Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (127)

Search Parameters:
Keywords = rare earth oxide doping

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 8489 KB  
Article
Effects of Rare Earth Elements on the Isothermal Oxidation of the Alumina-Scale-Forming NbSiTiAlHf Alloys
by Chang Jiang, Hui Zhao, Dan Wu, Song Zeng, Youxing He, Xuebing Yang, Linwei Zhang, Jiuming Yu, Lei Lu and Wenfu Chen
Materials 2025, 18(22), 5182; https://doi.org/10.3390/ma18225182 - 14 Nov 2025
Viewed by 521
Abstract
The microstructures and oxidation behavior of the NbSiTiAlHf alloys doped with rare earth elements at 1300 °C were investigated. The nominal compositions of the selected alloys are Nb-13.5Si-23Ti-37Al-5Hf-0.5X (at.%), where X = Y, Dy, and La, respectively. It was shown that the whole [...] Read more.
The microstructures and oxidation behavior of the NbSiTiAlHf alloys doped with rare earth elements at 1300 °C were investigated. The nominal compositions of the selected alloys are Nb-13.5Si-23Ti-37Al-5Hf-0.5X (at.%), where X = Y, Dy, and La, respectively. It was shown that the whole scales were mainly composed of the major phases of Al2O3 and the minor phases of TiO2, where the TiO2 formed on the surface or in the upper layer of scales, for the undoped, Y, and Dy-doped alloy. But, for the 0.5 at.% La-doped alloys, the whole scales were constituted with the major phases of both Al2O3 and TiO2, and contained plenty of large voids. The 0.5 at.% Dy-doped alloys exhibited the lowest scale growth rate with the value of 1.87 × 10−11 cm2/s, and the benefits of Y on the oxidation rates were short-term, while 0.5 at.% La-doped alloys had the highest scale growth rate of 4.55 × 10−10 cm2/s compared with those of all the selected alloys. Then, the effects of Y, Dy, and La on the oxidation behavior of the alumina-scale-forming NbSiTiAlHf alloys were discussed. Full article
(This article belongs to the Section Metals and Alloys)
Show Figures

Graphical abstract

2099 KB  
Proceeding Paper
Printable Chemoresistive Sensor Based on PrFeTiO5 Solid Solution for Acetone Detection
by Danial Ahmed, Elena Spagnoli, Adil Chakir, Maura Mancinelli, Matteo Ferroni, Boubker Mehdaoui, Abdeslam El Bouari and Barbara Fabbri
Eng. Proc. 2025, 118(1), 48; https://doi.org/10.3390/ECSA-12-26592 - 7 Nov 2025
Viewed by 160
Abstract
Acetone necessitates reliable detection for the sake of both industrial and environmental safety. Metal oxides are widely used as functional materials for the development of gas sensors because techniques like nanostructure modification, doping, and solid solution formation can enhance their sensitivity and selectivity [...] Read more.
Acetone necessitates reliable detection for the sake of both industrial and environmental safety. Metal oxides are widely used as functional materials for the development of gas sensors because techniques like nanostructure modification, doping, and solid solution formation can enhance their sensitivity and selectivity by tuning structural and electronic properties. This study developed PrFeTiO5 nanostructures, synthesized via the solid-state reaction for acetone sensing. The sensor demonstrated a high response to acetone at an operating temperature of 400 °C, with a low influence of humidity, displaying outstanding selectivity towards acetaldehyde, NH3, H2, CO, and CO2, making it suitable across various applications. Full article
Show Figures

