Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,717)

Search Parameters:
Keywords = rats organs

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 1788 KiB  
Article
Impact of Major Pelvic Ganglion Denervation on Prostate Histology, Immune Response, and Serum Prolactin and Testosterone Levels in Rats
by Pabeli Saraí Becerra-Romero, Cynthia Fernández-Pomares, Juan Carlos Rodríguez-Alba, Jorge Manzo, Gonzalo E. Aranda-Abreu, Fausto Rojas-Durán, Deissy Herrera-Covarrubias, María Rebeca Toledo-Cárdenas, Genaro Alfonso Coria-Ávila and Maria Elena Hernández-Aguilar
Immuno 2025, 5(3), 33; https://doi.org/10.3390/immuno5030033 - 6 Aug 2025
Abstract
The prostate gland, a male accessory reproductive organ, is regulated by hormonal inputs and autonomic innervation from the major pelvic ganglion. This study examined the effects of major pelvic ganglion denervation on prostate histology, immune cell infiltration, and systemic levels of prolactin, testosterone, [...] Read more.
The prostate gland, a male accessory reproductive organ, is regulated by hormonal inputs and autonomic innervation from the major pelvic ganglion. This study examined the effects of major pelvic ganglion denervation on prostate histology, immune cell infiltration, and systemic levels of prolactin, testosterone, and cytokines in rats. Male Wistar rats (300–350 g) were divided into groups receiving bilateral axotomy of the hypogastric nerve, the pelvic nerve, or both, alongside with a sham-operated control. After 15 days, the animals were killed, and prostate tissue was dissociated in DMEM medium containing DNase I and collagenase. The dissociated cells were stained with fluorochrome-conjugated antibodies, and cell characterization was performed using a flow cytometer. Hematoxylin and eosin (H&E) staining was used to analyze histological characteristics, while testosterone, prolactin, and interleukin levels were measured via ELISA. Histological analysis revealed inflammatory atypical hypertrophy e hiperplasia. Immunological assessments demonstrated increased leukocytes, T lymphocytes (CD4+ and CD8+), B lymphocytes, and macrophages following double nerve axotomy. Serum analyses showed elevated pro-inflammatory cytokines IL-1β, IL-6, and IFN-γ, as well as anti-inflammatory IL-10, in denervated animals. Hormonal assessments revealed significant increases in serum prolactin and testosterone levels after double axotomy. Loss of neural control may promote pathological prostate changes via inflammation and hormonal dysregulation, offering insights into neuroimmune and neuroendocrine mechanisms underlying prostate pathologies. Full article
Show Figures

Figure 1

20 pages, 4870 KiB  
Article
Histological and Immunohistochemical Evidence in Hypothermia-Related Death: An Experimental Study
by Emina Dervišević, Nina Čamdžić, Edina Lazović, Adis Salihbegović, Francesco Sessa, Hajrudin Spahović and Stefano D’Errico
Int. J. Mol. Sci. 2025, 26(15), 7578; https://doi.org/10.3390/ijms26157578 - 5 Aug 2025
Abstract
Hypothermia-related deaths present significant diagnostic challenges due to non-specific and often inconsistent autopsy findings. This study investigated the histological and immunohistochemical alterations associated with primary and secondary hypothermia in an experimental Rattus norvegicus model, focusing on the effects of benzodiazepine and alcohol ingestion. [...] Read more.
Hypothermia-related deaths present significant diagnostic challenges due to non-specific and often inconsistent autopsy findings. This study investigated the histological and immunohistochemical alterations associated with primary and secondary hypothermia in an experimental Rattus norvegicus model, focusing on the effects of benzodiazepine and alcohol ingestion. Twenty-one male rats were divided into three groups: control (K), benzodiazepine-treated (B), and alcohol-treated (A). After two weeks of substance administration, hypothermia was induced and multiple organ samples were analyzed. Histologically, renal tissue showed hydropic and vacuolar degeneration, congestion, and acute tubular injury across all groups, with no significant differences in E-cadherin expression. Lung samples revealed congestion, emphysema, and hemorrhage, with more pronounced vascular congestion in the alcohol and benzodiazepine groups. Cardiac tissue exhibited vacuolar degeneration and protein denaturation, particularly in substance-exposed animals. The spleen showed preserved architecture but increased erythrocyte infiltration and significantly elevated myeloperoxidase (MPO)-positive granulocytes in the intoxicated groups. Liver samples demonstrated congestion, focal necrosis, and subcapsular hemorrhage, especially in the alcohol group. Immunohistochemical analysis revealed statistically significant differences in MPO expression in both lung and spleen tissues, with the highest levels observed in the benzodiazepine group. Similarly, CK7 and CK20 expression in the gastroesophageal junction was significantly elevated in both alcohol- and benzodiazepine-treated animals compared to the controls. In contrast, E-cadherin expression in the kidney did not differ significantly among the groups. These findings suggest that specific histological and immunohistochemical patterns, particularly involving pulmonary, cardiac, hepatic, and splenic tissues, may help differentiate primary hypothermia from substance-related secondary hypothermia. The study underscores the value of integrating toxicological, histological, and molecular analyses to enhance the forensic assessment of hypothermia-related fatalities. Future research should aim to validate these markers in human autopsy series and explore additional molecular indicators to refine diagnostic accuracy in forensic pathology. Full article
Show Figures

