17β-Estradiol Does Not Designate Non-Sex-Specific Early Ventricular Arrhythmia in Acute Myocardial Infarction, in Contrast to C-Reactive Protein
Abstract
1. Introduction
Objectives
2. Results
3. Discussion
Limitations
4. Materials and Methods
4.1. ECG Analysis
4.2. Immunologic Methods
4.3. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| AMI | acute myocardial infarction |
| STEMI | acute myocardial infarction with persistent ST elevation |
| NSTEMI | acute myocardial infarction with non-persistent ST elevation |
| CAD | coronary artery disease |
| PCI | percutaneous coronary intervention |
| HR | heart rate |
| QTcmin | minimal corrected repolarization period |
| QTcmax | maximal corrected repolarization period |
| QTcd | dispersion of coronary repolarization |
| CK | creatine kinase |
| CPK-MB | muscle–brain fraction of CK |
| hs TnT | high-sensitivity troponin T |
| E2 | total 17β-estradiol |
| E2/T | total 17β-estradiol-to-total testosterone ratio |
| CRP | C-reactive protein |
| oxLDL | oxidized low-density lipoproteins |
| HDL | high-density lipoprotein |
| LDL | low-density lipoprotein |
| TG | triglycerides |
| oxLDL | oxidized low-density lipoprotein |
| WBC | white blood cell |
| EF | ejection fraction |
References
- Bazett, H.C. An analysis of the time relations of electrocardiograms. Heart 1920, 7, 353–370. [Google Scholar] [CrossRef]
- Rautaharju, P.M.; Zhou, S.H.; Gregg, R.E.; Startt-Selvester, R.H. Electrocardiographic estimates of action potential durations and transmural repolarization time gradients in healthy subjects and in acute coronary syndrome patients—Profound differences by sex and by presence vs absence of diagnostic ST elevation. J. Electrocardiol. 2011, 44, 309–319. [Google Scholar] [CrossRef] [PubMed]
- Duijyenboden, S.; Ramirez, J.; Young, W.J.; Orini, M.; Mifsud, B.; Tinker, A.; Lambiase, P.D.; Munroe, P. Genomic and pleiotropic analyses of resting QT interval identifies novel loci and overlap with atrial electrical disorders. Hum. Mol. Genet. 2021, 30, 2513–2523. [Google Scholar] [CrossRef]
- Davey, P. QT interval and mortality from coronary artery disease. Prog. Cardiovasc. Dis. 2000, 42, 359–384. [Google Scholar] [CrossRef]
- Nielsen, J.B.; Graff, C.; Rasmussen, P.V.; Pietersen, A.; Lind, B.; Olesen, M.S.; Struijk, J.J.; Haunsø, S.; Svendsen, J.H.; Køber, L.; et al. Risk prediction of cardiovascular death based on the QTc interval: Evaluating age and gender difference in a large primary care population. Eur. Heart J. 2014, 35, 1335–1344. [Google Scholar] [CrossRef]
- Williams, E.S.; Thomas, K.L.; Broderick, S.; Shaw, L.K.; Velazquez, E.J.; Al-Khatib, S.M.; Daubert, J.P. Race and gender variation in the QT interval and its association with mortality in patients with coronary artery disease: Results from the Duke Databank for Cardiovascular Disease (DDCD). Am. Heart J. 2012, 164, 434–441. [Google Scholar] [CrossRef]
- Higham, P.D.; Furniss, S.S.; Campbell, R.W. QT dispersion and components of the QT interval in ischaemia and infarction. Br. Heart J. 1995, 73, 32–36. [Google Scholar] [CrossRef]
