-O) under a post-infectious immune mechanism centered on IgG to disialosyl gangliosides. The spectrum also encompasses triad-minus phenotypes—acute ophthalmoparesis without ataxia, acute vestibular syndrome, optic involvement, and acute sensory-ataxic neuropathy. A molecular-mimicry model with complement-mediated nodal/paranodal dysfunction explains severe early deficits despite bland limb nerve conduction studies (NCSs), the cranial/proprioceptive predilection, and generally favorable treatment responsiveness to immunotherapy. In practice, a serology-first strategy, complemented by targeted electrophysiology—blink and H-reflex testing, and, where feasible, paired SEP–ABR showing a literature-supported dissociation (normal ABR with impaired median-nerve cortical SEPs), which, in our series, was documented in one illustrative BBE case—and by structured neuro-otologic examination, mitigates the “normal-NCS trap” and enables timely treatment. Intravenous immunoglobulin (IVIg) is first-line; plasma exchange (PLEX) is an alternative in severe or IVIg-ineligible cases; and intravenous methylprednisolone (IVMP) may be added selectively for central/optic-weighted phenotypes without routine oral taper. We consolidate actionable diagnostic and therapeutic steps and examine them in an institutional series of 16 consecutive seropositive patients (2015–2025): all were anti-GQ1b-positive with frequent GT1a co-reactivity; most reported an antecedent infection—typically upper respiratory, less often gastrointestinal—within the two weeks before onset; limb NCSs were often nondiagnostic whereas reflex/evoked-potential studies were informative; two required intubation in addition to IVIg; outcomes were generally favorable with early immunotherapy. The practical message: order anti-GQ1b at first contact, pair targeted electrophysiology with neuro-otology, and treat early to exploit reversible nodal/paranodal dysfunction. Full article
(This article belongs to the Section Clinical Neurology)
17 pages, 4177 KB  
Article
Inline Profiling of Reactive Thermoplastic Pultruded GFRP Rebars: A Study on the Influencing Factors
by Moritz Fünkner, Georg Zeeb, Michael Wilhelm, Peter Eyerer and Frank Henning
J. Compos. Sci. 2026, 10(1), 55; https://doi.org/10.3390/jcs10010055 - 19 Jan 2026
Abstract
Compared to reinforcing concrete with steel bars, rebars—made of fiber-reinforced plastic—have a high potential for resource savings in the construction industry due to their corrosion resistance. For the large-volume market of reinforcement elements, efficient manufacturing processes must be developed to ensure the best [...] Read more.
Compared to reinforcing concrete with steel bars, rebars—made of fiber-reinforced plastic—have a high potential for resource savings in the construction industry due to their corrosion resistance. For the large-volume market of reinforcement elements, efficient manufacturing processes must be developed to ensure the best possible bond behavior between concrete and rebar. In contrast to established FRP-rebars made with thermosetting materials, the use of a thermoplastic matrix enables surface profiling without severing the edge fibers as well as subsequent bending of the bar. The rebars to be produced in this study are based on the process of reactive thermoplastic pultrusion of continuously glass fiber reinforced aPA6. Their surface must enable a mechanical interlocking between the reinforcement bar and concrete. Concepts for a profiling device have been methodically developed and evaluated. The resulting concept of a double wheel embossing unit with a variable infeed and an infrared preheating section is built as a prototype, implemented in a pultrusion line, and further optimized. For a comprehensive understanding of the embossing process, reinforcement bars are manufactured, characterized, and evaluated under parameter variation according to a statistical experimental plan. The present study demonstrates the relationship between the infeed, preheating temperature, and haul-off speed with respect to the embossing depth, which is equivalent to the rib height. No degradation of the Young’s modulus was observed as a result of the profiling process. Full article
(This article belongs to the Section Composites Manufacturing and Processing)
Show Figures