Figure 1

13 pages, 671 KB  
Review
Doping of Magnéli Phase—New Direction in Pollutant Degradation and Electrochemistry
by Vanja Vojnović, Maja Ranković, Anka Jevremović, Nataša R. Mijailović, Bojana Nedić Vasiljević, Maja Milojević-Rakić, Danica Bajuk-Bogdanović and Nemanja Gavrilov
Molecules 2025, 30(21), 4282; https://doi.org/10.3390/molecules30214282 - 4 Nov 2025
Cited by 1 | Viewed by 792
Abstract
This review summarizes the recent developments in titanium suboxide (TSO) doping and the application of doped materials in pollutant degradation and electrochemistry. Doping is mainly limited to transition and rare-earth metals, with some exceptions, of similar ionic radii and charge, that can replace [...] Read more.
This review summarizes the recent developments in titanium suboxide (TSO) doping and the application of doped materials in pollutant degradation and electrochemistry. Doping is mainly limited to transition and rare-earth metals, with some exceptions, of similar ionic radii and charge, that can replace Ti ions in TSO without too much disturbance to the lattice. Consequently, doping is limited to below 10 at%, which predominantly induces oxygen vacancy formation. Doping mechanisms are weighted, and their effect on conductivity, stability, and catalytic activity is overviewed. High-temperature H2 reduction of TiO2 is still the dominant preparation method, with carbothermal reduction and Ti reduction gaining ground due to safety and energy concerns. Doping predominantly increases the conductivity 2–5 times, while the stability can be both improved or worsened, depending on the size and charge of the doping ion. Electrochemical oxidation, at positive overpotentials, of per- and polyfluoroalkyl substances (PFAS), antibiotics, and other water pollutants, is the main avenue of application. Doping almost exclusively leads to complete selected pollutant degradation and improvement of the pristine TSO, which is summarized in detail. New niche applications of peroxide, hydrogen, and chlorine production are also viable on doped TSO and are touched upon. Complementing experimental results are theoretical calculations, and we give an overview of density functional theory (DFT) results of transition metal-doped TSOs, identifying active centers, degradation trends, and potential new doping candidates. Full article
Show Figures

Graphical abstract

27 pages, 2616 KB  
Review
Recent Advances in Pulsed Laser Deposition of REBa2Cu3O7−δ High-Temperature Superconducting Coated Conductors and Artificial Flux Pinning
by Ziheng Guo, Liangkang Chen, Yuxiang Li, Xinyue Xia, Guangyao Lin, Penghong Hu, Dongliang Gong, Dongliang Wang and Yanwei Ma
Materials 2025, 18(21), 4988; https://doi.org/10.3390/ma18214988 - 31 Oct 2025
Viewed by 1372
Abstract
Rare-earth barium copper oxide (REBCO) high-temperature superconductors, owing to their ability to maintain high critical current density (Jc) under liquid-nitrogen-temperature and high-magnetic-field conditions, are widely regarded as one of the most promising material systems among all superconductors. This review systematically [...] Read more.
Rare-earth barium copper oxide (REBCO) high-temperature superconductors, owing to their ability to maintain high critical current density (Jc) under liquid-nitrogen-temperature and high-magnetic-field conditions, are widely regarded as one of the most promising material systems among all superconductors. This review systematically summarizes fabrication strategies for REBCO coated conductors, with a focus on pulsed laser deposition (PLD) for achieving high-quality epitaxial growth with precise composition control. To enhance in-field performance, strategies for introducing artificial pinning centers (APCs) are examined, including rare-earth element doping, substrate surface decoration, and nanoscale secondary phase incorporation. The mechanisms of vortex pinning from different dimensional defects and their synergistic effects are compared. Finally, we suggest potential future directions aimed at further enhancing the superconducting properties. Full article
(This article belongs to the Section Quantum Materials)
Show Figures