- Ikonomidis, I.; Athanassopoulos, G.; Karatasakis, G.; Manolis, A.S.; Marinou, M.; Economou, A.; Cokkinos, D.V. Dispersion of ventricular repolarization is determined by the presence of myocardial viability in patients with old myocardial infarction. Eur. Heart J. 2000, 21, 446–456. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Merri, M.; Benhorin, J.; Alberti, M.; Locati, E.; Moss, A.J. Electrocardiographic quantitation of ventricular repolarisation. Circulation 1989, 80, 1301–1308. [Google Scholar] [CrossRef]
- Ueda, H.; Hayashi, T.; Tsumura, K.; Kaitani, K.; Yoshumaru, K.; Nakayama, Y.; Yoshiyama, M. QT dispersion and prognosis after coronary stent placement in acute myocardial infarction. Clin. Cardiol. 2007, 30, 229–233. [Google Scholar] [CrossRef]
- Kassotis, J.; Costeas, C.; Bedi, A.K.; Tolat, A.; Reiffel, J. Effects of aging and gender on QT dispersion in an overtly healthy population. Pacing Clin. Electrophysiol. 2000, 23, 1121–1126. [Google Scholar] [CrossRef] [PubMed]
- Rautaharju, P.M.; Prineas, R.J.; Wood, J.; Zhang, Z.; Crow, R.; Heiss, G. Electrocardiographic predictors of new-onset heart failure in men and in women free of coronary heart disease (from the Atherosclerosis in Communities [ARIC] Study). Am. J. Cardiol. 2007, 100, 1437–1441. [Google Scholar] [CrossRef] [PubMed]
- Singh, M.; Hamzi, K.; Toupin, S.; Dillinger, J.G.; Henry, P.; Cayla, G.; Schiele, F.; Ferrieres, J.; Simon, T.; Danchin, N.; et al. Sex-specific models to predict 5-year mortality after ST-elevation myocardial infarction using machine learning: Insight from FAST-MI registry. Eur. Heart J. 2024, 45, ehae666.1564. [Google Scholar] [CrossRef]
- Warnock, R.K.; Modi, R.D.; Westerman, S.B. Sex and gender differences in ventricular arrhythmias. US Cardiol. Rev. 2023, 17, e12. [Google Scholar] [CrossRef]
- Zaman, S.; Deshmukh, T.; Aslam, A.; Martin, C.; Kovoor, P. Sex differences in electrophysiology, ventricular tachyarrhythmia, cardiac arrest and sudden cardiac death following acute myocardial infarction. Heart Lung Circ. 2020, 29, 1025–1031. [Google Scholar] [CrossRef]
- Saxena, S.; Goldenberg, I.; McNitt, S.; Hsich, E.; Kutyifa, V.; Bragazzi, N.L.; Polonsky, B.; Aktas, M.K.; Huang, D.T.; Rosero, S.; et al. Sex differences in the risk of first and recurrent ventricular tachyarrhythmias among patients receiving an implantable cardioverter-defibrillator for primary prevention. JAMA Netw. Open 2022, 5, e2217153. [Google Scholar] [CrossRef]
- Prajapati, C.; Koivumäki, J.; Pekkanen-Mattila, M.; Aalto-Setälä, K. Sex differences in heart: From basics to clinics. Eur. J. Med. Res. 2022, 27, 241. [Google Scholar] [CrossRef]
- Zhang, Y.; Ouyang, P.; Post, W.S.; Dalal, D.; Vaidya, D.; Blasco-Colmenares, E.; Soliman, E.Z.; Tomaselli, G.F.; Guallar, E. Sex-steroid hormones and electrocardiographic QT-interval duration: Findings from the Third National Health and Nutrition Examination Survey and the Multi-Ethnic Study of Atherosclerosis. Am. J. Epidemiol. 2011, 174, 403–411. [Google Scholar] [CrossRef]
