Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (5,425)

Search Parameters:
Keywords = rate heterogeneity

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 6778 KiB  
Article
Computational Approaches to Assess Flow Rate Efficiency During In Situ Recovery of Uranium: From Reactive Transport to Streamline- and Trajectory-Based Methods
by Maksat Kurmanseiit, Nurlan Shayakhmetov, Daniar Aizhulov, Banu Abdullayeva and Madina Tungatarova
Minerals 2025, 15(8), 835; https://doi.org/10.3390/min15080835 - 6 Aug 2025
Abstract
This study presents a comprehensive computational analysis of flow rate efficiency during uranium extraction via the In Situ Recovery method. Using field data from a deposit located in Southern Kazakhstan, a series of mathematical models were developed to evaluate the distribution and balance [...] Read more.
This study presents a comprehensive computational analysis of flow rate efficiency during uranium extraction via the In Situ Recovery method. Using field data from a deposit located in Southern Kazakhstan, a series of mathematical models were developed to evaluate the distribution and balance of leaching solution. A reactive transport model incorporating uranium dissolution kinetics and acid–rock interactions were utilized to assess the accuracy of both traditional and proposed methods. The results reveal a significant spatial imbalance in sulfuric acid distribution, with up to 239.1 tons of acid migrating beyond the block boundaries. To reduce computational demands while maintaining predictive accuracy, two alternative methods, a streamline-based and a trajectory-based approach were proposed and verified. The streamline method showed close agreement with reactive transport modeling and was able to effectively identify the presence of intra-block reagent imbalance. The trajectory-based method provided detailed insight into flow dynamics but tended to overestimate acid overflow outside the block. Both alternative methods outperformed the conventional approach in terms of accuracy by accounting for geological heterogeneity and well spacing. The proposed methods have significantly lower computational costs, as they do not require solving complex systems of partial differential equations involved in reactive transport simulations. The proposed approaches can be used to analyze the efficiency of mineral In Situ Recovery at both the design and operational stages, as well as to determine optimal production regimes for reducing economic expenditures in a timely manner. Full article
(This article belongs to the Section Mineral Processing and Extractive Metallurgy)
18 pages, 7706 KiB  
Review
The Role of Imaging in Ventricular Tachycardia Ablation
by Pasquale Notarstefano, Michele Ciabatti, Carmine Marallo, Mirco Lazzeri, Aureliano Fraticelli, Valentina Tavanti, Giulio Zucchelli, Angelica La Camera and Leonardo Bolognese
Diagnostics 2025, 15(15), 1973; https://doi.org/10.3390/diagnostics15151973 - 6 Aug 2025
Abstract
Ventricular tachycardia (VT) remains a major cause of morbidity and mortality in patients with structural heart disease. While catheter ablation has become a cornerstone in VT management, recurrence rates remain substantial due to limitations in electroanatomic mapping (EAM), particularly in cases of deep [...] Read more.
Ventricular tachycardia (VT) remains a major cause of morbidity and mortality in patients with structural heart disease. While catheter ablation has become a cornerstone in VT management, recurrence rates remain substantial due to limitations in electroanatomic mapping (EAM), particularly in cases of deep or heterogeneous arrhythmogenic substrates. Cardiac imaging, especially when multimodal and integrated with mapping systems, has emerged as a critical adjunct to enhance procedural efficacy, safety, and individualized strategy. This comprehensive review explores the evolving role of various imaging modalities, including echocardiography, cardiac magnetic resonance (CMR), computed tomography (CT), positron emission tomography (PET), and intracardiac echocardiography (ICE), in the preprocedural and intraprocedural phases of VT ablation. We highlight their respective strengths in substrate identification, anatomical delineation, and real-time guidance. While limitations persist, including costs, availability, artifacts in device carriers, and lack of standardization, future advances are likely to redefine procedural workflows. Full article
(This article belongs to the Special Issue Advances in Diagnosis and Treatment of Cardiac Arrhythmias 2025)
Show Figures

