Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (749)

Search Parameters:
Keywords = rare-earth ion

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 7101 KB  
Article
Mineralogical Characterization of REE-Y Occurrences in the A-Type Serra Da Mesa Granitic Massif, Goiás, Brazil
by Angélica María Zapata Montoya, Nilson Francisquini Botelho and Federico Alberto Cuadros Jimenez
Minerals 2026, 16(1), 75; https://doi.org/10.3390/min16010075 - 13 Jan 2026
Viewed by 78
Abstract
Rare earth elements (REEs) are not scarce in nature; however, they rarely occur in economically viable concentrations. Over recent decades, demand for REE has increased substantially due to advances in high-technology industries and the expansion of clean energy technologies. At present, global REE [...] Read more.
Rare earth elements (REEs) are not scarce in nature; however, they rarely occur in economically viable concentrations. Over recent decades, demand for REE has increased substantially due to advances in high-technology industries and the expansion of clean energy technologies. At present, global REE production is highly concentrated, leading to instability in the international market and reinforcing the need to identify new resources. This study presents a mineralogical characterization of REE+Y occurrences in the Serra da Mesa Granitic Massif (SMGM), the type granite of the Tocantins Subprovince, Goiás Tin Province, Brazil. The objective is to evaluate its potential for REE+Y enrichment in ion-adsorption–type (IA-type) weathering profiles. Petrography, electron probe microanalysis (EPMA), and scanning electron microscopy (SEM) were applied to samples of the parental granite and associated alluvial sediments. The main REE-bearing minerals identified are allanite, bastnäsite-(Y), fluocarbonates, xenotime-(Y), zircon, and fergusonite-(Y), showing wide compositional variability. Bastnäsite-(Y) and xenotime display the highest REE+Y contents, reaching up to 74.2 wt.% and 65.1 wt.%, respectively. Bastnäsite and other fluocarbonates occur as alteration products of allanite, indicating REE+Y mobilization associated with F- and CO2-rich fluids under low-temperature hydrothermal conditions. Alteration textures and low EPMA analytical totals suggest hydration, metamictization, and fluid-mediated neoformation processes. The abundance of REE+Y-bearing minerals, their susceptibility to weathering, and the presence of secondary fluocarbonates indicate that the SMGM represents a promising target for IA-type REE+Y mineralization within the Goiás Tin Province. Full article
(This article belongs to the Special Issue Ion-Adsorption-Type REE Deposits)
Show Figures

Figure 1

15 pages, 2593 KB  
Article
Zirconium Phosphate Supported on Biochar for Effective Recovery of Rare Earth Elements from Tailwater: A Case Study of La3+
by Ning Zheng, Chenliang Peng, Xia Zhu, Weichang Kong and Yang Yang
Metals 2026, 16(1), 84; https://doi.org/10.3390/met16010084 - 13 Jan 2026
Viewed by 97
Abstract
The efficient recovery of rare earth elements (REEs) from low-concentration mine tailwater is crucial for resource sustainability. In this study, a novel composite adsorbent, sesame stalk biochar-supported zirconium phosphate (sBC/ZrP), was synthesized for the selective adsorption and recovery of La3+ as a [...] Read more.
The efficient recovery of rare earth elements (REEs) from low-concentration mine tailwater is crucial for resource sustainability. In this study, a novel composite adsorbent, sesame stalk biochar-supported zirconium phosphate (sBC/ZrP), was synthesized for the selective adsorption and recovery of La3+ as a representative REE. The material was characterized using SEM-EDS, BET, XRD, FTIR, and XPS. Batch adsorption experiments were conducted to evaluate the effects of pH, coexisting ions, and the adsorption kinetics and thermodynamics. The results showed that sBC/ZrP exhibited a high adsorption capacity (up to 185.83 mg/g at 35 °C for 4 h) and strong selectivity for La3+, particularly in the presence of common competing cations, although Al3+ demonstrated significant interference. The adsorption process followed pseudo-second-order kinetics and the Langmuir isotherm model, indicating monolayer chemisorption, and was determined to be spontaneous and endothermic. The material maintained over 90% adsorption efficiency after five consecutive adsorption–desorption cycles. The mechanism primarily involved complexation of La3+ with the P-OH and Zr-O groups on the composite. This work demonstrates that sBC/ZrP is a highly efficient, stable, and reusable adsorbent with significant potential for the recovery of REEs from mining tailwater. Full article
(This article belongs to the Special Issue Advances in Recycling of Valuable Metals—2nd Edition)
Show Figures