- Gillis, A.M. Atrial fibrillation and ventricular arrhythmias: Sex differences in electrophysiology, epidemiology, clinical presentation, and clinical outcomes. Circulation 2017, 135, 593–608. [Google Scholar] [CrossRef]
- Tanindi, A.; Akgun, N.; Pabuccu, E.G.; Gursoy, A.Y.; Yüce, E.; Tore, H.F.; Duvan, C.I. Electrocardiographic P-wave duration, QT Interval, T peak to end interval and Tp-e/QT Ratio in pregnancy with respect to trimesters. Ann. Noninvasive Electrocardiol. 2016, 21, 169–174. [Google Scholar] [CrossRef]
- Odening, K.E.; Choi, B.-R.; Liu, G.X.; Hartmann, K.; Ziv, O.; Chaves, L.; Schofield, L.; Centracchio, J.; Zehender, M.; Peng, X.; et al. Estradiol promotes sudden cardiac death in transgenic long QT type 2 rabbits while progesterone is protective. Heart Rhythm 2012, 9, 823–832. [Google Scholar] [CrossRef]
- Sedlak, T.; Shufelt, C.; Iribarren, C.; Lyon, L.L.; Bairey Merz, N.C. Oral contraceptive use and the ECG: Evidence of an adverse QT effect on corrected QT interval. Ann. Noninvasive Electrocardiol. 2013, 18, 389–398. [Google Scholar] [CrossRef]
- Grouthier, V.; Lebrun-Vignes, B.; Glazer, A.M.; Touraine, P.; Funck-Brentano, C.; Pariente, A.; Courtillot, C.; Bachelot, A.; Roden, D.M.; Moslehi, J.J.; et al. Increased long QT and torsade de pointes reporting on tamoxifen compared with aromatase inhibitors. Heart 2018, 104, 1859–1863. [Google Scholar] [CrossRef]
- Maison, O.; la Gastine, B.; Dayot, L.; Goutelle, S. Prevalence and risk factors of drug-associated corrected QT prolongation in elderly hospitalized patients: Results of a retrospective analysis of data obtained over 6 months. Drugs Aging 2017, 34, 545–553. [Google Scholar] [CrossRef]
- Semerdzhieva, N.E.; Tsakova, A.T.; Lozanova, V.V. Sex-Specific impact of 17β-estradiol and testosterone levels oninflammation and injury in acute myocardialinfarction—Preliminary results. Biomedicines 2025, 13, 1466. [Google Scholar] [CrossRef]
- Fang, L.; Moore, X.; Dart, A.M.; Wang, L. Systemic inflammatory response following acute myocardial infarction. J. Geritar Cardiol. 2015, 12, 305–312. [Google Scholar]
- Regitz-Zagrosek, V. Sex and gender differences in heart failure. Int. J. Heart Fail. 2020, 2, 157–181. [Google Scholar] [CrossRef] [PubMed]
- Haas, M.J.; Feng, V.; Gonzales, K.; Onstead-Haas, L.; Mooradian, A.D. High-throughput analysis identifying drugs that reduce oxidative and ER stress in human coronary artery endothelial cells. Eur. J. Pharmacol. 2020, 879, 173119. [Google Scholar] [CrossRef]
- Bozdogan, O.; Bozcaarmutlu, A.; Kaya, S.T.; Sapmaz, C.; Ozarslan, T.O.; Eksioglu, D.; Yasar, S. Decreasing myocardial estrogen receptors and antioxidant activity may be responsible for increasing ischemia- and reperfusion-induced ventricular arrhythmia in older female rats. Life Sci. 2021, 271, 119190. [Google Scholar] [CrossRef] [PubMed]