Figure 1

16 pages, 2101 KB  
Article
Damage-Derived Reactive Glia from a Parkinson’s Disease Model Are Neurotoxic to Substantia Nigra Dopaminergic Neurons in Naïve Animals
by Agustina Dapueto, Silvia Olivera-Bravo and Giselle Prunell
Neuroglia 2026, 7(1), 5; https://doi.org/10.3390/neuroglia7010005 - 19 Jan 2026
Abstract
Background/Objective: Parkinson’s disease (PD) has long been viewed from a neurocentric perspective; however, increasing evidence indicates that glial dysfunction also contributes to dopaminergic neurodegeneration. Although neurotoxic glial phenotypes have been described in amyotrophic lateral sclerosis and Alzheimer’s disease in vivo models, it remains [...] Read more.
Background/Objective: Parkinson’s disease (PD) has long been viewed from a neurocentric perspective; however, increasing evidence indicates that glial dysfunction also contributes to dopaminergic neurodegeneration. Although neurotoxic glial phenotypes have been described in amyotrophic lateral sclerosis and Alzheimer’s disease in vivo models, it remains unclear whether similar states arise in the pathological milieu of PD. This study aimed to determine whether glial cells with intrinsic neurotoxic properties emerge in the substantia nigra pars compacta (SNpc) in a PD context. Methods: The classical 6-hydroxydopamine rat model was used to obtain glial cultures from the ipsilateral, toxin-damaged SNpc. These cultures were characterized by quantifying cell number and morphology, as well as by assessing the expression of glial markers. Their neurotoxic potential was evaluated in vitro through co-cultures with PC12 cells, and in vivo by transplanting the isolated cells into the SNpc of naïve rats. Assessments included PC12 cell survival, and integrity of the nigrostriatal pathway and motor performance in the cylinder test. Results: Ipsilateral SNpc cultures yielded 25-fold more cells than contralateral controls. Cultured cells co-expressed astrocytic and microglial markers, thus defining a population of damage-derived reactive glia (DDRG). When co-cultured, DDRG reduced PC12 cell survival, whereas control glial cells showed no neurotoxic effects. In vivo, DDRG transplantation induced a dose-dependent loss of dopaminergic neurons and motor impairments, while vehicle and control glia produced no detectable effects. Conclusions: Our findings suggest that glial cells emerging from a neuroinflammatory/neurodegenerative environment in the SNpc may contribute to dopaminergic neuron loss. Within the context of the experimental PD model used, DDRG appears to represent a glial population with potential pathogenic relevance and may constitute a candidate target for further investigation as a therapeutic strategy in Parkinson’s disease. Full article
Show Figures

Figure 1

24 pages, 4083 KB  
Article
Voltage Adaptability of Hierarchical Optimization for Photovoltaic Inverter Control Parameters in AC/DC Hybrid Receiving-End Power Grids
by Ran Sun, Jianbo Wang, Feng Yao, Zhaohui Cui, Xiaomeng Li, Hao Zhang, Jiahao Wang and Lixia Sun
Processes 2026, 14(2), 350; https://doi.org/10.3390/pr14020350 - 19 Jan 2026
Abstract
The high rate of photovoltaic integration poses significant challenges in terms of violations of voltage limits in power grids. Additionally, the operational behavior of PV systems under fault conditions requires thorough investigation in receiving-end grids. This paper analyzes the dynamic coupling characteristics between [...] Read more.
The high rate of photovoltaic integration poses significant challenges in terms of violations of voltage limits in power grids. Additionally, the operational behavior of PV systems under fault conditions requires thorough investigation in receiving-end grids. This paper analyzes the dynamic coupling characteristics between reactive power and transient voltage in a receiving-end grid with high PV penetration and multiple HVDC infeeds, considering typical AC and DC fault scenarios. Voltage adaptability issues in PV generation systems are also examined. Through an enhanced sensitivity analysis method, the suppression capabilities of transient voltage peaks are quantified in the control parameters of low-voltage ride-through (LVRT) and high-voltage ride-through (HVRT) photovoltaic inverters. On this basis, a hierarchical optimization strategy for PV inverter control parameters is proposed to mitigate post-fault transient voltage peaks and improve the transient voltage response both during and after faults. The feasibility of the proposed method has been verified through simulation on a revised 10-generator 39-bus power system. Following optimization, the transient voltage peak is reduced from 1.263 to 1.098. This validation offers support for the reliable grid connection of the Henan Power Grid. In the events of the N-2 fault at 500 kV and Tian-zhong HVDC monopolar block fault, the post-fault voltage at each node remains below 1.1 p.u. This serves as evidence of a significant enhancement in transient voltage stability within the Henan Power Grid, demonstrating effective improvements in power supply reliability and operational performance. Full article
Show Figures