Figure 1

16 pages, 3407 KB  
Article
Unraveling the Hf4+ Site Occupation Transition in Dy: LiNbO3: A Combined Experimental and Theoretical Study on the Concentration Threshold Mechanism
by Shunxiang Yang, Li Dai, Jingchao Wang and Binyu Dai
Appl. Sci. 2026, 16(1), 165; https://doi.org/10.3390/app16010165 - 23 Dec 2025
Viewed by 259
Abstract
Precise control over defect structures is essential for tuning the functional properties of lithium niobate (LiNbO3) crystals. Although the threshold effect of Hf4+ doping is well recognized, its underlying atomic-scale mechanism, especially in systems co-doped with luminescent rare earth ions, [...] Read more.
Precise control over defect structures is essential for tuning the functional properties of lithium niobate (LiNbO3) crystals. Although the threshold effect of Hf4+ doping is well recognized, its underlying atomic-scale mechanism, especially in systems co-doped with luminescent rare earth ions, remains unclear. In this study, we combine experimental and theoretical approaches to elucidate the Hf4+ concentration-driven threshold behavior in Dy: LiNbO3 crystals. A series of crystals with Hf4+ concentrations of 2, 4, 6, and 8 mol% were grown using the Czochralski method. Characterization through XRD and IR spectroscopy identified a threshold near 4 mol%, evidenced by an inflection in lattice constants and a pronounced blue shift of the OH absorption peak. UV–Vis–NIR absorption spectra revealed a systematic enhancement of Dy3+f–f transition intensities, linking the global defect structure to the local crystal field of the optical activator. First-principles calculations showed that Hf4+ ions preferentially occupy Li sites, repairing antisite Nb defects (NbLi4+) below the threshold, and incorporate into Nb sites beyond it, inducing structural reorganization. Electron Localization Function analysis visualized strengthened Hf-O covalent bonding in the post-threshold regime. This work establishes a complete atomic-scale picture connecting dopant site preference, chemical bonding, and macroscopic properties, providing a foundational framework for the rational design of advanced LiNbO3-based materials. Full article
Show Figures

Figure 1

14 pages, 583 KB  
Article
Intrinsic Bi-Stability Due to Local Dipole–Dipole Interactions in Two-Level Systems and in Excited Crystalline Atomic Dimers
by Yacob Ben-Aryeh
Solids 2026, 7(1), 2; https://doi.org/10.3390/solids7010002 - 23 Dec 2025
Viewed by 216
Abstract
Intrinsic optical bi-stability in dense two-level systems is developed for the bad cavity limit where electromagnetic modes are adiabatically eliminated. Each atom interacts via dipole–dipole forces with its nearby spatial distribution of atoms. The theory is developed into two parts, corresponding to the [...] Read more.
Intrinsic optical bi-stability in dense two-level systems is developed for the bad cavity limit where electromagnetic modes are adiabatically eliminated. Each atom interacts via dipole–dipole forces with its nearby spatial distribution of atoms. The theory is developed into two parts, corresponding to the short sample, with dimensions shorter than the wavelength, and the long sample. In both cases, the local field corrections modify the Maxwell–Bloch equations, so that cubic or quartic equations are obtained for the inversion of population as a function of the external light intensity, thus leading to intrinsic bi-stability. The effects of noise sources on intrinsic bi-stability were treated, and I found that while the observability of bi-stability was not obtained experimentally for a simple two-level system, there were many observations of bi-stability obtained through the ‘up-conversion’ of rare earth excited crystals. I show the differences between these two systems. Full article
Show Figures