Figure 1

22 pages, 885 KiB  
Article
MRI-Based Radiomics for Outcome Stratification in Pediatric Osteosarcoma
by Esther Ngan, Dolores Mullikin, Ashok J. Theruvath, Ananth V. Annapragada, Ketan B. Ghaghada, Andras A. Heczey and Zbigniew A. Starosolski
Cancers 2025, 17(15), 2586; https://doi.org/10.3390/cancers17152586 - 6 Aug 2025
Abstract
Background/Objectives: Osteosarcoma (OS) is the most common malignant bone tumor in children and adolescents; the survival rate is as low as 24%. Accurate prediction of clinical outcomes remains a challenge due to tumor heterogeneity and the complexity of pediatric cases. This study [...] Read more.
Background/Objectives: Osteosarcoma (OS) is the most common malignant bone tumor in children and adolescents; the survival rate is as low as 24%. Accurate prediction of clinical outcomes remains a challenge due to tumor heterogeneity and the complexity of pediatric cases. This study aims to improve predictions of progressive disease, therapy response, relapse, and survival in pediatric OS using MRI-based radiomics and machine learning methods. Methods: Pre-treatment contrast-enhanced coronal T1-weighted MR scans were collected from 63 pediatric OS patients, with an additional nine external cases used for validation. Three strategies were considered for target region segmentation (whole-tumor, tumor sampling, and bone/soft tissue) and used for MRI-based radiomics. These were then combined with clinical features to predict OS clinical outcomes. Results: The mean age of OS patients was 11.8 ± 3.5 years. Most tumors were located in the femur (65%). Osteoblastic subtype was the most common histological classification (79%). The majority of OS patients (79%) did not have evidence of metastasis at diagnosis. Progressive disease occurred in 27% of patients, 59% of patients showed adequate therapy response, 25% experienced relapse after therapy, and 30% died from OS. Classification models based on bone/soft tissue segmentation generally performed the best, with certain clinical features improving performance, especially for therapy response and mortality. The top performing classifier in each outcome achieved 0.94–1.0 validation ROC AUC and 0.63–1.0 testing ROC AUC, while those without radiomic features (RFs) generally performed suboptimally. Conclusions: This study demonstrates the strong predictive capabilities of MRI-based radiomics and multi-region segmentations for predicting clinical outcomes in pediatric OS. Full article
(This article belongs to the Special Issue The Roles of Deep Learning in Cancer Radiotherapy)
Show Figures

Figure 1

23 pages, 789 KiB  
Perspective
Therapeutic Cancer Vaccines in Colorectal Cancer: Platforms, Mechanisms, and Combinations
by Chiara Gallio, Luca Esposito and Alessandro Passardi
Cancers 2025, 17(15), 2582; https://doi.org/10.3390/cancers17152582 - 6 Aug 2025
Abstract
Colorectal cancer (CRC) remains one of the most lethal malignancies worldwide, with high recurrence rates and limited curative options in metastatic settings. Cancer vaccines represent an emerging immunotherapeutic approach that aims to stimulate robust, tumor-specific immune responses. This review summarizes the current state [...] Read more.
Colorectal cancer (CRC) remains one of the most lethal malignancies worldwide, with high recurrence rates and limited curative options in metastatic settings. Cancer vaccines represent an emerging immunotherapeutic approach that aims to stimulate robust, tumor-specific immune responses. This review summarizes the current state of CRC vaccine development, including tumor cell-based, dendritic cell-based, peptide-based, nucleic acid-based (DNA and mRNA), and virus-based platforms. We highlight findings from key clinical trials that demonstrate immunogenicity, safety, and preliminary efficacy, with particular attention to combinations with chemotherapy and immune checkpoint inhibitors. Furthermore, we explore critical challenges such as tumor heterogeneity, immunosuppressive tumor microenvironments, and the logistical complexity; in this context, we particularly focus on the current development of personalized cancer vaccines, exploring the newly identified encouraging epitopes and their safety and efficacy in recent trials. The integration of cancer vaccines with in silico modeling, advanced delivery systems such as nanoparticles or AI-guided designs, and microbiome modulation represents a promising avenue for enhancing their clinical utility. Overall, therapeutic and prophylactic cancer vaccines may soon contribute meaningfully to the comprehensive management of CRC, especially in settings of minimal residual disease or early recurrence. Full article
(This article belongs to the Special Issue Exploring Immunotherapy in Colorectal Cancer)
Show Figures