Figure 1

14 pages, 735 KB  
Article
Anticancer Potential of Cannabidiol in Renal Cell Carcinoma: Serum Modulation and Preliminary Mechanistic Insights
by Débora Sousa, Filipa Amaro, Ana Margarida Araújo and Márcia Carvalho
J. Clin. Med. 2026, 15(2), 792; https://doi.org/10.3390/jcm15020792 (registering DOI) - 19 Jan 2026
Abstract
Background: Cannabidiol (CBD), the major non-psychotropic cannabinoid derived from Cannabis sativa L., has demonstrated broad anticancer activity across multiple tumor types; however, its effects in renal cell carcinoma (RCC) remain largely undefined. Given the ongoing need for novel therapeutic strategies in RCC, [...] Read more.
Background: Cannabidiol (CBD), the major non-psychotropic cannabinoid derived from Cannabis sativa L., has demonstrated broad anticancer activity across multiple tumor types; however, its effects in renal cell carcinoma (RCC) remain largely undefined. Given the ongoing need for novel therapeutic strategies in RCC, this study provides preliminary mechanistic insights into the cytotoxic, antiproliferative, and redox-modulating properties of CBD in RCC cells and evaluates the influence of serum conditions on its activity. Methods: Human RCC cell lines (Caki-1 and 769-P) and non-tumoral proximal tubular epithelial cells (HK-2) were treated with CBD (1–100 µM) for up to 48 h under serum-free and serum-supplemented (5%) conditions. Cytotoxic and antiproliferative effects were assessed using the MTT assay, and intracellular reactive oxygen/nitrogen species (ROS/RNS) levels were quantified using the H2DCFDA fluorescence assay. Results: CBD significantly decreased RCC cell viability and proliferation in a concentration-dependent manner and induced time-dependent ROS/RNS accumulation. Comparable sensitivity was observed in non-tumoral HK-2 renal epithelial cells, indicating limited tumor selectivity under the tested in vitro conditions. Notably, these effects were markedly attenuated in the presence of serum, consistent with CBD’s high serum–protein binding and reduced free bioavailability. Conclusions: CBD induces cytotoxic, antiproliferative, and redox-modulating effects in RCC cells in vitro; however, these responses are strongly attenuated by serum, lack tumor selectivity, and require concentrations exceeding clinically achievable plasma levels. Together, these findings delineate major translational limitations for the therapeutic use of CBD in RCC. Full article
(This article belongs to the Special Issue Urologic Neoplasms: Recent Advances and Future Perspectives)
Show Figures

Figure 1

23 pages, 869 KB  
Article
Evaluation of 1cp-LSD for Enhancing Welfare in Shelter Dogs: A Randomized Blind Trial with Ethological Intervention
by Elisa Hernández-Álvarez, Cristina Canino-Quijada, Sira Roiz, Octavio P. Luzardo and Luis Alberto Henríquez-Hernández
Vet. Sci. 2026, 13(1), 96; https://doi.org/10.3390/vetsci13010096 (registering DOI) - 19 Jan 2026
Abstract
Shelter environments frequently expose dogs to chronic stress and anxiety, which can compromise their welfare and reduce their chances of adoption. Recent interest in psychedelic-assisted approaches has suggested potential therapeutic applications in veterinary behavioral medicine, although empirical evidence remains scarce. This study aimed [...] Read more.
Shelter environments frequently expose dogs to chronic stress and anxiety, which can compromise their welfare and reduce their chances of adoption. Recent interest in psychedelic-assisted approaches has suggested potential therapeutic applications in veterinary behavioral medicine, although empirical evidence remains scarce. This study aimed to evaluate the combined effects of low-dose 1-cyclopropionyl lysergic acid diethylamide (1cp-LSD), a legal lysergamide prodrug of LSD in several countries, and ethological intervention (EI) on the behavior and welfare of shelter dogs. Twenty dogs were randomly assigned to four groups: pharmacological intervention, ethological intervention, combined treatment, or control. The ethological sessions were conducted by veterinary behaviorists, and pharmacological treatment consisted of 10 µg of 1cp-LSD administered orally for three weeks. Blinded evaluators assessed animals using validated anxiety and welfare scales, including a treatment expectation scale, before, during and after the intervention. Results showed that the combined condition consistently outperformed single interventions, significantly enhancing sociability, calmness, and positive emotional reactivity. Importantly, these improvements persisted for three weeks following treatment cessation, indicating sustained benefits beyond the active intervention phase. These findings provide preliminary evidence for the potential of integrating low doses of psychedelics with behavioral therapy in shelter settings. Future studies with larger cohorts and refined pharmacokinetic data are required to confirm safety, elucidate mechanisms, and optimize protocols for clinical application in veterinary practice. Full article
Show Figures