Figure 1

13 pages, 1166 KB  
Communication
Potential Occurrence of Accessory Minerals in the Lower Mantle
by Oliver Tschauner
Minerals 2026, 16(1), 9; https://doi.org/10.3390/min16010009 - 22 Dec 2025
Viewed by 215
Abstract
In a seminal paper V.M. Goldschmidt pointed out that, in terms of volume of the constituent ions, Earth’s crust and mantle are basically a packing of negatively charged oxygen ions bound together by the volumetrically barely significant cations. Here, this statement is revisited [...] Read more.
In a seminal paper V.M. Goldschmidt pointed out that, in terms of volume of the constituent ions, Earth’s crust and mantle are basically a packing of negatively charged oxygen ions bound together by the volumetrically barely significant cations. Here, this statement is revisited using modern assessments of mantle composition and pressure-dependent ionic radii. It is found that the transition to the lower mantle marks a reduction in the O2− crystal ionic volume percentage from 86 to less than 80%, significant enough to suggest an overall reduced compatibility of less abundant elements within the first few hundred km of depth below that transition from lower-mantle to upper-mantle rock. An equivalent drop across both, the 410- and 670 km mantle discontinuities occurs for large polyhedral sites, which are the potential hosts for incompatible elements. Accordingly, most large ionic lithophiles and rare earth elements in the lower mantle are highly enriched in one minor phase, davemaoite. It is proposed that those minor and trace elements that are less compatible with this mineral, such as some of the high-field strength elements, are concentrated in yet unknown accessory minerals that potentially affect geochemical signatures of deep mantle-derived igneous rocks. Full article
Show Figures

Figure 1

17 pages, 3536 KB  
Article
Protective Effect of PEG-EDTA and Its Zinc(II) Complex on Human Cells
by Tashneet Dhaliwal, Cole Babcock, Brynmar Degenhardt, Isaac Osorio Passos, Tigran Stepanyan and Makan Golizeh
Int. J. Mol. Sci. 2026, 27(1), 44; https://doi.org/10.3390/ijms27010044 - 20 Dec 2025
Viewed by 477
Abstract
The most widely used chelating agent, ethylenediaminetetraacetic acid (EDTA), can cause mild to serious side effects when used for clinical applications. Introducing a polyethylene glycol (PEG) moiety into the molecular structure of EDTA has been shown to lower its toxicity; however, it is [...] Read more.
The most widely used chelating agent, ethylenediaminetetraacetic acid (EDTA), can cause mild to serious side effects when used for clinical applications. Introducing a polyethylene glycol (PEG) moiety into the molecular structure of EDTA has been shown to lower its toxicity; however, it is unclear whether this could affect EDTA chelation efficiency due to the steric hindrance and the loss of a coordination site caused by the PEGylation reaction. This research aimed to determine if PEGylation could reduce EDTA toxicity without affecting its chelation efficiency. To this end, effective formation constants were determined for EDTA and PEG-EDTA rare earth metal ion complexes using spectrophotometric and titrimetric methods. The stability of PEG-EDTA complexes with the target metal ions was assessed under different conditions using Fourier-transform infrared spectroscopy. The cytotoxicity and metal detoxification capacity of EDTA, PEG-EDTA, and their zinc(II) complexes were determined in two selected human cell types exposed to toxic heavy metal ions. This study suggests that PEG-EDTA has lower toxicity than EDTA, especially when complexed with a nontoxic metal ion, such as zinc(II), while only slightly losing chelation efficiency, potentially making PEG-EDTA a more favourable metal detoxification reagent for clinical applications. Full article
Show Figures

Figure 1

19 pages, 13872 KB  
Article
Geochronology and Geochemistry of the Late Mesozoic Volcanism in the Central Great Xing’an Range (NE China): Implications for the Dynamic Setting
by Wenpo Ma, Kai Xing, Fan Yu, Hailong Zhang, Jingxiong Wang, Chao Tan, Kai Li and Delong Hui
Minerals 2026, 16(1), 1; https://doi.org/10.3390/min16010001 - 19 Dec 2025
Viewed by 253
Abstract
The voluminous Mesozoic volcanic rocks developed in the Great Xing’an Range, northeastern China, have received extensive attention in recent decades. However, the timing and petrogenesis, as well as the related geodynamic processes of the Late Mesozoic volcanism, are still controversial. In this paper, [...] Read more.
The voluminous Mesozoic volcanic rocks developed in the Great Xing’an Range, northeastern China, have received extensive attention in recent decades. However, the timing and petrogenesis, as well as the related geodynamic processes of the Late Mesozoic volcanism, are still controversial. In this paper, we present the whole-rock geochemistry and zircon U–Pb ages for the Late Mesozoic volcanic rocks from the western part of the central Great Xing’an Range, which provide considerable insights into the geodynamic setting of the region. The zircon U-Pb dating results indicate that two main episodes of volcanism occurred in the central Great Xing’an Range, including in the Late Jurassic (ca. 147 Ma) and Early Cretaceous (ca. 142–125 Ma). These Late Mesozoic volcanic rocks display similar geochemical compositions, which are mainly intermediate–felsic, alkaline, peraluminous to metaluminous, enriched in large ion lithophile elements and light rare earth elements, and depleted in high-field-strength elements, indicating arc affinities in the subduction zone. The trace element compositions suggest that the magmatism was related to a post-collisional extensional environment. Combined with the spatial distribution and temporal migration of the Mesozoic magmatic events in the whole northeastern China region, we propose that these Late Jurassic–Early Cretaceous volcanic rocks formed in a continental arc setting, which was mainly related to the rollback of the subducted Paleo-Pacific oceanic plate. Full article
(This article belongs to the Special Issue Selected Papers from the 7th National Youth Geological Congress)
Show Figures