Figure 1

19 pages, 1374 KiB  
Systematic Review
Knowledge and Risk Perception Regarding Keratinocyte Carcinoma in Lay People: A Systematic Review and Meta-Analysis
by Luisa Leonie Brokmeier, Laura Ilic, Sophia Haas, Wolfgang Uter, Markus Vincent Heppt, Olaf Gefeller and Isabelle Kaiser
Healthcare 2025, 13(15), 1912; https://doi.org/10.3390/healthcare13151912 - 6 Aug 2025
Abstract
Background/Objectives: The increasing incidence rates of keratinocyte carcinoma (KC), particularly in fair-skinned populations, call for efforts to intensify health education of the general population in addressing this prevalent skin cancer type. As a preparatory step, this systematic review summarizes the published research on [...] Read more.
Background/Objectives: The increasing incidence rates of keratinocyte carcinoma (KC), particularly in fair-skinned populations, call for efforts to intensify health education of the general population in addressing this prevalent skin cancer type. As a preparatory step, this systematic review summarizes the published research on the knowledge and risk perception regarding KC among individuals without medical training. Methods: The review was registered in PROSPERO (CRD42024618851) and adheres to PRISMA guidelines. The databases PubMed, Scopus, Web of Science, PsycArticles, and PsycINFO were searched on 30 July 2024. Studies were eligible if knowledge and/or risk perception was assessed in lay people. Risk of bias (ROB) was assessed with the Joanna Briggs Institute checklist for prevalence studies. Comparable outcomes (e.g., awareness of terms for KC) were meta-analyzed. Results: Included reports (n = 17) were published between 1991 and 2024 with 16,728 individuals assessed. Awareness for the most common type of KC, basal cell carcinoma (BCC), was low (20.75% of respondents (95% confidence interval (CI): 15.24–27.61)), while more respondents were familiar with colloquial terms (60.9–72.8%). Meta-analysis indicated an underestimation of the frequency of KC, with only 7.21% (CI: 4.03–12.58) identifying BCC as the most common type of skin cancer. Furthermore, concern about developing KC as assessed in only two overlapping studies was reported by only 25–30% of respondents, indicating a significant gap in risk awareness and a lack of research on risk perception regarding KC. Conclusions: This review highlights the need for targeted health education interventions to improve knowledge and preventive behaviors regarding KC. Given the limitations of the included studies, characterized by high ROB, heterogeneity of results, and a lack of standardized assessment tools, further research is essential to enhance the understanding and awareness of KC in diverse populations. Full article
Show Figures

Figure 1

19 pages, 4142 KiB  
Article
Onboard Real-Time Hyperspectral Image Processing System Design for Unmanned Aerial Vehicles
by Ruifan Yang, Min Huang, Wenhao Zhao, Zixuan Zhang, Yan Sun, Lulu Qian and Zhanchao Wang
Sensors 2025, 25(15), 4822; https://doi.org/10.3390/s25154822 - 5 Aug 2025
Abstract
This study proposes and implements a dual-processor FPGA-ARM architecture to resolve the critical contradiction between massive data volumes and real-time processing demands in UAV-borne hyperspectral imaging. The integrated system incorporates a shortwave infrared hyperspectral camera, IMU, control module, heterogeneous computing core, and SATA [...] Read more.
This study proposes and implements a dual-processor FPGA-ARM architecture to resolve the critical contradiction between massive data volumes and real-time processing demands in UAV-borne hyperspectral imaging. The integrated system incorporates a shortwave infrared hyperspectral camera, IMU, control module, heterogeneous computing core, and SATA SSD storage. Through hardware-level task partitioning—utilizing FPGA for high-speed data buffering and ARM for core computational processing—it achieves a real-time end-to-end acquisition–storage–processing–display pipeline. The compact integrated device exhibits a total weight of merely 6 kg and power consumption of 40 W, suitable for airborne platforms. Experimental validation confirms the system’s capability to store over 200 frames per second (at 640 × 270 resolution, matching the camera’s maximum frame rate), quick-look imaging capability, and demonstrated real-time processing efficacy via relative radio-metric correction tasks (processing 5000 image frames within 1000 ms). This framework provides an effective technical solution to address hyperspectral data processing bottlenecks more efficiently on UAV platforms for dynamic scenario applications. Future work includes actual flight deployment to verify performance in operational environments. Full article
(This article belongs to the Section Sensing and Imaging)
Show Figures