Figure 1

19 pages, 2360 KiB  
Article
Lepisanthes alata Attenuates Carrageenan-Induced Inflammation and Pain in Rats: A Phytochemical-Based Approach
by Elvy Suhana Mohd Ramli, Nadia Mohamed Tarmizi, Nur Aqilah Kamaruddin and Mohd Amir Kamaruzzaman
Pharmaceuticals 2025, 18(8), 1142; https://doi.org/10.3390/ph18081142 - 31 Jul 2025
Viewed by 308
Abstract
Background: Inflammation abrogates cellular organization and tissue homoeostasis, resulting in redness, swelling, heat, pain, and loss of function. A model of carrageenan-induced paw edema (CIE) is commonly utilized to test anti-inflammatory substances. Based on the ability of Lepisanthes alata (LA), a tropical [...] Read more.
Background: Inflammation abrogates cellular organization and tissue homoeostasis, resulting in redness, swelling, heat, pain, and loss of function. A model of carrageenan-induced paw edema (CIE) is commonly utilized to test anti-inflammatory substances. Based on the ability of Lepisanthes alata (LA), a tropical plant that is rich in phytochemicals like polyphenols, this study assessed the optimal dose and the health benefits of LA in rats that had been induced with carrageenan to develop paw swelling. Methods: Twenty-four male Wistar rats were divided into four groups to which carrageenan was administered, after which, distilled water at oral dose (C + DW), sodium diclofenac 25 mg/kg (C + DS), LA extract in 250 mg/kg (C + LA250), and 500 mg/kg (C + LA500) was given, respectively. Paw edema was assessed in 24 h. Pain was assessed using the Rat Grimace Scale (RGS), cytokines, antioxidant activity, and tissue changes. Results: LA at 250 and 500 mg/kg significantly decreased paw edema and inflammatory markers in the results of both studies. Remarkably, LA 250 mg/kg significantly decreased RGS scores as well as IL-1β, TNF-α, and histological inflammation but had a positive effect on T-SOD levels. Conclusions: LA extract, especially at 250 mg/kg, shows potent anti-inflammatory, analgesic, and antioxidant properties in CIE rats. Full article
Show Figures

Graphical abstract

22 pages, 4856 KiB  
Article
In Vitro and In Vivo Evaluation of Alectinib-Loaded Dendrimer Nanoparticles as a Drug Delivery System for Non-Small Cell Lung Carcinoma
by Mahmood R. Atta, Israa Al-Ani, Ibrahim Aldeeb, Khaldun M. AlAzzam, Tha’er Ata, Mohammad A. Almullah, Enas Daoud and Feras Al-Hajji
Pharmaceutics 2025, 17(8), 974; https://doi.org/10.3390/pharmaceutics17080974 - 28 Jul 2025
Viewed by 834
Abstract
Background/Objectives: Alectinib, a second-generation tyrosine kinase inhibitor indicated for the treatment of non-small-cell lung cancer (NSCLC), exhibits suboptimal oral bioavailability, primarily attributable to its inherently low aqueous solubility and limited dissolution kinetics. This study aimed to enhance Alectinib’s solubility and therapeutic efficacy [...] Read more.
Background/Objectives: Alectinib, a second-generation tyrosine kinase inhibitor indicated for the treatment of non-small-cell lung cancer (NSCLC), exhibits suboptimal oral bioavailability, primarily attributable to its inherently low aqueous solubility and limited dissolution kinetics. This study aimed to enhance Alectinib’s solubility and therapeutic efficacy by formulating a G4-NH2-PAMAM dendrimer complex. Methods: The complex was prepared using the organic solvent evaporation method and characterized by DSC, FTIR, dynamic light scattering (DLS), and zeta potential measurements. A validated high-performance liquid chromatography (HPLC) method quantified the Alectinib. In vitro drug release studies compared free Alectinib with the G4-NH2-PAMAM dendrimer complex. Cytotoxicity against NSCLC cell line A549 was assessed using MTT assays, clonogenic assay, and scratch-wound assay. Xenograft effect was investigated in the H460 lung cell line. Pharmacokinetic parameters were evaluated in rats using LC–MS/MS. Results: Alectinib exhibited an encapsulation efficiency of 59 ± 5%. In vitro release studies demonstrated sustained drug release at pH 6.8 and faster degradation at pH 2.5. Anticancer activity in vitro showed comparable efficacy to free Alectinib, with 98% migration inhibition. In vivo tumor suppression studies revealed near-complete tumor regression (~100%) after 17 days of treatment, compared to 75% with free Alectinib. Pharmacokinetic analysis indicated enhanced absorption (shorter Tmax), prolonged systemic circulation (longer half-life), and higher bioavailability (increased AUC) for the dendrimer-complexed drug. Conclusions: These findings suggest that the G4-NH2-PAMAM dendrimer system significantly improves Alectinib’s pharmacokinetics and therapeutic potential, making it a promising approach for NSCLC treatment. Full article
Show Figures