- Medvedev, R.Y.; Sanchez-Alonso, J.L.; Mansfield, C.A.; Judina, A.; Francies, A.J.; Pagiatakis, C.; Trayanova, N.; Glukhov, A.V.; Miragoli, M.; Faggian, G.; et al. Local hyperactivation of L-type Ca2+ channels increases spontaneous Ca2+ release activity and cellular hypertrophy in right ventricular myocytes from heart failure rats. Sci. Rep. 2021, 11, 4840. [Google Scholar] [CrossRef]
- Rennison, J.H.; Van Wagoner, D.R. Impact of dietary fatty acids on cardiac arrhythmogenesis. Circ. Arrhythm. Electrophysiol. 2009, 2, 460–469. [Google Scholar] [CrossRef][Green Version]
- Pitha, J.; Huttl, M.; Malinska, H.; Miklanova, D.; Bartuskova, H.; Hlinka, T.; Markova, I. Cardiovascular, metabolic and inflammatory changes after ovariectomy and estradiol substitution in hereditary hypertriglyceridemic rats. Int. J. Mol. Sci. 2022, 23, 2825. [Google Scholar] [CrossRef]
- Petkova-Kirova, P.S.; Gursoy, E.; Mehdi, H.; McTiernan, C.F.; London, B.; Salama, G. Electrical remodeling of cardiac myocytes from mice with heart failure due to the overexpression of tumor necrosis factor-alpha. Am. J. Physiol. Heart Circ. Physiol. 2006, 290, H2098-107. [Google Scholar] [CrossRef]
- Li, Y.H.; Rozanski, G.J. Effects of human recombinant interleukin-1 on electrical properties of guinea pig ventricular cells. Cardiovasc. Res. 1993, 27, 525–530. [Google Scholar] [CrossRef] [PubMed]
- Adlan, A.M.; Panoulas, V.F.; Smith, J.P.; Fisher, J.P.; Kitas, G.D. Association between corrected QT interval and inflammatory cytokines in rheumatoid arthritis. J. Rheumatol. 2015, 42, 421–428. [Google Scholar] [CrossRef] [PubMed]
- Lazzerini, P.E.; Cantara, S.; Bertolozzi, I.; Accioli, R.; Salvini, V.; Cartocci, A.; C’Errico, A.; Sestini, F.; Bisogno, S.; Cevenini, G.; et al. Transient hypogonadism is associated with heart rate-corrected QT prolongation and Torsades de Pointes risk during active systemic inflammation in men. J. Am. Heart Assoc. 2022, 11, e023371. [Google Scholar] [CrossRef] [PubMed]
- Gulletta, S.; Della Bella, P.; Pannone, L.; Falasconi, G.; Cianfanelli, L.; Altizio, S.; Cinel, E.; Da Prat, V.; Napolano, A.; D’Angelo, G.; et al. QTc interval prolongation, inflammation, and mortality in patients with COVID 19. J. Interv. Cardiac. Electrophysiol. 2022, 63, 441–448. [Google Scholar] [CrossRef]
- Infante, M.; Pieri, M.; Lupisella, S.; D’Amore, L.; Bernardini, S.; Fabbri, A.; Iannetta, M.; Andreoni, M.; Morello, M. Low testosterone levels and high estradiol to testosterone ratio are associated with hyperinflammatory state and mortality in hospitalized men with COVID-19. Eur. Rev. Med. Pharm. Sci. 2021, 25, 5889–5903. [Google Scholar]
- Carleton, N.; Zou, J.; Lee, S.; Sheeba, D.J.; Mary, J.; Li, R.; Atkinson, J.; Huang, Z.; Osmanbeyoglu, H.; Lucas, P.; et al. Age-related remodeling of the systemic and breast microenvironment promotes a tumor-permissive locale for ER+ breast cancer in older women. Cancer Res. 2024, 84, PO1-14-09. [Google Scholar] [CrossRef]
- Vermeulen, A.; Deslypere, J.P.; Paridaens, R.; Leclercq, G.; Roy, F.; Heuson, J.C. Aromatase, 17β-hydroxysteroid dehydrogenase and intratissular sex hormone concentrations in cancerous and normal glandular breast tissue in postmenopausal women. Eur. J. Cancer Clin. Oncol. 1986, 22, 515–525. [Google Scholar] [CrossRef]