Figure 1

22 pages, 14608 KiB  
Article
Temporal and Spatial Evolution of Gross Primary Productivity of Vegetation and Its Driving Factors on the Qinghai-Tibet Plateau Based on Geographical Detectors
by Liang Zhang, Cunlin Xin and Meiping Sun
Atmosphere 2025, 16(8), 940; https://doi.org/10.3390/atmos16080940 (registering DOI) - 5 Aug 2025
Abstract
To investigate the spatiotemporal evolution characteristics and primary driving factors of Gross Primary Productivity (GPP) on the Qinghai-Tibet Plateau, we employed an enhanced MODIS-PSN model. Utilizing the fifth-generation global climate reanalysis dataset (ECMWF ERA5), we generated GPP remote sensing products by integrating six [...] Read more.
To investigate the spatiotemporal evolution characteristics and primary driving factors of Gross Primary Productivity (GPP) on the Qinghai-Tibet Plateau, we employed an enhanced MODIS-PSN model. Utilizing the fifth-generation global climate reanalysis dataset (ECMWF ERA5), we generated GPP remote sensing products by integrating six natural factors. Through correlation analysis and geographical detector modeling, we quantitatively analyzed the spatiotemporal dynamics and key drivers of vegetation GPP across the Qinghai-Tibet Plateau from 2001 to 2022. The results demonstrate that GPP changes across the Qinghai-Tibet Plateau display pronounced spatial heterogeneity. The humid northeastern and southeastern regions exhibit significantly positive change rates, primarily distributed across wetland and forest ecosystems, with a maximum mean annual change rate of 12.40 gC/m2/year. In contrast, the central and southern regions display a decreasing trend, with the minimum change rate reaching −1.61 gC/m2/year, predominantly concentrated in alpine grasslands and desert areas. Vegetation GPP on the Qinghai-Tibet Plateau shows significant correlations with temperature, vapor pressure deficit (VPD), evapotranspiration (ET), leaf area index (LAI), precipitation, and radiation. Among the factors analyzed, LAI demonstrates the strongest explanatory power for spatial variations in vegetation GPP across the Qinghai-Tibet Plateau. The dominant factors influencing vegetation GPP on the Qinghai-Tibet Plateau are LAI, ET, and precipitation. The pairwise interactions between these factors exhibit linear enhancement effects, demonstrating synergistic multifactor interactions. This study systematically analyzed the response mechanisms and variations of vegetation GPP to multiple driving factors across the Qinghai-Tibet Plateau from a spatial heterogeneity perspective. The findings provide both a critical theoretical framework and practical insights for better understanding ecosystem response dynamics and drought conditions on the plateau. Full article
Show Figures

Figure 1

20 pages, 1197 KiB  
Systematic Review
Comparative Effectiveness of Cognitive Behavioral Therapies in Schizophrenia and Schizoaffective Disorder: A Systematic Review and Meta-Regression Analysis
by Vasilios Karageorgiou, Ioannis Michopoulos and Evdoxia Tsigkaropoulou
J. Clin. Med. 2025, 14(15), 5521; https://doi.org/10.3390/jcm14155521 - 5 Aug 2025
Abstract
Background: Cognitive behavioral therapy (CBT) has shown consistent efficacy in individuals with psychosis, as supported by many trials. One classical distinction is that between affective and non-affective psychosis. Few studies have specifically examined the possible moderating role of substantial affective elements. In this [...] Read more.
Background: Cognitive behavioral therapy (CBT) has shown consistent efficacy in individuals with psychosis, as supported by many trials. One classical distinction is that between affective and non-affective psychosis. Few studies have specifically examined the possible moderating role of substantial affective elements. In this systematic review and meta-regression analysis, we assess how CBT response differs across the affective spectrum in psychosis. Methods: We included studies assessing various CBT modalities, including third-wave therapies, administered in people with psychosis. The study protocol is published in the Open Science Framework. Meta-regression was conducted to assess whether the proportion of participants with affective psychosis (AP), as proxied by a documented diagnosis of schizoaffective (SZA) disorder, moderated CBT efficacy across positive, negative, and depressive symptom domains. Results: The literature search identified 4457 records, of which 39 studies were included. The median proportion of SZA disorder participants was 17%, with a total of 422 AP participants represented. Meta-regression showed a trend toward lower CBT efficacy for positive symptoms with a higher SZA disorder proportion (β = +0.10 SMD per 10% increase in AP; p = 0.12), though it was not statistically significant. No significant associations were found for negative (β = +0.05; p = 0.73) or depressive symptoms (β = −0.02; p = 0.78). Heterogeneity was substantial across all models (I2 ranging from 54% to 80%), and funnel plot asymmetry was observed in negative and depressive symptoms, indicating possible publication bias. Risk of bias assessment showed the anticipated inherent difficulty of psychotherapies in blinding and possibly dropout rates affecting some studies. Conclusions: Affective symptoms may reduce the effectiveness of CBT for positive symptoms in psychotic disorders, although the findings did not reach statistical significance. Other patient-level characteristics in psychosis could indicate which patients can benefit most from CBT modalities. Full article
(This article belongs to the Special Issue Clinical Features and Management of Psychosis)
Show Figures