Figure 1

24 pages, 4939 KB  
Article
Engineering Rare Earth-Assisted Cobalt Oxide Gels Toward Superior Energy Storage in Asymmetric Supercapacitors
by Pritam J. Morankar, Rutuja U. Amate, Aviraj M. Teli, Aditya A. Patil, Sonali A. Beknalkar and Chan-Wook Jeon
Gels 2025, 11(11), 867; https://doi.org/10.3390/gels11110867 - 29 Oct 2025
Cited by 2 | Viewed by 736
Abstract
The rational design of transition metal oxides with tailored electronic structures and defect chemistries is critical for advancing high-performance supercapacitors. Herein, we report the engineering of cobalt oxide (Co3O4) gels through controlled sol–gel synthesis and rare earth (RE) incorporation [...] Read more.
The rational design of transition metal oxides with tailored electronic structures and defect chemistries is critical for advancing high-performance supercapacitors. Herein, we report the engineering of cobalt oxide (Co3O4) gels through controlled sol–gel synthesis and rare earth (RE) incorporation using neodymium (Nd), gadolinium (Gd), and dual neodymium/gadolinium (Nd/Gd) doping. X-ray diffraction (XRD) confirmed the preservation of the cubic spinel structure with systematic peak shifts and broadening, evidencing lattice strain, oxygen vacancy generation, and defect enrichment. Field-emission scanning electron microscopy (FE-SEM) analyses revealed distinct morphological evolution from compact nanoparticle assemblies in pristine Co3O4 to highly porous, interconnected frameworks in Nd/Gd–Co3O4 (Nd/Gd-Co). X-ray photoelectron spectroscopy (XPS) verified the stable incorporation of RE ions, accompanied by electronic interaction with the Co–O matrix and enhanced oxygen defect states. Electrochemical measurements demonstrated that the Nd/Gd–Co electrode achieved a remarkable areal capacitance of 25 F/cm2 at 8 mA/cm2, superior ionic diffusion coefficients, and the lowest equivalent series resistance (0.26 Ω) among all samples. Long-term cycling confirmed 84.35% capacitance retention with 94.46% coulombic efficiency after 12,000 cycles. Furthermore, the asymmetric pouch-type supercapacitor (APSD) constructed with Nd/Gd–Co as the positive electrode and activated carbon as the negative electrode delivered a wide operational window of 1.5 V, an areal capacitance of 140 mF/cm2, an energy density of 0.044 mWh/cm2, and 89.44% retention after 7000 cycles. These findings establish Nd/Gd-Co gels as robust and scalable electrode materials and demonstrate that RE co-doping is an effective strategy for bridging high energy density with long-term electrochemical stability in asymmetric supercapacitors. Full article
(This article belongs to the Special Issue Gel-Based Materials for Energy Storage)
Show Figures

Figure 1

30 pages, 7417 KB  
Review
Towards Advanced Materials: Functional Perspectives of Co-Doped ZnO Thin Films
by Mariuca Gartner, Mariana Chelu, Anna Szekeres and Peter Petrik
Micromachines 2025, 16(10), 1179; https://doi.org/10.3390/mi16101179 - 18 Oct 2025
Cited by 3 | Viewed by 1669
Abstract
Zinc oxide (ZnO) thin films have attracted increasing attention as promising materials for sensing applications due to their wide band gap, high exciton binding energy, and remarkable chemical stability. However, the inherent limitations of pure ZnO, such as moderate sensitivity, selectivity, and relatively [...] Read more.
Zinc oxide (ZnO) thin films have attracted increasing attention as promising materials for sensing applications due to their wide band gap, high exciton binding energy, and remarkable chemical stability. However, the inherent limitations of pure ZnO, such as moderate sensitivity, selectivity, and relatively high operating temperatures, limit its widespread use in advanced sensing technologies. Co-doping, or dual doping with two distinct elements, has emerged as an effective strategy to overcome these challenges by synergistically tailoring the structural, electronic, and surface properties of ZnO thin films. This review provides a comprehensive overview of recent advances in the development of co-doped ZnO thin films for sensing applications. The focus is on the role of different combinations of dopants, including transition metals, rare earth elements, and non-metals, in modulating the charge carrier concentration, oxygen vacancy density, and adsorption dynamics. These effects collectively enhance the sensing properties and long-term stability and reduce detection limits. The analysis highlights the correlations between synthesis methods, dopant incorporation mechanisms, and resulting sensor performance. Key challenges such as dopant clustering, reproducibility, and scalability are discussed, along with emerging opportunities in flexible room-temperature sensor platforms. Overall, it has been demonstrated that co-doped ZnO thin films represent a versatile and tunable class of sensing materials with strong potential for next-generation environmental and biomedical monitoring. Full article
Show Figures