Graphical abstract

20 pages, 3857 KiB  
Article
Temporal and Sex-Dependent N-Glycosylation Dynamics in Rat Serum
by Hirokazu Yagi, Sachiko Kondo, Reiko Murakami, Rina Yogo, Saeko Yanaka, Fumiko Umezawa, Maho Yagi-Utsumi, Akihiro Fujita, Masako Okina, Yutaka Hashimoto, Yuji Hotta, Yoichi Kato, Kazuki Nakajima, Jun-ichi Furukawa and Koichi Kato
Int. J. Mol. Sci. 2025, 26(15), 7266; https://doi.org/10.3390/ijms26157266 - 27 Jul 2025
Viewed by 408
Abstract
We conducted systematic glycomic and glycoproteomic profiling to characterize the dynamic N-glycosylation landscape of rat serum, with particular focus on sex- and time-dependent variations. MALDI-TOF-MS analysis revealed that rat serum N-glycans are predominantly biantennary, disialylated complex-type structures with extensive O-acetylation [...] Read more.
We conducted systematic glycomic and glycoproteomic profiling to characterize the dynamic N-glycosylation landscape of rat serum, with particular focus on sex- and time-dependent variations. MALDI-TOF-MS analysis revealed that rat serum N-glycans are predominantly biantennary, disialylated complex-type structures with extensive O-acetylation of Neu5Ac residues, especially in females. LC-MS/MS-based glycoproteomic analysis of albumin/IgG-depleted serum identified 87 glycoproteins enriched in protease inhibitors (e.g., serine protease inhibitor A3K) and immune-related proteins such as complement C3. Temporal analyses revealed stable sialylation in males but pronounced daily fluctuations in females, suggesting hormonal influence. Neu5Gc-containing glycans were rare and mainly derived from residual IgG, as confirmed by glycomic analysis. In contrast to liver-derived glycoproteins, purified IgG exhibited Neu5Gc-only sialylation without O-acetylation, underscoring distinct sialylation profiles characteristic of B cell-derived glycoproteins. Region-specific glycosylation patterns were observed in IgG, with the Fab region carrying more disialylated structures than Fc. These findings highlight cell-type and sex-specific differences in sialylation patterns between hepatic and immune tissues, with implications for hormonal regulation and biomarker research. This study provides a valuable dataset on rat serum glycoproteins and underscores the distinctive glycosylation features of rats, reinforcing their utility as model organisms in glycobiology and disease research. Full article
(This article belongs to the Special Issue Glycobiology of Health and Diseases)
Show Figures

Figure 1

36 pages, 3579 KiB  
Article
RNA Sequencing Reveals Inflammatory and Metabolic Changes in the Lung and Brain After Carbon Black and Naphthalene Whole Body Inhalation Exposure in a Rodent Model of Military Burn Pit Exposures
by Allison M. Haaning, Brian J. Sandri, Henry L. Wyneken, William T. Goldsmith, Joshua P. Nixon, Timothy R. Nurkiewicz, Chris H. Wendt, Paul Barach, Janeen H. Trembley and Tammy A. Butterick
Int. J. Mol. Sci. 2025, 26(15), 7238; https://doi.org/10.3390/ijms26157238 - 26 Jul 2025
Viewed by 562
Abstract
Military personnel deployed to Iraq and Afghanistan were exposed to emissions from open-air burn pits, where plastics, metals, and medical waste were incinerated. These exposures have been linked to deployment-related respiratory diseases (DRRD) and may also impact neurological health via the lung–brain axis. [...] Read more.
Military personnel deployed to Iraq and Afghanistan were exposed to emissions from open-air burn pits, where plastics, metals, and medical waste were incinerated. These exposures have been linked to deployment-related respiratory diseases (DRRD) and may also impact neurological health via the lung–brain axis. To investigate molecular mechanisms, adult male rats were exposed to filtered air, naphthalene (a representative volatile organic compound), or a combination of naphthalene and carbon black (surrogate for particulate matter; CBN) via whole-body inhalation (six hours/day, three consecutive days). Lung, brain, and plasma samples were collected 24 h after the final exposure. Pro-inflammatory biomarkers were assessed using multiplex electrochemiluminescence and western blot. Differentially expressed genes (DEGs) were identified by RNA sequencing, and elastic net modeling was used to define exposure-predictive gene signatures. CBN exposure altered inflammatory biomarkers across tissues, with activation of nuclear factor kappa B (NF-κB) signaling. In the lung, gene set enrichment revealed activated pathways related to proliferation and inflammation, while epithelial–mesenchymal transition (EMT) and oxidative phosphorylation were suppressed. In the brain, EMT, inflammation, and senescence pathways were activated, while ribosomal function and oxidative metabolism were downregulated. Elastic net modeling identified a lung gene signature predictive of CBN exposure, including Kcnq3, Tgfbr1, and Tm4sf19. These findings demonstrate that inhalation of a surrogate burn pit mixture induces inflammatory and metabolic gene expression changes in both lung and brain tissues, supporting the utility of this animal model for understanding systemic effects of airborne military toxicants and for identifying potential biomarkers relevant to DRRD and Veteran health. Full article
(This article belongs to the Section Molecular Pathology, Diagnostics, and Therapeutics)
Show Figures