Figure 1

16 pages, 1899 KiB  
Systematic Review
Enhancing Cardiovascular Autonomic Regulation in Parkinson’s Disease Through Non-Invasive Interventions
by Aastha Suthar, Ajmal Zemmar, Andrei Krassioukov and Alexander Ovechkin
Life 2025, 15(8), 1244; https://doi.org/10.3390/life15081244 - 5 Aug 2025
Abstract
Background: Parkinson’s disease (PD) often involves autonomic dysfunction, most notably impaired baroreflex sensitivity (BRS), which disrupts cardiovascular homeostasis and contributes to orthostatic hypotension (OH). Pharmacological and invasive treatments, including deep brain stimulation, have yielded inconsistent benefits and carry procedural risks, highlighting the need [...] Read more.
Background: Parkinson’s disease (PD) often involves autonomic dysfunction, most notably impaired baroreflex sensitivity (BRS), which disrupts cardiovascular homeostasis and contributes to orthostatic hypotension (OH). Pharmacological and invasive treatments, including deep brain stimulation, have yielded inconsistent benefits and carry procedural risks, highlighting the need for safer, more accessible alternatives. In this systematic review, we evaluated non-invasive interventions—spanning somatosensory stimulation, exercise modalities, thermal therapies, and positional strategies—aimed at improving cardiovascular autonomic function in PD. Methods: We searched PubMed, Embase, MEDLINE (Ovid), Google Scholar, ScienceDirect, and Web of Science for studies published between January 2014 and December 2024. Eight original studies (n = 8) including 205 participants met the inclusion criteria for analyzing cardiac sympathovagal balance. Results: Five studies demonstrated significant post-intervention increases in BRS. Most reported favorable shifts in heart rate variability (HRV) and favorable changes in the low-frequency/high-frequency (LF/HF) ratio. Across modalities, systolic blood pressure (SBP) decreased by an average of 5%, and some interventions produced benefits that persisted up to 24 h. Conclusion: Although sample sizes were small and protocols heterogeneous, the collective findings support the potential of non-invasive neuromodulation to enhance BRS and overall cardiovascular regulation in PD. Future research should focus on standardized, higher-intensity or combined protocols with longer follow-up periods to establish durable, clinically meaningful improvements in autonomic function and quality of life for people living with PD. Full article
Show Figures

Figure 1

15 pages, 786 KiB  
Review
Motor Function in the Setting of Nerve Allografts: Is This the Future of Facial Nerve Reconstruction?
by Léna G. Dietrich, Adriaan O. Grobbelaar and Ioana Lese
J. Clin. Med. 2025, 14(15), 5510; https://doi.org/10.3390/jcm14155510 - 5 Aug 2025
Abstract
Background: Peripheral nerve injuries, especially involving the facial nerve, present unique reconstructive challenges due to their complex functional demands and limited regenerative potential. While autografts remain the gold standard, their drawbacks—such as donor-site morbidity and limited availability—have driven interest in processed nerve [...] Read more.
Background: Peripheral nerve injuries, especially involving the facial nerve, present unique reconstructive challenges due to their complex functional demands and limited regenerative potential. While autografts remain the gold standard, their drawbacks—such as donor-site morbidity and limited availability—have driven interest in processed nerve allografts. Acellular grafts, in particular, offer promising off-the-shelf alternatives without the need for immunosuppression. Methods: We conducted a narrative review of the literature (1990–2023), identifying 55 peer-reviewed studies via PubMed, Embase, and Cochrane Library. The studies included clinical and preclinical work on motor nerve regeneration using processed nerve allografts, with particular attention to outcomes in facial nerve repair. Two independent reviewers conducted abstract screening, full-text review, and data extraction. Results: Processed nerve allografts show encouraging motor recovery in gaps under 50 mm, with recovery rates of up to 85% reported. Outcomes decrease significantly in longer gaps (>50–60 mm) and in complex cases, including facial nerve repairs, where evidence remains sparse and largely extrapolated from broader motor nerve data. Registry data (e.g., RANGER) support their use but are limited by heterogeneity and lack of randomization. Conclusions: Processed nerve allografts represent a viable alternative to autografts in selected cases—especially short to mid-length motor nerve defects. However, their role in facial nerve reconstruction remains insufficiently studied. Further trials are needed to address specific anatomical and functional challenges in this subgroup and to clarify long-gap efficacy. Full article
Show Figures