Figure 1

34 pages, 3062 KB  
Review
Catalyst Development for Dry Reforming of Methane and Ethanol into Syngas: Recent Advances and Perspectives
by Manshuk Mambetova, Moldir Anissova, Laura Myltykbayeva, Nursaya Makayeva, Kusman Dossumov and Gaukhar Yergaziyeva
Appl. Sci. 2025, 15(19), 10722; https://doi.org/10.3390/app151910722 - 5 Oct 2025
Cited by 2 | Viewed by 2609
Abstract
Dry reforming of methane and ethanol is a promising catalytic process for the conversion of carbon dioxide and hydrocarbon feedstocks into synthesis gas (H2/CO), which serves as a key platform for the production of fuels and chemicals. Over the past decade, [...] Read more.
Dry reforming of methane and ethanol is a promising catalytic process for the conversion of carbon dioxide and hydrocarbon feedstocks into synthesis gas (H2/CO), which serves as a key platform for the production of fuels and chemicals. Over the past decade, substantial progress has been achieved in the design of catalysts with enhanced activity and stability under the demanding conditions of these strongly endothermic reactions. This review summarizes the latest developments in catalyst systems for DRM and EDR, including Ni-based catalysts, perovskite-type oxides, MOF-derived materials, and high-entropy alloys. Particular attention is given to strategies for suppressing carbon deposition and preventing metal sintering, such as oxygen vacancy engineering in oxide supports, rare earth and transition metal doping, strong metal–support interactions, and morphological control via core–shell and mesoporous architectures. These approaches have been shown to improve coke resistance, maintain metal dispersion, and extend catalyst lifetimes. The review also highlights emerging concepts such as multifunctional hybrid systems and innovative synthesis methods. By consolidating recent findings, this work provides a comprehensive overview of current progress and future perspectives in catalyst development for DRM and EDR, offering valuable guidelines for the rational design of advanced catalytic materials. Full article
Show Figures

Figure 1

16 pages, 3608 KB  
Article
Study on Electrochemical Corrosion Behavior of Plasma Sprayed Al2O3-3%TiO2 Coatings Doped with CeO2 for Long-Term Immersion
by Jiahang Yan, Yu Zhang, Pengyu Dai, Lin Zhao, Xin Wang and Xiaohong Yi
Materials 2025, 18(19), 4532; https://doi.org/10.3390/ma18194532 - 29 Sep 2025
Viewed by 597
Abstract
The long-term corrosion behavior of Al2O3-3%TiO2 (AT3) coatings doped with1%, 5% and 8% CeO2 prepared by plasma spraying was studied in 5% NaCl solution. The results showed that the protective performance of CeO2-doped coatings was [...] Read more.
The long-term corrosion behavior of Al2O3-3%TiO2 (AT3) coatings doped with1%, 5% and 8% CeO2 prepared by plasma spraying was studied in 5% NaCl solution. The results showed that the protective performance of CeO2-doped coatings was significantly higher than that of undoped coatings, primarily due to the reduction in coating porosity caused by the addition of rare-earth elements. Among the doped coatings, the 5% CeO2-doped coating exhibited the best protective performance. The addition of rare-earth oxides CeO2 reduced the content of γ-Al2O3 in the coating, but when the concentration of CeO2 increased to 8%, the Ce element was rich in the gap of the coating. Excessive CeO2 enriched in the gaps and coexisted more with Ti, and prevented the formation of the AlTi phase, which affected the performance of the coating. Electrochemical and XPS results revealed that an appropriate amount of Ce atoms or CeO2 particles could fill the pores of the coating. During long-term immersion, Ce (IV) was converted to Ce (III), which demonstrated that Ce atoms have high chemical activity in coatings. The thermodynamic calculation results show that more CeO2 particles improved the adsorption of corrosive ions. It indicated that the content of doped rare-earth oxides exceeding 5% would be utilized as an active material in the corrosive process. Full article
Show Figures

