Validation and Improvement of a Rapid, CRISPR-Cas-Free RPA-PCRD Strip Assay for On-Site Genomic Surveillance and Quarantine of Wheat Blast
Abstract
1. Introduction
2. Materials and Methods
2.1. Fungal Isolate Retrieval and Sub-Culture
2.2. Primers and Probe Used in RPA-PCRD Strip
2.3. DNA Extraction from Plant Sample and Fungal Isolates
2.4. Optimization of Recombinase Polymerase Amplification (RPA) Reaction
2.5. Efficacy and Specificity Tests of RPA Assay
2.6. Preparation of Conidial Suspension and Artificial Inoculation of Wheat and Alternate Hosts
2.7. RPA-PCRD Strip Assay Using Wheat Blast-Infected Field Samples
3. Results
3.1. Efficacy Assessment of an RPA-PCRD Assay for Wheat Blast Detection
3.2. Validation of RPA-PCRD Using Field Samples and Alternate Hosts
3.3. Early Detection of MoT in Wheat Leaves
3.4. Optimization of DNA Extraction
3.5. Validation of RPA-PCRD Assay Using Field-Infected Samples
3.6. Train Stakeholders to Assess the Robustness, Usability, and Practical Applicability of the Developed Kit
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Islam, M.T.; Gupta, D.R.; Hossain, A.; Roy, K.K.; He, X.; Kabir, M.R.; Singh, P.K.; Khan, M.A.R.; Rahman, M.; Wang, G.-L. Wheat blast: A new threat to food security. Phytopathol. Res. 2020, 2, 28. [Google Scholar] [CrossRef]
- Tembo, B.; Mulenga, R.M.; Sichilima, S.; M’siska, K.K.; Mwale, M.; Chikoti, P.C.; Singh, P.K.; He, X.; Pedley, K.F.; Peterson, G.L. Detection and characterization of fungus (Magnaporthe oryzae pathotype Triticum) causing wheat blast disease on rain-fed grown wheat (Triticum aestivum L.) in Zambia. PLoS ONE 2020, 15, e0238724. [Google Scholar] [CrossRef]
- Igarashi, S. Pyricularia em trigo. 1. Ocorrencia de Pyricularia sp noestado do Parana. Fitopatol. Bras. 1986, 11, 351–352. [Google Scholar]
- Islam, M.T.; Croll, D.; Gladieux, P.; Soanes, D.M.; Persoons, A.; Bhattacharjee, P.; Hossain, M.S.; Gupta, D.R.; Rahman, M.M.; Mahboob, M.G. Emergence of wheat blast in Bangladesh was caused by a South American lineage of Magnaporthe oryzae. BMC Biol. 2016, 14, 84. [Google Scholar] [CrossRef] [PubMed]
- Latorre, S.M.; Were, V.M.; Foster, A.J.; Langner, T.; Malmgren, A.; Harant, A.; Asuke, S.; Reyes-Avila, S.; Gupta, D.R.; Jensen, C. Genomic surveillance uncovers a pandemic clonal lineage of the wheat blast fungus. PLoS Biol. 2023, 21, e3002052. [Google Scholar]
- Ha, X.; Koopmann, B.; von Tiedemann, A. Wheat blast and Fusarium head blight display contrasting interaction patterns on ears of wheat genotypes differing in resistance. Phytopathology 2016, 106, 270–281. [Google Scholar] [CrossRef]
- Bhat, A.I.; Aman, R.; Mahfouz, M. Onsite detection of plant viruses using isothermal amplification assays. Plant Biotechnol. J. 2022, 20, 1859–1873. [Google Scholar] [CrossRef]
- Venbrux, M.; Crauwels, S.; Rediers, H. Current and emerging trends in techniques for plant pathogen detection. Front. Plant Sci. 2023, 14, 1120968. [Google Scholar] [CrossRef] [PubMed]
- Zaghloul, H.; El-Shahat, M. Recombinase polymerase amplification as a promising tool in hepatitis C virus diagnosis. World J. Hepatol. 2014, 6, 916. [Google Scholar] [CrossRef] [PubMed]
- Daher, R.K.; Stewart, G.; Boissinot, M.; Bergeron, M.G. Recombinase polymerase amplification for diagnostic applications. Clin. Chem. 2016, 62, 947–958. [Google Scholar] [CrossRef]
- Babu, B.; Ochoa-Corona, F.M.; Paret, M.L. Recombinase polymerase amplification applied to plant virus detection and potential implications. Anal. Biochem. 2018, 546, 72–77. [Google Scholar] [CrossRef]