Figure 1

16 pages, 776 KiB  
Article
Safety and Toxicology Profile of TT-6-AmHap Heroin Conjugate Vaccine
by Essie Komla, Erwin G. Abucayon, C. Steven Godin, Agnieszka Sulima, Arthur E. Jacobson, Kenner C. Rice and Gary R. Matyas
Vaccines 2025, 13(8), 792; https://doi.org/10.3390/vaccines13080792 - 26 Jul 2025
Viewed by 419
Abstract
Background/Objectives: Opioid use disorder (OUD) remains a severe health problem globally, resulting in substantial social and economic challenges. While existing medications for managing OUD are proven to be effective, they also present certain challenges. A vaccine offers a promising therapeutic strategy to [...] Read more.
Background/Objectives: Opioid use disorder (OUD) remains a severe health problem globally, resulting in substantial social and economic challenges. While existing medications for managing OUD are proven to be effective, they also present certain challenges. A vaccine offers a promising therapeutic strategy to combat OUD and potentially reduce the risk of overdose death. The TT-6-AmHap heroin conjugate vaccine has effectively reduced heroin-induced pharmacological effects in behavioral assays as well as demonstrated the induction of high titer and high affinity antibody responses in mice and rats. In this GLP study conducted in rabbits, the potential local and systemic toxicity of the TT-6-AmHap heroin vaccine in combination with or without adjuvants ALF43 and Alhydrogel® (ALFA) was investigated. Methods: Male and female New Zealand White rabbits were administered with vaccines or a saline control intramuscularly at two-week intervals over a 57-day study period. The presence, persistence or reversibility of any toxic effects of the vaccine was determined over a four-week recovery period. Results: Administration of TT-6-AmHap with or without the adjuvants induced high antibody-specific IgG in treatment groups compared to the controls. The study found no TT-6-AmHap-related effects on mortality, physical examinations, dermal Draize observations, body weights, body weight changes, food consumption, ophthalmology, clinical pathology (hematology, coagulation, clinical chemistry, and urinalysis), macroscopic pathology, or organ weights. Conclusions: Under the conditions of this study, these results demonstrate that the TT-6-AmHap vaccine with or without adjuvants was well tolerated, immunogenic, and the effects were not considered adverse in both male and female rabbits. Full article
(This article belongs to the Section Vaccines and Public Health)
Show Figures