Figure 1

25 pages, 8686 KiB  
Article
Urban Shrinkage in the Qinling–Daba Mountains: Spatiotemporal Patterns and Influencing Factors
by Yuan Lv, Shanni Yang, Dan Zhao, Yilin He and Shuaibin Li
Sustainability 2025, 17(15), 7084; https://doi.org/10.3390/su17157084 - 5 Aug 2025
Abstract
With the global economic restructuring and the consequent population mobility, urban shrinkage has become a common phenomenon. The Qinling–Daba Mountains, a zone with a key ecological function in China, have long experienced population decline and functional degradation. Clarifying the dynamics and influencing factors [...] Read more.
With the global economic restructuring and the consequent population mobility, urban shrinkage has become a common phenomenon. The Qinling–Daba Mountains, a zone with a key ecological function in China, have long experienced population decline and functional degradation. Clarifying the dynamics and influencing factors of urban shrinkage plays a vital role in supporting the sustainable development of the region. This study, using permanent resident population growth rates and nighttime light data, classified cities in the region into four spatial patterns: expansion–growth, intensive growth, expansion–shrinkage, and intensive shrinkage. It further examined the spatial characteristics of shrinkage across four periods (2005–2010, 2010–2015, 2015–2020, and 2020–2022). A Geographically and Temporally Weighted Regression (GTWR) model was applied to examine core influencing factors and their spatiotemporal heterogeneity. The results indicated the following: (1) The dominant pattern of urban shrinkage in the Qinling–Daba Mountains shifted from expansion–growth to expansion–shrinkage, highlighting the paradox of population decline alongside continued spatial expansion. (2) Three critical indicators significantly influenced urban shrinkage: the number of students enrolled in general secondary schools (X5), the per capita disposable income of urban residents (X7), and the number of commercial and residential service facilities (X12), with their effects exhibiting significant spatiotemporal heterogeneity. Temporally, X12 was the most influential factor in 2005 and 2010, while in 2015, 2020, and 2022, X5 and X7 became the dominant factors. Spatially, X7 significantly affected both eastern and western areas; X5’s influence was most pronounced in the west; and X12 had the greatest impact in the east. This study explored the patterns and underlying drivers of urban shrinkage in underdeveloped areas, aiming to inform sustainable development practices in regions facing comparable challenges. Full article
(This article belongs to the Special Issue Sustainable Urban Planning and Regional Development)
Show Figures

Figure 1

16 pages, 459 KiB  
Article
Ceftazidime–Avibactam in Critically Ill Patients: A Multicenter Observational Study
by Olivieri Silvia, Mazzanti Sara, Gelo Signorino Gabriele, Pallotta Francesco, Ficola Andrea, Canovari Benedetta, Di Muzio Vanessa, Di Prinzio Michele, Cerutti Elisabetta, Donati Abele, Giacometti Andrea, Barchiesi Francesco and Brescini Lucia
Antibiotics 2025, 14(8), 797; https://doi.org/10.3390/antibiotics14080797 - 5 Aug 2025
Abstract
Ceftazidime–avibactam (CAZ-AVI) is a second-generation intravenous β-lactam/β-lactamase inhibitor combination. In recent years, substantial evidence has emerged regarding the efficacy and safety of CAZ-AVI. However, data on its use in critically ill patients remain limited. Background/Objectives: This multicenter, retrospective, observational cohort study was conducted [...] Read more.
Ceftazidime–avibactam (CAZ-AVI) is a second-generation intravenous β-lactam/β-lactamase inhibitor combination. In recent years, substantial evidence has emerged regarding the efficacy and safety of CAZ-AVI. However, data on its use in critically ill patients remain limited. Background/Objectives: This multicenter, retrospective, observational cohort study was conducted across four Intensive Care Units (ICUs) in three hospitals in the Marche region of Italy. The primary objective was to evaluate the 30-day clinical outcomes and identify risk factors associated with 30-day clinical failure—defined as death, microbiological recurrence, or persistence within 30 days after discontinuation of therapy—in critically ill patients treated with CAZ-AVI. Methods: The study included all adult critically ill patients admitted to the participating ICUs between January 2020 and September 2023 who received CAZ-AVI for at least 72 h for the treatment of a confirmed or suspected Gram-negative bacterial (GNB) infection. Results: Among the 161 patients included in the study, CAZ-AVI treatment resulted in a positive clinical outcome (i.e., clinical improvement and 30-day survival) in 58% of cases (n = 93/161), while the overall mortality rate was 24% (n = 38/161). Relapse or persistent infection occurred in a substantial proportion of patients (25%, n = 41/161). Notably, acquired resistance to CAZ-AVI was observed in 26% of these cases, likely due to suboptimal use of the drug in relation to its pharmacokinetic/pharmacodynamic (PK/PD) properties in critically ill patients. Furthermore, treatment failure was more frequent among immunosuppressed individuals, particularly liver transplant recipients. Conclusions: This study demonstrates that the mortality rate among ICU patients treated with this novel antimicrobial combination is consistent with findings from other studies involving heterogeneous populations. However, the rapid emergence of resistance underscores the need for vigilant surveillance and the implementation of robust antimicrobial stewardship strategies. Full article
Show Figures