Figure 1

21 pages, 5803 KB  
Article
Microwave-Assisted Synthesis of Visible Light-Driven BiVO4 Nanoparticles: Effects of Eu3+ Ions on the Luminescent, Structural, and Photocatalytic Properties
by Dragana Marinković, Bojana Vasiljević, Nataša Tot, Tanja Barudžija, Sudha Maria Lis Scaria, Stefano Varas, Rossana Dell’Anna, Alessandro Chiasera, Bernhard Fickl, Bernhard C. Bayer, Giancarlo C. Righini and Maurizio Ferrari
Molecules 2025, 30(24), 4757; https://doi.org/10.3390/molecules30244757 - 12 Dec 2025
Viewed by 452
Abstract
The optimization of BiVO4-based structures significantly contributes to the development of a global system towards clean, renewable, and sustainable energies. Enhanced photocatalytic performance has been reported for numerous doped BiVO4 materials. Bi3+-based compounds can be easily doped with [...] Read more.
The optimization of BiVO4-based structures significantly contributes to the development of a global system towards clean, renewable, and sustainable energies. Enhanced photocatalytic performance has been reported for numerous doped BiVO4 materials. Bi3+-based compounds can be easily doped with rare earth (RE3+) ions due to their equal valence and similar ionic radius. This means that RE3+ ions could be regarded as active co-catalysts and dopants to enhance the photocatalytic activity of BiVO4. In this study, a simple microwave-assisted approach was used for preparing nanostructured Bi1−xEuxVO4 (x = 0, 0.03, 0.06, 0.09, and 0.12) samples. Microwave heating at 170 °C yields a bright yellow powder after 10 min of radiation. The materials are characterized through X-ray diffraction (XRD), transmission electron microscopy (TEM), ultraviolet–visible–near-infrared diffuse reflectance spectroscopy (UV-Vis-NIR DRS), photoluminescence spectroscopy (PL), and micro-Raman techniques. The effects of the different Eu3+ ion concentrations incorporated into the BiVO4 matrix on the formation of the monoclinic scheelite (ms-) or tetragonal zircon-type (tz-) BiVO4 structure, on the photoluminescent intensity, on the decay dynamics of europium emission, and on photocatalytic efficiency in the degradation of Rhodamine B (RhB) were studied in detail. Additionally, microwave chemistry proved to be beneficial in the synthesis of the tz-BiVO4 nanostructure and Eu3+ ion doping, leading to an enhanced luminescent and photocatalytic performance. Full article
(This article belongs to the Special Issue Chemiluminescence and Photoluminescence of Advanced Compounds)
Show Figures