Figure 1

31 pages, 9907 KB  
Article
The Synthesis and Photophysical Performance of a Novel Z-Scheme Ho2FeSbO7/Bi0.5Yb0.5O1.5 Heterojunction Photocatalyst and the Photocatalytic Degradation of Ciprofloxacin Under Visible Light Irradiation
by Jingfei Luan, Anan Liu, Liang Hao, Boyang Liu and Hengchang Zeng
Nanomaterials 2025, 15(16), 1290; https://doi.org/10.3390/nano15161290 - 21 Aug 2025
Cited by 1 | Viewed by 1204
Abstract
A pyrochlore-type crystal structure photocatalytic nanomaterial, Ho2FeSbO7, was successfully synthesized using a hydrothermal method. Additionally, a fluorite-structured Bi0.5Yb0.5O1.5 was prepared via rare earth Yb doping. Finally, a novel Ho2FeSbO7/Bi0.5 [...] Read more.
A pyrochlore-type crystal structure photocatalytic nanomaterial, Ho2FeSbO7, was successfully synthesized using a hydrothermal method. Additionally, a fluorite-structured Bi0.5Yb0.5O1.5 was prepared via rare earth Yb doping. Finally, a novel Ho2FeSbO7/Bi0.5Yb0.5O1.5 heterojunction photocatalyst (HBHP) was fabricated using a solvothermal method. The crystal structure, surface morphology, and physicochemical properties of the samples were characterized using XRD, a micro-Raman spectrometer, FT-IR, XPS, ultraviolet photoelectron spectroscopy (UPS), TEM, and SEM. The results showed that Ho2FeSbO7 possessed a pyrochlore-type cubic crystal structure (space group Fd-3m, No. 227), while Bi0.5Yb0.5O1.5 featured a fluorite-type cubic structure (space group Fm-3m, No. 225). The results of the degradation experiment indicated that when HBHP, Ho2FeSbO7, or Bi0.5Yb0.5O1.5 was employed as a photocatalytic nanomaterial, following 140 min of visible light irradiation, the removal efficiency of ciprofloxacin (CIP) reached 99.82%, 86.15%, or 73.86%, respectively. This finding strongly evidenced the remarkable superiority of HBHP in terms of photocatalytic performance. Compared to the individual catalyst Ho2FeSbO7, Bi0.5Yb0.5O1.5, or N-doped TiO2, the removal efficiency of CIP by HBHP was 1.16 times, 1.36 times, or 2.52 times higher than that by Ho2FeSbO7, Bi0.5Yb0.5O1.5, or N-doped TiO2, respectively. The radical trapping experiments indicated that in the CIP degradation process, the hydroxyl radical owned the strongest oxidation ability, followed by the superoxide anion and the photoinduced hole. These studies are of great significance for the degradation of antibiotics and environmental protection. Full article
Show Figures