Graphical abstract

26 pages, 5270 KiB  
Article
Gallic Acid and Taurine Attenuate Thiamethoxam-Induced Hepatotoxicity in Rats by Modulating SIRT-1/PGC-1α, NF-κB/iNOS, and p53/Bax/Caspase-3 Pathways
by Sara T. Elazab, Fatmah A. Safhi, Rasha K. Al-Akeel, Raghda H. Deraz, Souvarish Sarkar and Rania Essam Ali Gamal Eldin
Pharmaceuticals 2025, 18(8), 1112; https://doi.org/10.3390/ph18081112 - 25 Jul 2025
Viewed by 452
Abstract
Background/Objectives: Thiamethoxam (TMX) is one of the most extensively utilized insecticides of the neonicotinoid family; however, its application is associated with notable toxic effects on multiple organs of mammals. Our purpose was to explore the potential hepatoprotective effect of taurine (TAU) and/or [...] Read more.
Background/Objectives: Thiamethoxam (TMX) is one of the most extensively utilized insecticides of the neonicotinoid family; however, its application is associated with notable toxic effects on multiple organs of mammals. Our purpose was to explore the potential hepatoprotective effect of taurine (TAU) and/or gallic acid (GA) against TMX-induced liver damage, with an emphasis on their role in regulating SIRT-1/PGC-1α, NF-κB/iNOS, and p53/Bax/caspase-3 pathways. Methods: Rats were assigned to seven groups (n = 6) and gavaged daily for 28 days with saline (control group), TAU at 50 mg/kg, GA at 20 mg/kg, TMX at 78.15 mg/kg, TMX + TAU, TMX + GA, and TMX + TAU + GA. Results: The findings revealed that TAU and/or GA attenuated TMX-induced liver injury, as demonstrated by the restoration of hepatic performance hallmarks and histological structure. TAU and GA mitigated TMX-mediated oxidative stress and boosted the antioxidant defense mechanism by upregulating the transcription levels of SIRT-1, PGC-1α, Nrf2, and HO-1. Moreover, TAU and GA suppressed TMX-associated inflammatory response by increasing IL-10 concentration and lowering the levels of NF-κB, IL-1β, and iNOS; the mRNA levels of NLRP3; and TNF-α immunoexpression. Both compounds, individually or concurrently, exerted an anti-apoptotic effect in TMX-treated rats, evidenced by increased Bcl-2 expression and reduced p53 mRNA level, Bax expression, and caspase-3 concentration. Conclusions: TAU and/or GA may be regarded as promising remedies that can alleviate TMX-induced hepatotoxicity by activating SIRT-1/PGC-1α signaling and abolishing inflammation and apoptosis. Full article
Show Figures

Figure 1

24 pages, 4278 KiB  
Article
Nanoplastic Disrupts Intestinal Homeostasis in Immature Rats by Altering the Metabolite Profile and Gene Expression
by Justyna Augustyniak, Beata Toczylowska, Beata Dąbrowska-Bouta, Kamil Adamiak, Grzegorz Sulkowski, Elzbieta Zieminska and Lidia Struzynska
Int. J. Mol. Sci. 2025, 26(15), 7207; https://doi.org/10.3390/ijms26157207 - 25 Jul 2025
Viewed by 153
Abstract
Plastic pollution has recently become a serious environmental problem, since the continuous increase in plastic production and use has generated enormous amounts of plastic waste that decomposes to form micro- and nanoparticles (MPs/NPs). Recent evidence suggests that nanoplastics may be potent toxins because [...] Read more.
Plastic pollution has recently become a serious environmental problem, since the continuous increase in plastic production and use has generated enormous amounts of plastic waste that decomposes to form micro- and nanoparticles (MPs/NPs). Recent evidence suggests that nanoplastics may be potent toxins because they are able to freely cross biological barriers, posing health risks, particularly to developing organisms. Therefore, the aim of the current study was to investigate the toxic potential of polystyrene nanoparticles (PS-NPs) on the jejunum of immature rats. Two-week-old animals were orally exposed to environmentally relevant dose of small PS-NPs (1 mg/kg b.w.; 25 nm) for 3 weeks. We detected a significant accumulation of PS-NPs in the epithelium and subepithelial layer of the intestine, which resulted in significant changes in the expression of genes related to gut barrier integrity, nutrient absorption, and endocrine function. Moreover, increased expression of proinflammatory cytokines was observed together with decreased antioxidant capacity and increased markers of oxidative damage to proteins. Additionally, in the jejunal extracts of exposed rats, we also noted changes in the metabolite profile, mainly amino acids involved in molecular pathways related to cellular energy, inflammation, the intestinal barrier, and protein synthesis, which were consistent with the observed molecular markers of inflammation and oxidative stress. Taken together, the results of the metabolomic, molecular, and biochemical analyses indicate that prolonged exposure to PS-NPs may disrupt the proper function of the intestine of developing organisms. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

12 pages, 2220 KiB  
Article
Hypoxia Disrupted Serotonin Levels in the Prefrontal Cortex and Striatum, Leading to Depression-like Behavior
by Hasan Çalışkan, Koray Hamza Cihan, Seda Koçak, Gözde Karabulut and Erhan Nalçacı
Biology 2025, 14(8), 931; https://doi.org/10.3390/biology14080931 - 24 Jul 2025
Viewed by 319
Abstract
Hypoxia can adversely affect multiple organ systems. This study investigated the impact of intermittent hypoxia on serotonin levels and depression-like behaviors across distinct neuroanatomical regions. Sixteen adult female Wistar albino rats were divided into two groups: control (n = 8) and hypoxia [...] Read more.
Hypoxia can adversely affect multiple organ systems. This study investigated the impact of intermittent hypoxia on serotonin levels and depression-like behaviors across distinct neuroanatomical regions. Sixteen adult female Wistar albino rats were divided into two groups: control (n = 8) and hypoxia (n = 8). The hypoxia group was exposed to a simulated altitude of 3000 for 5 h daily over 14 days. Behavioral assessments included locomotor activity (open field test) and depression-like behaviors (forced swimming test). Serotonin levels were quantified via ELISA in the prefrontal cortex, striatum, thalamus, hypothalamus, hippocampus, and serum. Intermittent hypoxia did not alter locomotor activity (p > 0.05) but significantly increased depression-like behavior (p < 0.05), accompanied by a pronounced reduction in swimming behavior (p < 0.0001), a marker associated with serotonergic function. Serotonin levels were significantly reduced in the prefrontal cortex (p < 0.005) and striatum (p < 0.05), while no changes were observed in other regions or serum (p > 0.05). These findings demonstrate that intermittent hypoxia induces depression-like behaviors and region-specific serotonin depletion, particularly in the prefrontal cortex and striatum. This underscores the need to evaluate hypoxia-related brain health implications in conditions such as sleep apnea and acute mountain sickness. Full article
Show Figures