Graphical abstract

18 pages, 511 KB  
Review
Rare-Earth Oxide Nanoparticles: A New Weapon Against Multidrug-Resistant Pathogens with Potential Wound Healing Treatment
by Albert Donald Luong, Moorthy Maruthapandi, Aharon Gedanken and John H. T. Luong
Nanomaterials 2025, 15(24), 1862; https://doi.org/10.3390/nano15241862 - 11 Dec 2025
Viewed by 635
Abstract
Rare-earth oxide (REO) nanoparticles (NPs)—such as cerium (CeO2), samarium (Sm2O3), neodymium (Nd2O3), terbium (Tb4O7), and praseodymium (Pr2O3)—have demonstrated strong antimicrobial activity against multidrug-resistant bacteria. Their [...] Read more.
Rare-earth oxide (REO) nanoparticles (NPs)—such as cerium (CeO2), samarium (Sm2O3), neodymium (Nd2O3), terbium (Tb4O7), and praseodymium (Pr2O3)—have demonstrated strong antimicrobial activity against multidrug-resistant bacteria. Their effectiveness is attributed to unique physicochemical properties, including oxygen vacancies and redox cycling, which facilitate the generation of reactive oxygen species (ROS) that damage microbial membranes and biomolecules. Additionally, electrostatic interactions with microbial surfaces and sustained ion release contribute to membrane disruption and long-term antimicrobial effects. REOs also inhibit bacterial enzymes, DNA, and protein synthesis, providing broad-spectrum activity against Gram-positive, Gram-negative, and fungal pathogens. However, dose-dependent cytotoxicity to mammalian cells—primarily due to excessive ROS generation—and nanoparticle aggregation in biological media remain challenges. Surface functionalization with polymers, peptides, or metal dopants (e.g., Ag, Zn, and Cu) can mitigate cytotoxicity and enhance selectivity. Scalable and sustainable synthesis remains a challenge due to high synthesis costs and scalability issues in industrial production. Green and biogenic routes using plant or microbial extracts can produce REOs at lower cost and with improved safety. Advanced continuous flow and microwave-assisted synthesis offer improved particle uniformity and production yields. Biomedical applications include antimicrobial coatings, wound dressings, and hybrid nanozyme systems for oxidative disinfection. However, comprehensive and intensive toxicological evaluations, along with regulatory frameworks, are required before clinical deployment. Full article
Show Figures

Graphical abstract

21 pages, 9961 KB  
Article
Geochronology and Geochemistry of Early–Middle Permian Intrusive Rocks in the Southern Greater Xing’an Range, China: Constraints on the Tectonic Evolution of the Paleo-Asian Ocean
by Haihua Zhang, Xiaoping Yang, Xin Huang, Liang Qiu, Gongjian Li, Yujin Zhang, Wei Chen and Haiwei Jiao
Minerals 2025, 15(12), 1288; https://doi.org/10.3390/min15121288 - 8 Dec 2025
Viewed by 453
Abstract
The tectonic evolution of the Paleo-Asian Ocean during the Early to Middle Permian remains a key issue in understanding the geodynamic history of the Central Asian Orogenic Belt. To address this, we conducted petrological, whole-rock geochemical, zircon U–Pb geochronological, and Hf isotopic analyses [...] Read more.
The tectonic evolution of the Paleo-Asian Ocean during the Early to Middle Permian remains a key issue in understanding the geodynamic history of the Central Asian Orogenic Belt. To address this, we conducted petrological, whole-rock geochemical, zircon U–Pb geochronological, and Hf isotopic analyses of Early Permian biotite granodiorite and Middle Permian porphyritic granite from the south-central Great Xing’an Range. Zircon U–Pb dating yields ages of 273.2 ± 1.4 Ma and 264.4 ± 1.5 Ma, indicating that these intrusions emplaced during Early and Middle Permian. Geochemical analyses show that the rocks are characterized by high SiO2 and Al2O3 contents, and low MgO and CaO contents and belong to the metaluminous to weakly peraluminous series, typical of I-type granites. The rocks are enriched in light rare earth elements and large-ion lithophile elements (e.g., Rb, Ba, K), but depleted in heavy rare earth elements and high field strength elements (e.g., Nb, Ta, P, Ti), with weakly negative Eu anomalies. The Early Permian pluton exhibits low-Sr and high-Yb characteristics and thus fall in the plagioclase stability field. In contrast, Middle Permian pluton was derived from magmas generated by partial melting under high-pressure conditions and that, underwent crystal fractionation during ascent to the mid-upper crust, ultimately forming low-Sr and low-Yb type granites. All zircon εHf(t) values are positive (+4.84 to +14.87), with the corresponding two-stage Hf model ages ranging from 345 Ma to 980 Ma, indicating that the magmas were predominantly derived from juvenile crustal materials accreted during the Neoproterozoic to Phanerozoic. Considering these results, we propose that the Paleo-Asian Oceanic plate continued to subduct beneath the Songliao–Xilinhot block to the north during the Early to Middle Permian, with intense subduction and crustal thickening occurring in the Middle Permian. This suggests that the south-central segment of the Great Xing’an Range was situated in an active continental marginal setting during the Early-Middle Permian. Full article
(This article belongs to the Special Issue Selected Papers from the 7th National Youth Geological Congress)
Show Figures