Graphical abstract

17 pages, 9812 KB  
Article
Study on the Influence of Deformation and Temperature on the Properties of High-Strength Tungsten Alloy Wire
by Junling Fan, Jingwen Du, Jun Cao, Yongzhen Sun and Junchao Zhang
Micromachines 2025, 16(8), 922; https://doi.org/10.3390/mi16080922 - 10 Aug 2025
Cited by 1 | Viewed by 1005
Abstract
In this paper, high-strength W-1%La2O3 alloy wire was obtained by solid-state doping using tungsten powder and lanthanum oxide, large deformation rotary forging and wire drawing, which solved the disadvantages of traditional tungsten alloy wire processing such as the uneven distribution [...] Read more.
In this paper, high-strength W-1%La2O3 alloy wire was obtained by solid-state doping using tungsten powder and lanthanum oxide, large deformation rotary forging and wire drawing, which solved the disadvantages of traditional tungsten alloy wire processing such as the uneven distribution of rare earth oxides. The effects of rotary forging and annealing on the microstructure and properties of tungsten alloy were studied, which provided some basis for preparing high-strength tungsten alloy wire. The results indicate that tungsten alloy undergoes recovery at relative high temperatures (1480–1380 °C) during the rotary forging process. After large deformation, subgrains and uneven microstructures appear, so annealing is required before tungsten alloys wire drawing processing. With increasing annealing temperature, the recrystallization degree gradually increases and the hardness of tungsten alloy gradually decreases. When the deformation is less than 81.2%, tungsten alloy wire exhibits brittle fracture. When the deformation increases to 88.4% (ø0.8 mm), the fracture surface of the wire exhibits a plastic–brittle mixed fracture mechanism. Full article
Show Figures

Figure 1

36 pages, 5120 KB  
Review
Enhancing Optoelectronic Performance Through Rare-Earth-Doped ZnO: Insights and Applications
by Shagun Sood, Pawan Kumar, Isha Raina, Mrinmoy Misra, Sandeep Kaushal, Jyoti Gaur, Sanjeev Kumar and Gurjinder Singh
Photonics 2025, 12(5), 454; https://doi.org/10.3390/photonics12050454 - 8 May 2025
Cited by 23 | Viewed by 5216
Abstract
Rare-earth (RE) doping has been found to be a potent method to improve the structural, optical, electronic, and magnetic properties of ZnO, positioning it as a versatile material for future optoelectronic devices. This review herein thoroughly discusses the latest developments in RE-doped ZnO [...] Read more.
Rare-earth (RE) doping has been found to be a potent method to improve the structural, optical, electronic, and magnetic properties of ZnO, positioning it as a versatile material for future optoelectronic devices. This review herein thoroughly discusses the latest developments in RE-doped ZnO based on the role of the dopant type, concentration, synthesis method, and consequences of property modifications. The 4f electronic states of rare-earth elements create strong visible emissions, control charge carriers, and design defects. These structural changes lead to tunable bandgap energies and increased light absorption. Also, RE doping considerably enhances ZnO’s performance in electronic devices, like UV photodetectors, LEDs, TCOs, and gas sensors. Though, challenges like solubility constraints and lattice distortions at higher doping concentrations are still key challenges. Co-doping methodologies and new synthesis techniques to further optimize the incorporation of RE into ZnO matrices are also reviewed in this article. By showing a systematic comparison of different RE-doped ZnO systems, this paper sheds light on their future optoelectronic applications. The results are useful for the design of advanced ZnO-based materials with customized functionalities, which will lead to enhanced device efficiency and new photonic applications. Full article
Show Figures