- Vasileva Wand, N.I.; Bonney, L.C.; Watson, R.J.; Graham, V.; Hewson, R. Point-of-care diagnostic assay for the detection of Zika virus using the recombinase polymerase amplification method. J. Gen. Virol. 2018, 99, 1012–1026. [Google Scholar] [CrossRef]
- Li, C.; Ju, Y.; Shen, P.; Wu, X.; Cao, L.; Zhou, B.; Yan, X.; Pan, Y. Development of recombinase polymerase amplification combined with lateral flow detection assay for rapid and visual detection of Ralstonia solanacearum in tobacco. Plant Dis. 2021, 105, 3985–3989. [Google Scholar] [CrossRef] [PubMed]
- Xu, C.; Li, L.; Jin, W.; Wan, Y. Recombinase polymerase amplification (RPA) of CaMV-35S promoter and nos terminator for rapid detection of genetically modified crops. Int. J. Mol. Sci. 2014, 15, 18197–18205. [Google Scholar] [CrossRef] [PubMed]
- Hu, S.; Yan, C.; Yu, H.; Zhang, Y.; Zhang, C.-Q. Establishment of the recombinase polymerase amplification–lateral flow dipstick detection technique for Fusarium oxysporum. Plant Dis. 2023, 107, 2665–2672. [Google Scholar] [CrossRef] [PubMed]
- Posthuma-Trumpie, G.A.; Korf, J.; van Amerongen, A. Lateral flow (immuno) assay: Its strengths, weaknesses, opportunities and threats. A literature survey. Anal. Bioanal. Chem. 2009, 393, 569–582. [Google Scholar] [CrossRef]
- Kasfy, S.H.; Hia, F.T.; Islam, T. Do CRISPR-based disease diagnosis methods qualify as point-of-care diagnostics for plant diseases? Nucleus 2024, 67, 11–24. [Google Scholar] [CrossRef]
- Islam, T.; Kasfy, S.H. CRISPR-based point-of-care plant disease diagnostics. Trends Biotechnol. 2023, 41, 144–146. [Google Scholar] [CrossRef]
- Kang, H.; Peng, Y.; Hua, K.; Deng, Y.; Bellizzi, M.; Gupta, D.R.; Mahmud, N.U.; Urashima, A.S.; Paul, S.K.; Peterson, G. Rapid detection of wheat blast pathogen Magnaporthe oryzae Triticum pathotype using genome-specific primers and Cas12a-mediated technology. Engineering 2021, 7, 1326–1335. [Google Scholar] [CrossRef]
- Sánchez, E.; Ali, Z.; Islam, T.; Mahfouz, M. A CRISPR-based lateral flow assay for plant genotyping and pathogen diagnostics. Plant Biotechnol. J. 2022, 20, 2418–2429. [Google Scholar] [CrossRef]
- Tanny, T.; Sallam, M.; Soda, N.; Nguyen, N.-T.; Alam, M.; Shiddiky, M.J. CRISPR/Cas-based diagnostics in agricultural applications. J. Agric. Food Chem. 2023, 71, 11765–11788. [Google Scholar] [CrossRef] [PubMed]
- Islam, T. Genomic surveillance for tackling emerging plant diseases, with special reference to wheat blast. CABI Rev. 2024, 19, 1–16. [Google Scholar] [CrossRef]
- Lu, X.; Zheng, Y.; Zhang, F.; Yu, J.; Dai, T.; Wang, R.; Tian, Y.; Xu, H.; Shen, D.; Dou, D. A rapid, equipment-free method for detecting Phytophthora infestans in the field using a lateral flow strip-based recombinase polymerase amplification assay. Plant Dis. 2020, 104, 2774–2778. [Google Scholar] [CrossRef]
- Gupta, D.R.; Surovy, M.Z.; Mahmud, N.U.; Chakraborty, M.; Paul, S.K.; Hossain, M.S.; Bhattacharjee, P.; Mehebub, M.S.; Rani, K.; Yeasmin, R. Suitable methods for isolation, culture, storage and identification of wheat blast fungus Magnaporthe oryzae Triticum pathotype. Phytopathol. Res. 2020, 2, 30. [Google Scholar] [CrossRef]
- Durante, L.G.Y.; Bacchi, L.M.A.; Souza, J.E.d.; Graichen, F.A.S. Reaction of wheat plants and alternative hosts to Magnaporthe oryzae. Arq. Inst. Biológico 2018, 85, e0952017. [Google Scholar] [CrossRef]