Graphical abstract

14 pages, 784 KB  
Article
Predictive Value of Platelet-Based Indexes for Mortality in Sepsis
by Alice Nicoleta Drăgoescu, Adina Turcu-Stiolica, Marian Valentin Zorilă, Bogdan Silviu Ungureanu, Petru Octavian Drăgoescu and Andreea Doriana Stănculescu
Biomedicines 2026, 14(1), 211; https://doi.org/10.3390/biomedicines14010211 - 19 Jan 2026
Abstract
Background: Even though there have been improvements in antimicrobial and supportive therapies, sepsis and septic shock are still major causes of death in intensive care units. Early prognostic stratification is very important for helping doctors make decisions. Platelet-derived indices may provide useful, low-cost [...] Read more.
Background: Even though there have been improvements in antimicrobial and supportive therapies, sepsis and septic shock are still major causes of death in intensive care units. Early prognostic stratification is very important for helping doctors make decisions. Platelet-derived indices may provide useful, low-cost indicators that signify both inflammatory activation and coagulation irregularities. This study looked at how well different platelet-based ratios could predict death in the hospital from sepsis. Materials and Methods: We performed a prospective observational study spanning one year in a tertiary ICU, enrolling 114 adult patients diagnosed with sepsis or septic shock. Upon admission, four platelet-related biomarkers were measured: the C-reactive protein-to-platelet ratio (CPR), the platelet-to-lymphocyte ratio (PLR), the platelet-to-white blood cell ratio (PWR), and the platelet-to-creatinine ratio (PCR). Logistic regression models and receiver operating characteristic (ROC) analyses were employed to assess predictive accuracy. Results: Compared to survivors, non-survivors (n = 39) had much higher CRP levels and CPR values, alongside lower platelet and lymphocyte counts. The CPR index showed the best ability in differentiating between non-survivors and survivors (AUC 0.757), with a best cutoff of 0.886. In simplified multivariate models, CPR was still an independent predictor of death in the hospital (OR 1.98; 95% CI 1.22–3.21), whereas PLR and PWR were not. PCR showed a non-significant trend toward lower values in not survivors. Conclusions: CPR is a strong and clinically viable predictor of early mortality in sepsis, outperforming other platelet-based indices. Derived from routine laboratory parameters, CPR serves as a valuable adjunct for initial risk stratification in the ICU. To further confirm its prognostic role and incorporation into current scoring systems, large-scale multicenter studies with longitudinal measurements are warranted to validate its prognostic utility and integration into existing scoring systems. Full article
Show Figures