Figure 1

15 pages, 2473 KiB  
Article
Selenium Reduces Cadmium-Induced Cardiotoxicity by Modulating Oxidative Stress and the ROS/PARP-1/TRPM2 Signalling Pathway in Rats
by Yener Yazğan, Ömer Faruk Keleş, Mehmet Hafit Bayir, Hacı Ahmet Çiçek, Adem Ahlatcı and Kenan Yıldızhan
Toxics 2025, 13(8), 611; https://doi.org/10.3390/toxics13080611 - 22 Jul 2025
Viewed by 372
Abstract
Cadmium (CAD) is a prevalent environmental contaminant that poses serious cardiotoxic risks. The heart, kidney, liver, and brain are just a few of the essential organs that can sustain serious harm from CAD, a very poisonous heavy metal. The cardiotoxic mechanism of CAD [...] Read more.
Cadmium (CAD) is a prevalent environmental contaminant that poses serious cardiotoxic risks. The heart, kidney, liver, and brain are just a few of the essential organs that can sustain serious harm from CAD, a very poisonous heavy metal. The cardiotoxic mechanism of CAD is linked to oxidative damage and inflammation. A trace element with anti-inflammatory, anti-apoptotic, and antioxidant qualities, selenium (SEL) can be taken as a dietary supplement. The biotoxicity of heavy metal CAD is significantly inhibited by SEL, a mineral that is vital to human and animal nutrition. Through ROS-induced PARP-1/ADPR/TRPM2 pathways, this study seeks to assess the preventive benefits of selenium against cardiovascular damage caused by CAD. The SEL showed encouraging results in reducing inflammatory and oxidative reactions. Rats were given 0.5 mg/kg SEL and 3 mg/kg 2-Aminoethyl diphenylborinate (2-APB) intraperitoneally for five days, in addition to 25 mg/kg CAD given via gavage. Histopathological examination findings revealed that the morphologic changes in the hearts of the CAD group rats were characterised by marked necrosis and the degeneration of myocytes and congestion of vessels. Compared to the rats in the CAD group, the hearts of the SEL, 2-APB and SEL+2-APB groups showed fewer morphological alterations. Moreover, in rats given CAD, there was an increase in cardiac malondialdehyde (MDA), total oxidant (TOS), reactive oxygen species (ROS), caspase (Casp-3-9), and TNF-α, whereas glutathione (GSH), glutathione peroxidase (GSH-Px), superoxide dismutase (SOD) and total antioxidant (TAS) decreased. SEL improved antioxidants, avoided tissue damage, and reduced cardiac MDA, TOS, and ROS. In rats given CAD, SEL decreased cardiac PARP-1, TRPM2, TNF-α, and caspase. In summary, by reducing oxidative stress and cardiac damage and modifying the ROS/PARP-1/TRPM2 pathway, SEL protected against CAD cardiotoxicity. Full article
Show Figures