Figure 1

12 pages, 671 KiB  
Proceeding Paper
The Role of Industrial Catalysts in Accelerating the Renewable Energy Transition
by Partha Protim Borthakur and Barbie Borthakur
Chem. Proc. 2025, 17(1), 6; https://doi.org/10.3390/chemproc2025017006 - 4 Aug 2025
Abstract
Industrial catalysts are accelerating the global transition toward renewable energy, serving as enablers for innovative technologies that enhance efficiency, lower costs, and improve environmental sustainability. This review explores the pivotal roles of industrial catalysts in hydrogen production, biofuel generation, and biomass conversion, highlighting [...] Read more.
Industrial catalysts are accelerating the global transition toward renewable energy, serving as enablers for innovative technologies that enhance efficiency, lower costs, and improve environmental sustainability. This review explores the pivotal roles of industrial catalysts in hydrogen production, biofuel generation, and biomass conversion, highlighting their transformative impact on renewable energy systems. Precious-metal-based electrocatalysts such as ruthenium (Ru), iridium (Ir), and platinum (Pt) demonstrate high efficiency but face challenges due to their cost and stability. Alternatives like nickel-cobalt oxide (NiCo2O4) and Ti3C2 MXene materials show promise in addressing these limitations, enabling cost-effective and scalable hydrogen production. Additionally, nickel-based catalysts supported on alumina optimize SMR, reducing coke formation and improving efficiency. In biofuel production, heterogeneous catalysts play a crucial role in converting biomass into valuable fuels. Co-based bimetallic catalysts enhance hydrodeoxygenation (HDO) processes, improving the yield of biofuels like dimethylfuran (DMF) and γ-valerolactone (GVL). Innovative materials such as biochar, red mud, and metal–organic frameworks (MOFs) facilitate sustainable waste-to-fuel conversion and biodiesel production, offering environmental and economic benefits. Power-to-X technologies, which convert renewable electricity into chemical energy carriers like hydrogen and synthetic fuels, rely on advanced catalysts to improve reaction rates, selectivity, and energy efficiency. Innovations in non-precious metal catalysts, nanostructured materials, and defect-engineered catalysts provide solutions for sustainable energy systems. These advancements promise to enhance efficiency, reduce environmental footprints, and ensure the viability of renewable energy technologies. Full article
Show Figures