- Erlandsdotter, L.; Giammarino, L.; Halili, A.; Nikesjö, J.; Gréen, H.; Odening, K.E.; Liin, S.I. Long-QT mutations in KCNE1 modulate the 17β-estradiol response of Kv7.1/KCNE1. Sci. Adv. 2023, 9, eade7109. [Google Scholar] [CrossRef]
- Rautaharju, P.M.; Surawics, B.; Gettes, L.S. AHA/ACCF/HRS recommendations for the standardization and interpretation of the electrocardiogram: Part IV: The ST segment, T and U waves, and the QT interval. J. Am. Coll. Cardiol. 2009, 53, 982–991. [Google Scholar] [CrossRef] [PubMed]
- Prieto, B.; Miguel, D.; Costa, M.; Coto, D.; Alvarez, F.V. New quantitative eletrochemiluminescence method (ECLIA) for interleukin-6 (IL-6) measurement. Clin. Chem. Lab. Med. 2010, 48, 835–838. [Google Scholar] [CrossRef] [PubMed]
- Fraley, A.E.; Tsimikas, S. Clinical applications of circulating oxidized low-density lipoprotein biomarkers in cardiovascular disease. Curr. Opin. Lipidol. 2006, 17, 502–509. [Google Scholar] [CrossRef] [PubMed]


| Variable | |
|---|---|
| Ventricular arrhythmia, n (%) | 11 (12.8) |
| Sex (men/women), n (%) | 50 (58.1)/36 (41.9) |
| Age, years | 71.8 ± 8.3 |
| Hypertension, n (%) | 86 (100) |
| DM, n (%) | 31 (36) |
| Dyslipidemia, n (%) | 69 (80.2) |
| HR, bpm | 76.7 ± 16.9 |
| QTc, msec | 439.3 ± 35.3 |
| QTcmin, msec | 386.8 ± 44.6 |
| QTcmax, msec | 484.2 ± 60.8 |
| QTcd, msec | 97.4 ± 45.1 |
| E2, pmol/L | 129.9 ± 99.1 |
| E2/T | 0.07 ± 0.12 |
| EF, % | 51.8 ± 11.6 |
| NSTEMI, n (%) | 39 (45.4) |
| STEMI, n % | 46 (53.5) |
| Gensini score | 42.5 ± 35.7 |
| WBC, ×109/L | 10.5 ± 4 |
| CRP mg/L | 23.4 ± 35.3 |
| oxLDL, mg/dL | 8.7 ± 6.0 |
| CK, U/L | 889.1 ± 1232.6 |
| CK—MB, U/L | 96.1 ± 141.4 |
| hsTnT, ng/mL | 2.4 ± 3.3 |
| Percutaneous coronary intervention, n (%) | 76 (88.3) |
| Rhythm- or rate-control therapy at presentation | |
| β-blocker, n (%) | 34 (39.5) |
| Amiodarone, n (%) | 3 (3.4) |
| Variable | No VA | VA | p-Value | Odds Ratio | Univariate | Regression | Odds Ratio | Multivariate | Regression |
|---|---|---|---|---|---|---|---|---|---|
| 95%CI | p-Value | 95%CI | p-Value | ||||||
| Male patients | 43 (86) | 7 (14) | NS | ||||||
| Female patients | 32 (88.9) | 4 (11.1) | NS | ||||||
| Age, years | 65.9 ± 12.8 | 64.9 ± 8.2 | 0.806 | 0.999 | 0.950–1.040 | 0.760 | |||
| STEMI | 39 (84.8) | 7 (15.2) | NS | ||||||
| HR | 76.7 ± 16.1 | 77.4 ± 24.9 | 0.955 | 1.003 | 0.960–1.047 | 0.910 | |||
| QTcmin | 383.7 ± 41 | 417.7 ± 67.9 | 0.053 * | 1.015 | 0.999–1.032 | 0.061 * | 1.018 | 0.992–1.075 | 0.172 |
| QTcmax | 478.8 ± 55.3 | 538.7 ± 88.8 | 0.012 ** | 1.015 | 1.002–1.028 | 0.020 ** | 1.006 | 0.988–1.024 | 0.532 |
| QTcd | 95.1 ± 41 | 120.1 ± 75.8 | 0.162 | 1.010 | 0.996–1.025 | 0.173 | |||
| E2 | 124.5 ± 79 | 181 ± 192.8 | 0.089 * | 1.000 | 1.000–1.010 | 0.129 | |||
| E2/T | 0.08 ± 0.13 | 0.05 ± 0.06 | 0.513 | 0.016 | 0.000–309.2 | 0.412 | |||
| EF | 53.6 ± 10.8 | 38.8 ± 9.6 | 0.0001 ** | 0.890 | 0.820–0.950 | 0.001 ** | 0.876 | 0.704–1.003 | 0.054 * |