Figure 1

17 pages, 4566 KB  
Article
Visible-Light Photocatalytic Degradation of Methylene Blue by Yb3+-Doped 3D Nanosheet Arrays BiOI Anchored on High-Chloride Fly Ash Composites
by Shuxian Qiu, Danhua Zhao, Runtong Luo, Xiaohong Liu, Jianping Yang, Lijun Xie, Xingyuan Gao and Liaochuan Jiang
Inorganics 2025, 13(5), 147; https://doi.org/10.3390/inorganics13050147 - 6 May 2025
Viewed by 1237
Abstract
A Yb3+-doped BiOI 3D nanosheet array composite was successfully fabricated through a solvothermal deposition strategy on flexible carbon cloth (CC). This composite was subsequently integrated with high-chlorine fly ash (FA) blocks to form the Yb-BiOI/CC/FA hybrid material. Comprehensive characterization was performed [...] Read more.
A Yb3+-doped BiOI 3D nanosheet array composite was successfully fabricated through a solvothermal deposition strategy on flexible carbon cloth (CC). This composite was subsequently integrated with high-chlorine fly ash (FA) blocks to form the Yb-BiOI/CC/FA hybrid material. Comprehensive characterization was performed using multiple analytical techniques for crystalline phase identification, morphological analysis, valence state, band structure evaluation, and charge carrier separation assessment. Electrochemical measurements were conducted to evaluate the material’s electronic properties. Experimental results demonstrated superior photocatalytic performance under visible light irradiation, with the Yb-BiOI/CC/FA composite achieving 52.87% methylene blue degradation efficiency. The reaction rate constant of this modified nanomaterial was approximately 2.1 times higher than that of pristine BiOI/CC/FA. Radical trapping experiments revealed that superoxide radicals (·O2) served as the predominant oxidative species. This study presents a dual-benefit strategy for environmental remediation by simultaneously achieving sustainable waste valorization of industrial byproducts (FA) and developing high-efficiency photocatalytic materials. The successful integration of rare-earth metal modification with substrate engineering provides valuable insights for designing advanced photocatalytic systems for pollutant degradation. Full article
Show Figures

Graphical abstract

31 pages, 6110 KB  
Review
Recent Progress on Rare Earth Orthoferrites for Gas-Sensing Applications
by Ganesh Kotnana and Seongin Hong
Chemosensors 2025, 13(5), 156; https://doi.org/10.3390/chemosensors13050156 - 23 Apr 2025
Viewed by 1305
Abstract
Gas-sensing technology is crucial for the detection of toxic and harmful gases to ensure environmental safety and human health. Gas sensors convert the changes in the conductivity of the sensing material resulting from the adsorption of gas molecules into measurable electrical signals. Rare [...] Read more.
Gas-sensing technology is crucial for the detection of toxic and harmful gases to ensure environmental safety and human health. Gas sensors convert the changes in the conductivity of the sensing material resulting from the adsorption of gas molecules into measurable electrical signals. Rare earth orthoferrite-based perovskite oxides have emerged as promising candidates for gas-sensing technology owing to their exceptional structural, optical, and electrical properties, which enable the detection of various gases. In this article, we review the latest developments in orthoferrite-based gas sensors in terms of sensitivity, selectivity, stability, operating temperature, and response and recovery times. It begins with a discussion on the gas-sensing mechanism of orthoferrites, followed by a critical emphasis on their nanostructure, doping effects, and the formation of nanocomposites with other sensing materials. Additionally, the role of the tunable bandgap and different porous morphologies with a high surface area of the orthoferrites on their gas-sensing performance were explored. Finally, we identified the current challenges and future perspectives in the gas-sensing field, such as novel doping strategies and the fabrication of miniaturized gas sensors for room-temperature operation. Full article
Show Figures