Figure 1

14 pages, 774 KB  
Article
A Descriptive Study on the Association Between the Sensory Profile and the Autistic Quotient in Italian 3–12-Year-Old Preschoolers and Schoolers with Autism
by Annalisa Levante, Rosa Angela Fabio, Chiara Martis, Rossella Suriano, Valentina Romeo and Flavia Lecciso
Behav. Sci. 2026, 16(1), 139; https://doi.org/10.3390/bs16010139 - 19 Jan 2026
Abstract
Sensory reactivity has recently been introduced as a diagnostic criterion for autism, and growing attention is being paid to considering children’s behavioural responses to sensory stimuli. This study explored sensory reactivity in a sample of preschool- and school-aged autistic children. Parents of 68 [...] Read more.
Sensory reactivity has recently been introduced as a diagnostic criterion for autism, and growing attention is being paid to considering children’s behavioural responses to sensory stimuli. This study explored sensory reactivity in a sample of preschool- and school-aged autistic children. Parents of 68 participants [21 preschoolers (3–5 years) and 47 school-aged children (6–11 years)] completed an e-survey (Ethical Committee: 2024-412). Two research questions were addressed to explore: a. whether sensory reactivity dimensions differ according to autistic-like trait severity (medium vs. high) and b. whether sensory reactivity differs between preschool- and school-aged children. Controlling for age and sex, the results showed that children with higher autistic-like trait severity exhibited greater sensory reactivity across all dimensions. The interaction also supported higher sensory reactivity in each dimension for children with higher severity levels. In addition, no significant difference and interaction emerged between age group and sensory reactivity, supporting the potential stability of these features over time. However, group comparisons indicated that school-aged children showed higher parental-reported movement sensitivity, particularly during rough play or balance-related activities. These findings highlight the importance of considering sensory reactivity in autism diagnosis and in designing supportive and tailored intervention environments. Full article
Show Figures

Figure 1

12 pages, 548 KB  
Article
17β-Estradiol Does Not Designate Non-Sex-Specific Early Ventricular Arrhythmia in Acute Myocardial Infarction, in Contrast to C-Reactive Protein
by Niya E. Semedzhieva, Adelina Tsakova, Vesela Lozanova, Petar I. Atanasov and Dobrinka Dineva
Int. J. Mol. Sci. 2026, 27(2), 970; https://doi.org/10.3390/ijms27020970 (registering DOI) - 19 Jan 2026
Abstract
Despite the evidence from experimental studies that endogenous hormones have sex-related effects on action potential duration, the relationship between gonadal steroids and ventricular repolarization in acute myocardial infarction (AMI) is not clear. We tested the hypothesis that endogenous 17β-estradiol (E2) and 17β-estradiol-to-testosterone ratio [...] Read more.
Despite the evidence from experimental studies that endogenous hormones have sex-related effects on action potential duration, the relationship between gonadal steroids and ventricular repolarization in acute myocardial infarction (AMI) is not clear. We tested the hypothesis that endogenous 17β-estradiol (E2) and 17β-estradiol-to-testosterone ratio (E2/T) are associated with inflammation, influencing the occurrence of early ventricular arrhythmia (VA) in AMI. Electrocardiographic (ECG) repolarization indices, including resting heart rate (HR), corrected QT (QTc) interval, QTc minimum (QTcmin), QTc maximum (QTcmax), and QTc dispersion (QTcd), along with E2, total T, and the ratio of E2 to T (E2/T), were measured and analyzed after percutaneous coronary intervention in 86 patients (36 women, 41.9%). In a non-specific sex analysis, the incidence of early VA in the course of AMI was determined by the ejection fraction of the left ventricle (OR 0.876, p = 0.054), and by the peak levels of plasma C-reactive protein (OR 1.026, p = 0.077). Endogenous plasma 17β-estradiol tended to be higher in cases with early ventricular arrhythmia (124.5 ± 79 vs. 181 ± 192.8, p = 0.089). 17β-estradiol levels were significantly predicted by C-reactive protein (OR 1.050, p = 0.042). This study found that reduced systolic function of the left ventricle and higher peak CRP levels are associated with endogenous plasma 17β-estradiol in the acute phase of MI, and predicted the risk of early in-hospital ventricular arrhythmia. Full article
(This article belongs to the Special Issue Steroids in Human Disease and Health)
Show Figures