- Hulme, P.E. Unwelcome exchange: International trade as a direct and indirect driver of biological invasions worldwide. One Earth 2021, 4, 666–679. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, W.; Wang, Y.; Zheng, X. Rapid and sensitive detection of Phytophthora sojae in soil and infected soybeans by species-specific polymerase chain reaction assays. Phytopathology 2006, 96, 1315–1321. [Google Scholar] [CrossRef] [PubMed]
- Dai, T.; Yang, X.; Hu, T.; Jiao, B.; Xu, Y.; Zheng, X.; Shen, D. Comparative evaluation of a novel recombinase polymerase amplification-lateral flow dipstick (RPA-LFD) assay, LAMP, conventional PCR, and leaf-disc baiting methods for detection of Phytophthora sojae. Front. Microbiol. 2019, 10, 1884. [Google Scholar] [CrossRef] [PubMed]
- Valent, B.; Cruppe, G.; Stack, J.P.; Cruz, C.; Farman, M.L.; Paul, P.A.; Peterson, G.L.; Pedley, K.F. Recovery plan for wheat blast caused by Magnaporthe oryzae pathotype Triticum. Plant Health Prog. 2021, 22, 182–212. [Google Scholar] [CrossRef]







| Primer | Sequence | Reference/Use |
|---|---|---|
| MoT6098 F | ACCAATATCACCTGAACGCAGACAT | Conventional PCR |
| MoT6098 R | GATTCCAGATTCACCACCAAAACAG | [19] |
| P98-1dRP 3F | TAACGGGCAGTCGCTAATGGTGTAGGTACTT | Conventional PCR |
| P98-1dRP3R | CTTGATTCTCTTGGGCTCCTGGCATTTCGG | Conventional PCR |
| F-P981dRP-3F | 5′-[FAMdT]TAACGGGCAGTCGCTAATGGTGTAGGTACTT | For RPA by Peng Ye and her group (unpublished) |
| B-P981dRP-3R | 5′-BiotinCTTGATTCTCTTGGGCTCCTGGCATTTCGG | For RPA by Peng Ye and her group (unpublished) |
| NfoPC-P981dRP | GCCTCACTTTACCGATTTGCTGGTCGAA (THF)CATGTGGCAGTGTCCTC, 3′, C3Spacer | For RPA by Peng Ye and her group (unpublished) |
| Pathogen | Isolate | Host Plant |
|---|---|---|
| Magnaporthe oryzae Triticum | BTJP 3-1 | Wheat |
| M. oryzae Triticum | BTJP 4-1 | Wheat |
| M. oryzae Triticum | BTJP 4-5 | Wheat |
| M. oryzae Triticum | BTMP 1845-3 | Wheat |
| M. oryzae Triticum | BTMP 1839-2 | Wheat |
| M. oryzae Oryzae | RB13b | Rice |
| M. oryzae Oryzae | RbMe1819-3 | Rice |
| M. oryzae Oryzae | RBTa 1849-2 | Rice |
| M. oryzae Oryzae | RbMe 1816-2 | Rice |
| M. oryzae Oryzae | Br48 | Rice |
| Bipolaris sorokiniana | IBGEBs-2402 | Wheat |
| Fusarium oxysporum | BTFD1 | Dragon fruit |
| Colletotrichum gloeosporioides | MHPR2 | Mango |
| Botryodiplodia theobromae | MAHR5 | Mango |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Gupta, D.R.; Kasfy, S.H.; Ali, J.; Hia, F.T.; Hoque, M.N.; Rahman, M.; Islam, T. Validation and Improvement of a Rapid, CRISPR-Cas-Free RPA-PCRD Strip Assay for On-Site Genomic Surveillance and Quarantine of Wheat Blast. J. Fungi 2026, 12, 73. https://doi.org/10.3390/jof12010073
Gupta DR, Kasfy SH, Ali J, Hia FT, Hoque MN, Rahman M, Islam T. Validation and Improvement of a Rapid, CRISPR-Cas-Free RPA-PCRD Strip Assay for On-Site Genomic Surveillance and Quarantine of Wheat Blast. Journal of Fungi. 2026; 12(1):73. https://doi.org/10.3390/jof12010073
Chicago/Turabian StyleGupta, Dipali Rani, Shamfin Hossain Kasfy, Julfikar Ali, Farin Tasnova Hia, M. Nazmul Hoque, Mahfuz Rahman, and Tofazzal Islam. 2026. "Validation and Improvement of a Rapid, CRISPR-Cas-Free RPA-PCRD Strip Assay for On-Site Genomic Surveillance and Quarantine of Wheat Blast" Journal of Fungi 12, no. 1: 73. https://doi.org/10.3390/jof12010073
APA StyleGupta, D. R., Kasfy, S. H., Ali, J., Hia, F. T., Hoque, M. N., Rahman, M., & Islam, T. (2026). Validation and Improvement of a Rapid, CRISPR-Cas-Free RPA-PCRD Strip Assay for On-Site Genomic Surveillance and Quarantine of Wheat Blast. Journal of Fungi, 12(1), 73. https://doi.org/10.3390/jof12010073