| Gensini score | 41.2 ± 35.8 | 47.6 ± 33.3 | 0.591 | 1.010 | 1.000–1.030 | 0.139 | |||
| WBC | 10.1 ± 3.8 | 12.9 ± 5.1 | 0.025 ** | 1.170 | 1.010–1.350 | 0.033 ** | 0.823 | 0.539–1.003 | 0.364 |
| CRP | 22.7 ± 35.9 | 50.5 ± 48.6 | 0.031 ** | 1.010 | 1.000–1.030 | 0.057 * | 1.026 | 0.997–1.056 | 0.077 * |
| oxLDL | 8.8 ± 6.3 | 8.4 ± 4.3 | 0.839 | 0.999 | 0.870–1.120 | 0.837 |
| Ejection Fraction | Q4 | Q1 | p-Value | Odds Ratio | Univariate | Regression | Odds Ratio | Multivariate | Regression |
|---|---|---|---|---|---|---|---|---|---|
| n-38/13 | 95% CI | p-Value | 95% CI | p-Value | |||||
| Age | 65.7 ± 13.3 | 69.6 ± 10.8 | 0.506 | 1.000 | 0.990–1.040 | 0.353 | |||
| E2 | 109.4 ± 72.3 | 168.1 ± 184.4 | 0.013 ** | 1.004 | 0.998–1.010 | 0.131 | |||
| E2/T | 0.08 ± 0.13 | 0.11 ± 0.13 | 0.117 | 5.700 | 0.090–368.7 | 0.414 | |||
| CK | 407.7 ± 1081.8 | 1081.8 ± 1270.8 | 0.005 ** | 1.001 | 1.000–1.002 | 0.018 ** | 1.000 | 1.000–1000 | 0.647 |
| CK-MB | 49.7 ± 51.1 | 126.3 ± 137.9 | 0.046 ** | 1.010 | 1.002–1.018 | 0.018 ** | 1.010 | 0.980–1.040 | 0.592 |
| hsTnT | 1.2 ± 2.3 | 3.9 ± 4.5 | 0.033 ** | 1.290 | 1.050–1.590 | 0.016 ** | 1.170 | 0.860–1.600 | 0.305 |
| Gensini score | 28.7 ± 24.8 | 65.8 ± 41.6 | 0.013 ** | 1.030 | 1.010–1.060 | 0.003 ** | 1.030 | 1.000–1.060 | 0.065 * |
| WBC | 9.6 ± 3.3 | 12 ± 4.4 | 0.031 ** | 1.180 | 1.010–1.390 | 0.043 ** | 0.970 | 0.750–1.240 | 0.841 |
| CRP | 13.1 ± 13.7 | 33.7 ± 51.3 | 0.022 ** | 1.030 | 1.010–1.060 | 0.060 * | 1.020 | 0.980–1.060 | 0.424 |
| oxLDL | 9.3 ± 6.6 | 9.2 ± 4.2 | 0.953 | 1.028 | 0.997–1.059 | 0.952 |
| CRP | Q1 | Q4 | p-Value | Odds Ratio | Univariate | Regression | Odds Ratio | Multivariate | Regression |
|---|---|---|---|---|---|---|---|---|---|
| n-21/21 | 95% CI | p-Value | 95% CI | p-Value | |||||
| Age | 67.8 ± 12.6 | 67.7 ± 10.5 | 0.979 | 0.999 | 0.947–1.054 | 0.978 | |||
| CK | 195.4 ± 178.3 | 195.4 ± 178.3 | 0.0001 ** | 1.004 | 1.001–1.0077 | 0.007 ** | 0.999 | 0.996–1.003 | 0. 723 |
| CK-MB | 49.7 ± 51.1 | 126.3 ± 137.9 | 0.046 ** | 1.010 | 1.002–1.018 | 0.018 ** | 1.098 | 1.001–1.191 | 0.026 ** |
| hsTnT | 0.6 ± 2.1 | 3.6 ± 3.9 | 0.002 ** | 1.739 | 1.106–2.736 | 0.017 ** | 0.643 | 0.349–1.185 | 0.157 |
| Gensini score | 36.7 ± 29.7 | 53.8 ± 36.8 | 0.101 | 1.016 | 0.997–1.036 | 0.108 | |||
| WBC | 9.5 ± 3.9 | 11.4 ± 4.2 | 0.089 * | 1.129 | 0.960–1.528 | 0.144 | |||
| oxLDL | 8.3 ± 4.7 | 9.7 ± 5.5 | 0.139 | 1.062 | 0.925–1.220 | 0.395 |
| E2 | Q1 | Q4 | p-Value | Odds Ratio | Univariate | Regression | Odds Ratio | Multivariate | Regression |
|---|---|---|---|---|---|---|---|---|---|
| n-21/20 | 95% CI | p-Value | 95% CI | p-Value | |||||
| Age, years | 67.7 ± 11.1 | 67.9 ± 159.3 | 0.392 | 1.004 | 0.993–1.014 | 0.495 | |||
| E2/T | 0.08 ± 0.08 | 0.09 ± 0.19 | 0.892 | 1.500 | 0.020–113.9 | 0.855 | |||
| CK | 394.4 ± 472.1 | 1116 ± 1257.9 | 0.021 ** | 1.001 | 1.001–1.002 | 0.047 ** | 1.010 | 0.998–1.004 | 0.587 |
| CK-MB | 54.5 ± 69.9 | 134.7 ± 145.4 | 0.028 ** | 1.007 | 0.999–1.015 | 0.065 * | 1.000 | 0.979–1.027 | 0.993 |