Graphical abstract

14 pages, 2459 KiB  
Article
Enhancement of Oral Mucosal Regeneration Using Human Exosomal Therapy in SD Rats
by Chien Ming Lee, Qasim Hussain, Kuo Pin Chuang and Hoang Minh
Biomedicines 2025, 13(7), 1785; https://doi.org/10.3390/biomedicines13071785 - 21 Jul 2025
Viewed by 641
Abstract
Background/Objectives: Oral cavity wound recovery presents unique challenges due to constant moisture exposure and functional mechanical stresses. Nanoscale extracellular vesicles (exosomes) with regenerative properties offer promising therapeutic potential for tissue regeneration, contributing to improved health outcomes. This study evaluated human exosomal preparations in [...] Read more.
Background/Objectives: Oral cavity wound recovery presents unique challenges due to constant moisture exposure and functional mechanical stresses. Nanoscale extracellular vesicles (exosomes) with regenerative properties offer promising therapeutic potential for tissue regeneration, contributing to improved health outcomes. This study evaluated human exosomal preparations in promoting oral mucosal regeneration. Methods: We established standardized full-thickness wounds in the buccal mucosa of SD rats and divided subjects into experimental (receiving 50 billion human exosomes) and control (receiving carrier solution only) groups. Comprehensive wound assessment occurred at predetermined intervals (days 0, 3, 7, and 10) through photographic documentation, histological examination, and quantitative measurement. Results: Exosomal-treated tissues demonstrated statistically significant acceleration in closure rates (p < 0.05), achieving 87.3% reduction by day 10 versus 64.1% in the controls. Microscopic analysis revealed superior epithelial development, reduced inflammatory infiltration, and enhanced collagen architectural organization in exosomal-treated specimens. Semi-quantitative evaluation confirmed consistently superior healing metrics in the experimental group across all assessment timepoints. Conclusions: These findings demonstrate that human exosome preparations significantly enhance oral mucosal regeneration in SD rats, suggesting potential clinical applications for accelerating recovery following oral surgical procedures. Full article
(This article belongs to the Section Molecular and Translational Medicine)
Show Figures

Figure 1

30 pages, 11312 KiB  
Article
Study on the Mechanism and Dose–Effect Relationship of Flavonoids in Different Extracts of Radix Hedysari Against Gastrointestinal Injury Induced by Chemotherapy
by Shasha Zhao, Miaomiao Yang, Zimu Yang, Hai He, Ziyang Wang, Xinyu Zhu, Zhijia Cui and Jing Shao
Pharmaceuticals 2025, 18(7), 1072; https://doi.org/10.3390/ph18071072 - 20 Jul 2025
Viewed by 375
Abstract
Background: Previous studies have shown Radix Hedysari (RH)’s gastroprotective potential, but its active components and mechanisms remain uncharacterized. This study aimed to identify RH’s bioactive fractions, elucidate protection mechanisms, establish flavonoid dose-effect relationships, and determine the pharmacodynamic basis. Methods: Chemical profiling quantified [...] Read more.
Background: Previous studies have shown Radix Hedysari (RH)’s gastroprotective potential, but its active components and mechanisms remain uncharacterized. This study aimed to identify RH’s bioactive fractions, elucidate protection mechanisms, establish flavonoid dose-effect relationships, and determine the pharmacodynamic basis. Methods: Chemical profiling quantified eight flavonoids via HPLC. Network pharmacology screened targets/pathways using TCMSP, GeneCards databases. In vivo validation employed cisplatin–induced injury models in Wistar rats (n = 10/group). Assessments included: behavioral monitoring; organ indices; ELISA (MTL, VIP, IFN–γ, IgG, IL–6, TNF–α etc.); H&E; and Western blot:(SCF, c–Kit, p65). Dose–effect correlations were analyzed by PLS–DA. Results: Content determination indicated that Calycosin–7–glucoside and Ononin were notably enriched on both the n–BuOH part and the EtOAc part. Network pharmacology identified 5 core flavonoids and 8 targets enriched in IL–17/TNF signaling pathways. n–BuOH treatment minimized weight loss vs. MCG, increased spleen/thymus indices. n–BuOH and HPS normalized gastrointestinal, immune, inflammatory biomarkers (p < 0.01 vs. MCG). Histopathology confirmed superior mucosal protection in n–BuOH group vs. MCG. Western blot revealed n–BuOH significantly downregulated SCF, c–kit, and p65 expressions in both gastric and intestinal tissues (p < 0.001 vs. MCG). PLS–DA demonstrated Calycosin–7–glucoside had the strongest dose–effect correlation (VIP > 1) with protective outcomes. Conclusions: The n–BuOH fraction of RH is the primary bioactive component against chemotherapy–induced gastrointestinal injury, with Calycosin–7–glucoside as its key effector. Protection is mediated through SCF/c–Kit/NF–κB pathway inhibition, demonstrating significant dose–dependent efficacy. These findings support RH’s potential as a complementary therapy during chemotherapy. Full article
Show Figures