Figure 1

17 pages, 2001 KB  
Article
406/473 nm Pump-Band Absorption Cross Sections and Derivative-Based Line-Shape Descriptors in Er3+/Ho3+:Y3Ga5O12
by Helena Cristina Vasconcelos and Maria Gabriela Meirelles
Physics 2025, 7(4), 63; https://doi.org/10.3390/physics7040063 - 1 Dec 2025
Viewed by 430
Abstract
We establish a general, device-oriented procedure to extract absolute pump-band metrics from room-temperature UV–Vis (ultraviolet–visible) absorbance—including the absorption coefficient α(λ), per-active-ion cross-section σeffλ, the effective per-active-ion absorption cross section σeffλ and derivative-based line-shape descriptors. [...] Read more.
We establish a general, device-oriented procedure to extract absolute pump-band metrics from room-temperature UV–Vis (ultraviolet–visible) absorbance—including the absorption coefficient α(λ), per-active-ion cross-section σeffλ, the effective per-active-ion absorption cross section σeffλ and derivative-based line-shape descriptors. As a representative case study, the procedure is applied to nanocrystalline Er3+/Ho3+:Y3Ga5O12 over the 350–700 nm spectral range. After baseline correction and line-shape inspection assisted by the numerical second derivative of the absorbance, we extract conservative peak positions and the full width at half maximum across the visible 4f–4f manifolds. At the technologically relevant pump wavelengths near 406 nm (Er-addressing) and 473 nm (Ho-addressing) bands, resulting absorption coefficients are α = 0.313 ± 0.047 cm−1 and α = 0.472 ± 0.071 cm−1, respectively. The corresponding per-active-ion σeff of (3.62 ± 0.54) × 10−22 cm2 and (5.46 ± 0.82) × 10−22 cm2, referenced to the measured optical path length L = 0.22 ± 0.03 mm (approximately 15% propagated relative uncertainty; explicit 1/L rescaling). Cross sections are reported per total active-ion density (Er3+ + Ho3+). The spectra exhibit Stark-type substructure only partially resolved at room temperature; the second derivative highlights hidden components, and we report quantitative descriptors (component count, mean spacing, curvature-weighted prominence, and pump detuning) that link line-shape structure to absolute pump response. These device-grade metrics enable rate-equation modelling (pump thresholds, detuning tolerance), optical design choices (path length, single/multi-pass or cavity coupling), and host-to-host benchmarking at 295 K. The procedure is general and applies to any rare-earth-doped material given an absorbance spectrum and path length. Full article
(This article belongs to the Section Atomic Physics)
Show Figures

Figure 1

14 pages, 1834 KB  
Article
Tunable Luminescence in Sb3+-Doped Cs3LnCl6 Perovskites for Wide-Coverage Emission and Anti-Counterfeiting Applications
by Lianao Zhang, Le Chen, Sai Xu, Yongze Cao, Xizhen Zhang, Hongquan Yu, Yuefeng Gao and Baojiu Chen
Nanomaterials 2025, 15(23), 1790; https://doi.org/10.3390/nano15231790 - 27 Nov 2025
Viewed by 450
Abstract
Zero-dimensional (0D) rare-earth-based metal halides show great potential in photonic and optoelectronic applications owing to their high stability, strong exciton confinement, and tunable energy levels. However, the weak absorption and narrow 4f-4f transitions of rare-earth ions limit their performance. To address this, a [...] Read more.
Zero-dimensional (0D) rare-earth-based metal halides show great potential in photonic and optoelectronic applications owing to their high stability, strong exciton confinement, and tunable energy levels. However, the weak absorption and narrow 4f-4f transitions of rare-earth ions limit their performance. To address this, a series of Sb3+-doped Cs3LnCl6 (Ln: Yb, La, Eu, Ho, Ce, Er, Tb, Sm, Y) nanocrystals were synthesized via a hot-injection method to study the role of Sb3+ doping. Sb3+ incorporation induces strong broadband self-trapped exciton (STE) emission from Jahn–Teller-distorted [SbCl6]3− units and enables efficient energy transfer from STEs to rare-earth ions. As a result, the photoluminescence intensity and spectral tunability are improved, accompanied by bandgap narrowing and enhanced light absorption. Different lanthanide hosts exhibit distinct luminescence behaviors: La-based materials show dominant STE emission, while Tb-, Er-, Yb-, Ho-, and Sm-based systems display STE-mediated energy transfer and enhanced f-f emission. In Eu- and Ce-based hosts, unique mechanisms involving Eu2+/Eu3+ conversion and Ce3+ → STE energy transfer are observed. Moreover, composition-dependent emissions in Sb3+-doped Cs3Tb/EuCl6 enable a dual-mode color and spectral encoding strategy for optical anti-counterfeiting. This study highlights the versatile role of Sb3+ in tuning electronic structures and energy transfer, offering new insights for designing high-performance rare-earth halide materials for advanced optoelectronic applications. Full article
Show Figures