Figure 1

26 pages, 9960 KB  
Article
Lanthanum Recovery from Aqueous Solutions by Adsorption onto Silica Xerogel with Iron Oxide and Zinc Oxide
by Ionuţ Bălescu, Mihaela Ciopec, Adina Negrea, Nicoleta Sorina Nemeş, Cătălin Ianăşi, Orsina Verdes, Mariana Suba, Paula Svera, Bogdan Pascu, Petru Negrea and Alina Ramona Buzatu
Gels 2025, 11(5), 314; https://doi.org/10.3390/gels11050314 - 23 Apr 2025
Cited by 1 | Viewed by 1562
Abstract
From the lanthanide group, part of the rare earth elements (REEs), lanthanum is one of the most important elements given its application potential. Although it does not have severe toxicity to the environment, its increased usage in advanced technologies and medical fields and [...] Read more.
From the lanthanide group, part of the rare earth elements (REEs), lanthanum is one of the most important elements given its application potential. Although it does not have severe toxicity to the environment, its increased usage in advanced technologies and medical fields and scarce natural reserves point to the necessity also of recovering lanthanum from diluted solutions. Among the multiple methods for separation and purification, adsorption has been recognized as one of the most promising because of its simplicity, high efficiency, and large-scale availability. In this study, a xerogel based on silicon and iron oxides doped with zinc oxide and polymer (SiO2@Fe2O3@ZnO) (SFZ), obtained by the sol–gel method, was considered as an adsorbent material. Micrography indicates the existence of particles with irregular geometric shapes and sizes between 16 μm and 45 μm. Atomic force microscopy (AFM) reveals the presence of dimples on the top of the material. The specific surface area of the material, calculated by the Brunauer–Emmet–Teller (BET) method, indicates a value of 53 m2/g, with C constant at a value of 48. In addition, the Point of Zero Charge (pHpZc) of the material was determined to be 6.7. To establish the specific parameters of the La(III) adsorption process, static studies were performed. Based on experimental data, kinetic, thermodynamic, and equilibrium studies, the mechanism of the adsorption process was established. The maximum adsorption capacity was 6.7 mg/g, at a solid/liquid ratio = 0.1 g:25 mL, 4 < pH < 6, 298 K, after a contact time of 90 min. From a thermodynamic point of view, the adsorption process is spontaneous, endothermic, and occurs at the adsorbent–adsorbate interface. The Sips model is the most suitable for describing the observed adsorption process, indicating a complex interaction between La(III) ions and the adsorbent material. The material can be reused as an adsorbent material, having a regeneration capacity of more than 90% after the first cycle of regeneration. The material was reused 3 times with considerable efficiency. Full article
Show Figures

Graphical abstract

17 pages, 14985 KB  
Article
Effect of Yttrium Oxide on Microstructure and Oxidation Behavior of Cr/FeCrAl Coatings Fabricated by Extreme High-Speed Laser Cladding Process: An Experimental Approach
by Tian Liang, Jian Liu, Chi Zhan, Shaoyuan Peng and Jibin Pu
Materials 2025, 18(8), 1821; https://doi.org/10.3390/ma18081821 - 16 Apr 2025
Cited by 3 | Viewed by 1006
Abstract
Zr-4 alloy tubes, as the primary cladding material in nuclear reactor cores, face the critical challenge of oxidative attack in 1200 °C steam environments. To address this issue, high-temperature oxidation-resistant coatings fabricated via extreme high-speed laser cladding (EHLA) present a promising mitigation strategy. [...] Read more.
Zr-4 alloy tubes, as the primary cladding material in nuclear reactor cores, face the critical challenge of oxidative attack in 1200 °C steam environments. To address this issue, high-temperature oxidation-resistant coatings fabricated via extreme high-speed laser cladding (EHLA) present a promising mitigation strategy. In this study, Y2O3-modified (0.0–5.0 wt.%) Cr/FeCrAl composite coatings were designed and fabricated on Zr-4 substrates using the EHLA process, followed by systematic investigation of Y doping effects on coating microstructures and steam oxidation resistance (1200 °C, H2O atmosphere). Experimental results demonstrate that Y2O3 doping remarkably enhanced the oxidation resistance, with optimal performance achieved at 2.0 wt.% Y2O3 (31% oxidation mass gain compared to the substrate after 120-min exposure). Microstructural analysis reveals that the dense grain boundary network facilitates rapid surface diffusion of Al, promoting continuous Al2O3 protective film formation. Additionally, Y segregation at grain boundaries suppressed outward diffusion of Cr3+ cations, effectively inhibiting void formation at the oxide-coating interface and improving interfacial stability. The developed rare-earth-oxide-doped composite coating via extreme high-speed laser cladding process shows promising applications in surface-strengthening engineering for nuclear reactor Zr-4 alloy cladding tubes, providing both theoretical insights and technical references for the design of high-temperature oxidation-resistant coatings in nuclear industry. Full article
(This article belongs to the Section Corrosion)
Show Figures

Figure 1

Back to TopTop