Figure 1

18 pages, 810 KiB  
Article
The Impact of Technology, Economic Development, Environmental Quality, Safety, and Exchange Rate on the Tourism Performance in European Countries
by Zeki Keşanlı, Feriha Dikmen Deliceırmak and Mehdi Seraj
Sustainability 2025, 17(15), 7074; https://doi.org/10.3390/su17157074 - 4 Aug 2025
Abstract
The study investigates the contribution of technology (TECH), quantified by Internet penetration, in influencing tourism performance (TP) among the top ten touristic nations in Europe: France, Spain, Italy, Turkey, the United Kingdom, Germany, Greece, Austria, Portugal, and the Netherlands. Using panel data from [...] Read more.
The study investigates the contribution of technology (TECH), quantified by Internet penetration, in influencing tourism performance (TP) among the top ten touristic nations in Europe: France, Spain, Italy, Turkey, the United Kingdom, Germany, Greece, Austria, Portugal, and the Netherlands. Using panel data from 2000–2022, the study includes additional structural controls like environment quality, gross domestic production (GDP) per capita, exchange rate (ER), and safety index (SI). The Method of Moments Quantile Regression (MMQR) is employed to capture heterogeneous effects at different levels of TP, and Driscoll–Kraay standard error (DKSE) correction is employed to make the analysis robust against autocorrelation as well as cross-sectional dependence. Spectral–Granger causality tests are also conducted to check short- and long-run dynamics in the relationships. Empirical results are that TECH and SI are important in TP at all quantiles, but with stronger effects for lower-performing countries. Environmental quality (EQ) and GDP per capita (GDPPC) exert increasing impacts at upper quantiles, suggesting their importance in sustaining high-level tourism economies. ER effects are limited and primarily short-term. The findings highlight the need for integrated digital, environmental, and economic policies to achieve sustainable tourism development. The paper contributes to tourism research by providing a comprehensive, frequency-sensitive, and distributional analysis of macroeconomic determinants of tourism in highly developed European tourist destinations. Full article
Show Figures

Figure 1

33 pages, 640 KiB  
Review
Future Pharmacotherapy for Bipolar Disorders: Emerging Trends and Personalized Approaches
by Giuseppe Marano, Francesco Maria Lisci, Gianluca Boggio, Ester Maria Marzo, Francesca Abate, Greta Sfratta, Gianandrea Traversi, Osvaldo Mazza, Roberto Pola, Gabriele Sani, Eleonora Gaetani and Marianna Mazza
Future Pharmacol. 2025, 5(3), 42; https://doi.org/10.3390/futurepharmacol5030042 - 4 Aug 2025
Abstract
Background: Bipolar disorder (BD) is a chronic and disabling psychiatric condition characterized by recurring episodes of mania, hypomania, and depression. Despite the availability of mood stabilizers, antipsychotics, and antidepressants, long-term management remains challenging due to incomplete symptom control, adverse effects, and high relapse [...] Read more.
Background: Bipolar disorder (BD) is a chronic and disabling psychiatric condition characterized by recurring episodes of mania, hypomania, and depression. Despite the availability of mood stabilizers, antipsychotics, and antidepressants, long-term management remains challenging due to incomplete symptom control, adverse effects, and high relapse rates. Methods: This paper is a narrative review aimed at synthesizing emerging trends and future directions in the pharmacological treatment of BD. Results: Future pharmacotherapy for BD is likely to shift toward precision medicine, leveraging advances in genetics, biomarkers, and neuroimaging to guide personalized treatment strategies. Novel drug development will also target previously underexplored mechanisms, such as inflammation, mitochondrial dysfunction, circadian rhythm disturbances, and glutamatergic dysregulation. Physiological endophenotypes, such as immune-metabolic profiles, circadian rhythms, and stress reactivity, are emerging as promising translational tools for tailoring treatment and reducing associated somatic comorbidity and mortality. Recognition of the heterogeneous longitudinal trajectories of BD, including chronic mixed states, long depressive episodes, or intermittent manic phases, has underscored the value of clinical staging models to inform both pharmacological strategies and biomarker research. Disrupted circadian rhythms and associated chronotypes further support the development of individualized chronotherapeutic interventions. Emerging chronotherapeutic approaches based on individual biological rhythms, along with innovative monitoring strategies such as saliva-based lithium sensors, are reshaping the future landscape. Anti-inflammatory agents, neurosteroids, and compounds modulating oxidative stress are emerging as promising candidates. Additionally, medications targeting specific biological pathways implicated in bipolar pathophysiology, such as N-methyl-D-aspartate (NMDA) receptor modulators, phosphodiesterase inhibitors, and neuropeptides, are under investigation. Conclusions: Advances in pharmacogenomics will enable clinicians to predict individual responses and tolerability, minimizing trial-and-error prescribing. The future landscape may also incorporate digital therapeutics, combining pharmacotherapy with remote monitoring and data-driven adjustments. Ultimately, integrating innovative drug therapies with personalized approaches has the potential to enhance efficacy, reduce adverse effects, and improve long-term outcomes for individuals with bipolar disorder, ushering in a new era of precision psychiatry. Full article
Show Figures

Figure 1

Back to TopTop