Figure 1

16 pages, 11146 KB  
Article
Preparation and Study of Bright Orange-Yellow Long Persistent Luminescent Ca2LuScGa2Ge2O12:Pr3+ Phosphor
by Xiaoman Shi, Huimin Li, Ruiping Deng, Su Zhang and Hongjie Zhang
Photochem 2025, 5(4), 38; https://doi.org/10.3390/photochem5040038 - 18 Nov 2025
Viewed by 464
Abstract
Long persistent phosphors are widely used in many fields, such as LED, bioimaging, urgent lighting, temperature sensors, etc. Although green and blue long persistent phosphors are well developed, efficient orange-yellow long persistent phosphors are still relatively rare. In this work, a novel orange-yellow [...] Read more.
Long persistent phosphors are widely used in many fields, such as LED, bioimaging, urgent lighting, temperature sensors, etc. Although green and blue long persistent phosphors are well developed, efficient orange-yellow long persistent phosphors are still relatively rare. In this work, a novel orange-yellow long-persistent phosphors Ca2LuScGa2Ge2O12:xPr3+ (CLSGGO:xPr3+, x = 0.003, 0.005, 0.01, 0.02, 0.03, 0.04, 0.05) are prepared and systematically investigated through its crystal structural information, photoluminescence, and persistent luminescence properties. Under ultraviolet light excitation, these phosphors exhibit orange-yellow emission stemming from the 3P0 and 1D2 multiple electron transitions in the 4f level of Pr3+ ion. In addition, the material exhibits bright persistent luminescence. The complex garnet matrix structure of Ca2LuScGa2Ge2O12 provides excellent conditions for the formation of traps. Through the testing of thermoluminescence curve and function fitting, the density and depth of traps are studied; also, the storage and release process of carriers in the material are calculated in detail. A reasonable persistent luminescence mechanism is proposed for CLSGGO:0.01Pr3+. This work enriches the research content of photoluminescence and long persistent luminescence of Pr3+-doped garnet-based phosphors and paves the way for the future research of long persistent luminescent materials doped with rare earth ions. Full article
Show Figures

Figure 1

17 pages, 3419 KB  
Article
Effect of (NH4)2SO4 Solution Concentration on Bound Water Content in Ion Adsorption Rare-Earth Raw Ore
by Yuehua Liang, Jie Wang, Zhikui Fei, Chenliang Peng, Hourui An and Zhanfeng Fan
Metals 2025, 15(11), 1254; https://doi.org/10.3390/met15111254 - 17 Nov 2025
Cited by 2 | Viewed by 439
Abstract
Ion adsorption rare-earth (IARE) ores, a strategic metal resource, are extracted by leaching with ammonium sulfate [(NH4)2SO4] solution, our samples have ∑REO grades of 0.032–0.079% wt%. IARE sandstone, mudstone, clay, and strongly weathered rock were selected as test materials. [...] Read more.
Ion adsorption rare-earth (IARE) ores, a strategic metal resource, are extracted by leaching with ammonium sulfate [(NH4)2SO4] solution, our samples have ∑REO grades of 0.032–0.079% wt%. IARE sandstone, mudstone, clay, and strongly weathered rock were selected as test materials. Surface-related physicochemical parameters were determined, and bound water was determined by volumetric flask pycnometry. For each IARE lithology, we also obtained particle size distributions and evaluated bound water variation in (NH4)2SO4 solutions at 0, 1, 2, and 3 wt%. Based on the Gouy–Chapman theory, the relationship between the surface bound water and solution concentration, as well as the surface charge of IARE samples, and other influencing factors was explored. The experimental results show the following: ① The surface charge per unit area of four types of IARE samples, namely mudstone, sandstone, clay, and strongly weathered rock, are 0.7072 × 10−2 mmol/m2, 1.9620 × 10−2 mmol/m2, 1.5418 × 10−2 mmol/m2, and 2.1003 × 10−2 mmol/m2, respectively, with strongly weathered rock having the highest and mudstone having the lowest. ② As the concentration of aqueous (NH4)2SO4 increases (0, 1, 2, 3 wt%), the total volume reduction in free water ∆V in the system increases, and the mass of adsorbed bound water per unit mass of IARE sample also increases. ③ As the concentration of the solution increases, the thickness of the diffusion double layer on the surface of the IARE sample is compressed, the total amount of adsorbed anions and cations on the surface increases, and the density of the surface water film also increases, leading to a corresponding increase in the quality of adsorbed bound water. ④ Under the same solution concentration, the variation trend of adsorbed bound water mass per unit area of IARE samples is strongly weathered rock > sandstone > clay > mudstone, which is consistent with the trend of surface charge per unit area of IARE samples. A higher lixiviant concentration increases bound water, shrinks the effective pore throats of the ore body, reduces hydraulic conductivity, and consequently diminishes leaching efficiency. Full article
(This article belongs to the Special Issue Advances in Recycling of Valuable Metals—2nd Edition)
Show Figures