Figure 1

16 pages, 7432 KB  
Article
Speed and Distance Redistribution—Lower Limb Power Strategy in Single-Leg-Approach Jumps
by Wei-Hsun Tai, Hsien-Te Peng, Jian-Zhi Lin, Hai-Bin Yu and Po-Ang Li
Life 2026, 16(1), 160; https://doi.org/10.3390/life16010160 - 18 Jan 2026
Abstract
This study systematically investigated the influence of approach kinematics on the subsequent kinetics and power production strategies during the approach to running jumps with a single leg (ARJSL). Twenty-five physically active male university students performed ARJSL trials under two prescribed approach speeds (fast [...] Read more.
This study systematically investigated the influence of approach kinematics on the subsequent kinetics and power production strategies during the approach to running jumps with a single leg (ARJSL). Twenty-five physically active male university students performed ARJSL trials under two prescribed approach speeds (fast and slow) and three approach distances (3, 6, and 9 m) in a 2 × 3 within-subjects design. Three-dimensional motion capture synchronized with force platform data was used to quantify jump height (JH), vertical touchdown velocity (TDv), reactive strength index (RSI), peak joint power (hip, knee, and ankle), and joint stiffness. Significant approach speed × distance interactions were observed for JH (p = 0.006), TDv (p < 0.001), RSI (p = 0.014), ankle stiffness (p = 0.006), and peak power generation at all lower-limb joints (all p < 0.034). The results demonstrate that changes in approach strategy systematically alter the distribution of mechanical power among the hip, knee, and ankle joints, thereby influencing the effectiveness of horizontal-to-vertical momentum conversion during take-off. Notably, RSI and ankle stiffness were particularly sensitive to combined manipulations of speed and distance, highlighting their value as neuromechanical indicators of stretch–shortening cycle intensity and joint loading demands. In conclusion, ARJSL performance depends on finely tuned, speed- and distance-specific biomechanical adaptations within the lower extremity. These findings provide a constrained, joint-level mechanical characterization of how approach speed and distance interact to influence power redistribution and stiffness behavior during ARJSL, without implying optimal or performance-maximizing strategies. Full article
(This article belongs to the Special Issue Sports Biomechanics, Injury, and Physiotherapy)
Show Figures

Figure 1

16 pages, 6066 KB  
Article
Validation and Improvement of a Rapid, CRISPR-Cas-Free RPA-PCRD Strip Assay for On-Site Genomic Surveillance and Quarantine of Wheat Blast
by Dipali Rani Gupta, Shamfin Hossain Kasfy, Julfikar Ali, Farin Tasnova Hia, M. Nazmul Hoque, Mahfuz Rahman and Tofazzal Islam
J. Fungi 2026, 12(1), 73; https://doi.org/10.3390/jof12010073 (registering DOI) - 18 Jan 2026
Abstract
As an emerging threat to global food security, wheat blast necessitates the development of a rapid and field-deployable detection system to facilitate early diagnosis, enable effective management, and prevent its further spread to new regions. In this study, we aimed to validate and [...] Read more.
As an emerging threat to global food security, wheat blast necessitates the development of a rapid and field-deployable detection system to facilitate early diagnosis, enable effective management, and prevent its further spread to new regions. In this study, we aimed to validate and improve a Recombinase Polymerase Amplification coupled with PCRD lateral flow detection (RPA-PCRD strip assay) kit for the rapid and specific identification of Magnaporthe oryzae pathotype Triticum (MoT) in field samples. The assay demonstrated exceptional sensitivity, detecting as low as 10 pg/µL of target DNA, and exhibited no cross-reactivity with M. oryzae Oryzae (MoO) isolates and other major fungal phytopathogens under the genera of Fusarium, Bipolaris, Colletotrichum, and Botrydiplodia. The method successfully detected MoT in wheat leaves as early as 4 days post-infection (DPI), and in infected spikes, seeds, and alternate hosts. Furthermore, by combining a simplified polyethylene glycol-NaOH method for extracting DNA from plant samples, the entire RPA-PCRD strip assay enabled the detection of MoT within 30 min with no specialized equipment and high technical skills at ambient temperature (37–39 °C). When applied to field samples, it successfully detected MoT in naturally infected diseased wheat plants from seven different fields in a wheat blast hotspot district, Meherpur, Bangladesh. Training 52 diverse stakeholders validated the kit’s field readiness, with 88% of trainees endorsing its user-friendly design. This method offers a practical, low-cost, and portable point-of-care diagnostic tool suitable for on-site genomic surveillance, integrated management, seed health testing, and quarantine screening of wheat blast in resource-limited settings. Furthermore, the RPA-PCRD platform serves as an early warning modular diagnostic template that can be readily adapted to detect a wide array of phytopathogens by integrating target-specific genomic primers. Full article
(This article belongs to the Special Issue Integrated Management of Plant Fungal Diseases—2nd Edition)
Show Figures

Figure 1

Back to TopTop