Graphical abstract

21 pages, 3692 KiB  
Article
Anti-Obesity Effects of Rosa rugosa Thunb. Flower Bud Extracts on Lipid Metabolism Regulation in 3T3-L1 Adipocytes and Sprague Dawley Rats
by Jung Min Kim, Kyoung Kon Kim, Hye Rim Lee, Jae Cheon Im and Tae Woo Kim
Int. J. Mol. Sci. 2025, 26(14), 6963; https://doi.org/10.3390/ijms26146963 - 20 Jul 2025
Viewed by 278
Abstract
In modern society, obesity and its associated complications have emerged as serious public health concerns, primarily stemming from sedentary lifestyles and carbohydrate-rich diets. Due to the severe side effects often associated with pharmacological anti-obesity agents, emerging global efforts focus on preventive strategies, e.g., [...] Read more.
In modern society, obesity and its associated complications have emerged as serious public health concerns, primarily stemming from sedentary lifestyles and carbohydrate-rich diets. Due to the severe side effects often associated with pharmacological anti-obesity agents, emerging global efforts focus on preventive strategies, e.g., dietary modifications and weight gain-suppressing functional foods. In this context, plant-derived metabolites are extensively investigated for their beneficial anti-obesity effects. In this study, we evaluated how Rosa rugosa Thunb. flower bud extract affects fat metabolism in 3T3-L1 preadipocyte cells. The extract significantly inhibited adipocyte differentiation and intracellular triglyceride accumulation in 3T3-L1 cells, enhanced lipolysis, suppressed lipogenesis, and promoted energy metabolism in differentiated adipocytes. In vivo, it reduced body and organ weights and fat mass in high-fat diet-induced obese rats, along with marked adipocyte size and hepatic lipid accumulation reductions. In the epididymal adipose tissue, the extract similarly enhanced lipolytic activity, suppressed lipogenic enzyme expression, and stimulated energy expenditure. Taken together, our results demonstrate the potential of R. rugosa Thunb. flower bud extract in reducing fat accumulation through lipid metabolism modulation both in cellular and animal models. Further studies are warranted to identify the active constituents and evaluate the safety and efficacy of the extract in clinical applications. Full article
(This article belongs to the Special Issue High Fat Diet Metabolism and Diseases)
Show Figures

Figure 1

15 pages, 3987 KiB  
Article
Cardioprotective Effects of Bosentan in Rats Subjected to Lung Ischemia–Reperfusion Injury
by Şevki Mustafa Demiröz, Ayşegül Küçük, Esra Tekin, Sibel Söylemez, Hanife Yılmaz, Şaban Cem Sezen, Muharrem Atlı, Hüseyin Demirtaş, Abdullah Özer, Yusuf Ünal and Mustafa Arslan
Medicina 2025, 61(7), 1298; https://doi.org/10.3390/medicina61071298 - 18 Jul 2025
Viewed by 298
Abstract
Objective: This study aimed to investigate the cardioprotective effects of bosentan, an endothelin receptor antagonist, in a rat model of lung ischemia–reperfusion (I/R) injury, with a focus on myocardial tissue involvement. Methods: Twenty-four male Wistar rats were randomly assigned to four [...] Read more.
Objective: This study aimed to investigate the cardioprotective effects of bosentan, an endothelin receptor antagonist, in a rat model of lung ischemia–reperfusion (I/R) injury, with a focus on myocardial tissue involvement. Methods: Twenty-four male Wistar rats were randomly assigned to four groups: sham, bosentan, I/R, and I/R + bosentan. Lung I/R injury was induced by hilar clamping for 45 min, followed by 60 min of reperfusion. Bosentan (30 mg/kg) was administered intraperitoneally 30 min prior to the procedure. Myocardial tissue was evaluated histopathologically for structural disorganization, inflammation, fibrosis, and edema. TGF-β1 protein levels in myocardial tissue were compared across the groups using β-actin as the loading control. ELISA was used to quantify ET-1, NF-κB, and p53 levels, while spectrophotometric analysis was employed to assess MDA levels and the activities of SOD and CAT enzymes in heart tissue. Results: The I/R group exhibited significant myocardial disorganization, inflammation, and interstitial edema compared to the sham and bosentan groups. Bosentan treatment markedly ameliorated these histopathological alterations. Additionally, the I/R group showed elevated levels of ET-1, NF-κB, p53, and MDA, along with reduced SOD and CAT activities; these changes were significantly attenuated by bosentan administration. Bosentan treatment significantly reduced myocardial ET-1 levels (from 136.88 ± 5.02 to 120.18 ± 2.67 nmol/g, p = 0.003), NF-κB levels (from 0.87 ± 0.04 to 0.51 ± 0.03 ng/mg, p = 0.002), and TGF-β1 expression (from 1.72 ± 0.10 to 0.91 ± 0.08 relative units, p = 0.001). Moreover, bosentan increased antioxidant enzyme activities, elevating SOD levels from 21.45 ± 1.23 to 32.67 ± 1.45 U/mg protein (p = 0.001) and CAT levels from 15.22 ± 0.98 to 25.36 ± 1.12 U/mg protein (p = 0.002). Conclusions: Bosentan exerts cardioprotective effects in rats subjected to lung I/R injury by reducing myocardial damage, inflammation, and oxidative stress. These findings suggest that bosentan may serve as a potential therapeutic agent for preventing remote organ injury associated with pulmonary I/R. Full article
(This article belongs to the Section Cardiology)
Show Figures

Figure 1

Back to TopTop