Figure 1

19 pages, 5898 KB  
Article
Geochronology and Geochemistry of the Granite Porphyry in the Zhilingtou Au-Mo-Pb-Zn Polymetallic Deposit, SE China: Implication for Mineralization Mechanism
by Bo Xing, Kelei Chu, Wei Zheng, Xiaorong Chen, Gang Qi, Shengli Chen and Xiang Gao
Minerals 2025, 15(11), 1166; https://doi.org/10.3390/min15111166 - 5 Nov 2025
Viewed by 577
Abstract
The Zhilingtou Au-Mo-Pb-Zn polymetallic deposit is located in the southwestern Zhejiang Province, NE China, and is tectonically situated in the Shaoxing-Longquan uplift belt. Although previous studies have indicated that Au mineralization in this area occurred between 135 Ma and 145 Ma, evidence for [...] Read more.
The Zhilingtou Au-Mo-Pb-Zn polymetallic deposit is located in the southwestern Zhejiang Province, NE China, and is tectonically situated in the Shaoxing-Longquan uplift belt. Although previous studies have indicated that Au mineralization in this area occurred between 135 Ma and 145 Ma, evidence for coeval intrusive rocks has been lacking. Furthermore, it remains controversial whether the Au mineralization and (~113 Ma) Mo-Pb-Zn mineralization belong to the same magmatic-hydrothermal system. This study conducted comprehensive high-precision geochronological, petrochemical, and Sr-Nd isotopic analyses on the newly discovered granite porphyry intrusion in the mining area. The aim is to constrain the emplacement age of the intrusion, reveal the petrogenesis and source of ore-forming materials, and further discuss the mineralization mechanism. LA-ICP-MS zircon U-Pb dating results indicate that the granite porphyry was formed at 137.8 ± 0.95 Ma, which is broadly consistent with previously reported ages of Au mineralization. It is inferred that this intrusion may be related to a Au mineralization event at around 138 Ma. Geochemical characteristics show that the rock is peraluminous I-type granite, enriched in light rare earth elements (LREEs) and large ion lithophile elements (LILEs) and depleted in high field strength elements (HFSEs) such as Nb, Ta, and Ti, indicating an “island arc-type” geochemical signatures. Sr-Nd isotopic compositions (initial 87Sr/86Sr = 0.712364–0.712711; εNd(t) = −13.9 to −13.4; two-stage Nd model ages TDM2 = 1877–1908 Ma) suggest that the magma was derived from ancient crustal materials with the addition of mantle-derived components. Integrating existing geochronological, isotopic, and fluid inclusion evidence, it is proposed that the Zhilingtou deposit may have experienced two mineralization events: an early event (~138 Ma) involving Au-Ag mineralization related to the granite porphyry and a later event (~113 Ma) comprising Mo-Pb-Zn mineralization associated with a porphyry–epithermal system. Together, these events form a composite mineralization system. This study has important implications for refining regional metallogenic theories and guiding future ore exploration. Full article
(This article belongs to the Special Issue Genesis and Evolution of Pb-Zn-Ag Polymetallic Deposits: 2nd Edition)
Show Figures

Figure 1

Back to TopTop