| hsTnT | 1.3 ± 2.4 | 2.9 ± 2.8 | 0.051 * | 1.280 | 0.968–1.693 | 0.083 * | 1.115 | 0.823–1.510 | 0.484 |
| Gensini score | 35.9 ± 29.2 | 54.6 ± 29.2 | 0.092 * | 1.017 | 0.996–1.037 | 0.114 | |||
| CRP | 10.5 ± 13.2 | 49.9 ± 57.2 | 0.005 ** | 1.050 | 1.005–1.098 | 0.029 ** | 1.050 | 1.000–1.100 | 0.042 ** |
| WBC | 8.9 ± 2.3 | 11.4 ± 4.3 | 0.027 ** | 1.248 | 0.998–1.558 | 0.052 * | 1.250 | 0.910–1.700 | 0.160 |
| oxLDL | 8.6 ± 6.7 | 9.5 ± 6.4 | 0.652 | 1.020 | 0.921–1.230 | 0.700 |
| QTcmax | Q1 | Q4 | p-Value | Odds Ratio | Univariate | Regression | Odds Ratio | Multivariate | Regression |
|---|---|---|---|---|---|---|---|---|---|
| n-11/11 | 95% CI | p-Value | 95% CI | p-Value | |||||
| Age | 64.5 ± 9.2 | 62.6 ± 11.8 | 0.677 | 0.980 | 0.900–1.070 | 0.660 | |||
| E2 | 136.5 ± 85.7 | 156.3 ± 190.8 | 0.758 | 1.000 | 0.990–1.010 | 0.745 | |||
| E2/T | 0.11 ± 0.17 | 0.05 ± 0.05 | 0.336 | 0.010 | 0.0001–101.7 | 0.345 | |||
| CK | 446.4 ± 681.1 | 1400.6 ± 1527.0 | 0.209 | 1.000 | 0.999–1.001 | 0.212 | |||
| CK-MB | 81.6 ± 86.3 | 146.2 ± 155.7 | 0.243 | 1.003 | 0.996–1.516 | 0.246 | |||
| hsTnT | 1.5 ± 1.6 | 0.6 ± 4.5 | 0.050 * | 1.190 | 0.934–1.516 | 0.076 * | 1.330 | 0.860–2.600 | 0.207 |
| Gensini score | 22.8 ± 16.7 | 63.4 ± 45.7 | 0.022 ** | 1.040 | 1.000–1.090 | 0.046 ** | 1.010 | 0.970–1.060 | 0.549 |
| EF | 54.3 ± 11.9 | 43.6 ± 13.8 | 0.068 * | 0.940 | 0.870–1.010 | 0.079 * | 0.950 | 0.860–1.040 | 0.269 |
| WBC | 8.6 ± 1.6 | 11.5 ± 2.5 | 0.004 ** | 1.970 | 1.100–3.530 | 0.023 ** | 1.560 | 0.800–3.020 | 0.192 |
| CRP | 12.6 ± 14.8 | 32.3 ± 45.8 | 0.199 | 1.020 | 0.980–1.060 | 0.241 | |||
| oxLDL | 7.5 ± 4 | 10.2 ± 9.8 | 0.462 | 1.060 | 0.910–1.250 | 0.459 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Semedzhieva, N.E.; Tsakova, A.; Lozanova, V.; Atanasov, P.I.; Dineva, D. 17β-Estradiol Does Not Designate Non-Sex-Specific Early Ventricular Arrhythmia in Acute Myocardial Infarction, in Contrast to C-Reactive Protein. Int. J. Mol. Sci. 2026, 27, 970. https://doi.org/10.3390/ijms27020970
Semedzhieva NE, Tsakova A, Lozanova V, Atanasov PI, Dineva D. 17β-Estradiol Does Not Designate Non-Sex-Specific Early Ventricular Arrhythmia in Acute Myocardial Infarction, in Contrast to C-Reactive Protein. International Journal of Molecular Sciences. 2026; 27(2):970. https://doi.org/10.3390/ijms27020970
Chicago/Turabian StyleSemedzhieva, Niya E., Adelina Tsakova, Vesela Lozanova, Petar I. Atanasov, and Dobrinka Dineva. 2026. "17β-Estradiol Does Not Designate Non-Sex-Specific Early Ventricular Arrhythmia in Acute Myocardial Infarction, in Contrast to C-Reactive Protein" International Journal of Molecular Sciences 27, no. 2: 970. https://doi.org/10.3390/ijms27020970
APA StyleSemedzhieva, N. E., Tsakova, A., Lozanova, V., Atanasov, P. I., & Dineva, D. (2026). 17β-Estradiol Does Not Designate Non-Sex-Specific Early Ventricular Arrhythmia in Acute Myocardial Infarction, in Contrast to C-Reactive Protein. International Journal of Molecular Sciences, 27(2), 970. https://doi.org/10.3390/ijms27020970

