Towards Advanced Materials: Functional Perspectives of Co-Doped ZnO Thin Films
Abstract
1. Introduction
2. Why Co-Dope ZnO?
2.1. Single Versus Dual Doping
2.2. Enhancement Mechanisms
- Substitutional dopants modify the band structure and charge carrier concentration.
- Co-dopants passivate harmful defects and create desired luminescent centers.
- Ionic radius and valence mismatch of dopants strain the lattice in a controlled manner, improving crystallinity or introducing active sites.
2.3. Thin Film Preparation
3. Applications of Co-Doped ZnO Thin Films
- (i)
- Increased charge carrier density and mobility, leading to faster response.
- (ii)
- Higher concentration of oxygen vacancies and active sites, improving sensitivity.
- (iii)
- Customizable surface potential and adsorption properties, enhancing selectivity.
- (iv)
- Improved stability and repeatability of detection signals.
3.1. Gas Sensors
- (a)
- Sensitivity—relative change in resistance upon exposure to the target gas;
- (b)
- Response and recovery time—the speed of change and return to baseline;
- (c)
- Selectivity—the ability to distinguish target gases from interfering species;
- (d)
- Operating temperature—lower operating temperature increases energy efficiency.
3.2. Biosensors
3.3. UV Photodetectors
3.4. Solar Energy Harvesting
- -
- Higher conductivity and transparency: Doping with co-dopants (e.g., Al+In, Ga+Sn) increases the carrier concentration while minimizing optical absorption losses.
- -
- Bandgap tuning: A slight narrowing or broadening of the bandgap by double dopants optimizes sunlight absorption.
- -
- Defect passivation: Reduction in recombination centers, increasing charge collection efficiency.
- -
- Improved surface texture and morphology: Enhanced light capture and reduced reflection.
- (i)
- (ii)
- (iii)
- (iv)
- (v)
3.5. Optical Applications
- (i)
- Tunable refractive index: Essential for waveguides, antireflection coatings, and photonic crystals.
- (ii)
- Enhanced photoluminescence: Co-doping of the oxide with rare earth elements (e.g., Eu+Al, Er+Ga) produces multicolor emission (visible and infrared) for display and lighting applications.
- (iii)
- Enhanced nonlinear optical effects: Useful in frequency doubling and optical modulation.
- (iv)
- Magneto-optical properties: Co-doping with transition metals (e.g., Co+Mn) confers magneto-optical activity to insulators and modulators.
- (i)
- For UV and visible LEDs, co-oxide doping improves radiative recombination rates.
- (ii)
- In the case of photodetectors, co-doping results in highly sensitive detection in the UV, visible, and even IR regions, with reduced noise.
- (iii)
- Optical coatings provide tunable reflection and absorption characteristics for lasers, sensors, and cameras.
- (iv)
- Photonic integrated circuits can be useful as low-loss waveguides and active optical elements.
- (v)
- Room temperature ferromagnetism (RTFM) effect.
3.6. Summary
- (i)
- When the dopant concentration is too high, the crystal structure can be negatively affected. For example, adding too much indium (In3+) can cause problems, because its ionic radius is much larger than that of zinc (Zn2+), which makes it difficult to incorporate In into the ZnO lattice, and the limited oxygen tetrahedral environment of the wurtzite structure cannot accommodate a high concentration of these foreign ions.
- (ii)
- Intrinsic defects, such as oxygen vacancies, can act as compensating acceptors, which prevents the desired effect of doping. This effect is particularly pronounced when trying to create p-type ZnO.
- (iii)
- Above a certain concentration, the dopant can aggregate and form its own insulating phases. For example, aluminum can form insulating precipitates (such as Al2O3) which increases the resistivity and reduces the concentration of charge carriers.
- (iv)
- The combination of the aforementioned effects can lead to a degradation of the desired properties, such as a reduced concentration of charge carriers or an increased resistivity, even if the initial doping is aimed at increasing conductivity.
4. Challenges and Future Directions
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Guterres, A. Carbon Neutrality by 2050: The World’s Most Urgent Mission. 2020. Available online: https://www.un.org/sg/en/content/secretary-general/articles/2020-12-11/carbon-neutrality-2050-the-worlds-most-urgent-mission (accessed on 1 September 2025).
- Yang, B. Goals, Progress, Issues and Challenges of Global Carbon Neutrality. In The Carbon Emission Liability Mechanism; Springer: Singapore, 2025. [Google Scholar] [CrossRef]
- Miyazaki, K.; Islam, N. Nanotechnology systems of innovation—An analysis of industry and academia research activities. Technovation 2007, 27, 661–675. [Google Scholar] [CrossRef]
- Hughes, K.J.; Ganesan, M.; Tenchov, R.; Iyer, K.A.; Ralhan, K.; Diaz, L.L.; Bird, R.E.; Ivanov, J.; Zhou, Q.A. Nanoscience in Action: Un-veiling Emerging Trends in Materials and Applications. ACS Omega 2025, 10, 7530–7548. [Google Scholar] [CrossRef] [PubMed]
- Blandón-González, B.; Trompeta, A.F.; Mercader-Moyano, P. Advanced Materials: Introduction to Nanotechnology. In Life Cycle Analysis Based on Nanoparticles Applied to the Construction Industry; Mercader-Moyano, P., Porras-Pereira, P., Eds.; Springer: Cham, Switzerland, 2025. [Google Scholar] [CrossRef]
- Gohar, O.; Khan, M.Z.; Bibi, I.; Bashir, N.; Tariq, U.; Bakhtiar, M.; Karim, M.R.A.; Ali, F.; Hanif, M.B.; Motola, M. Nanomaterials for advanced energy applications: Recent advancements and future trends. Mater. Des. 2024, 241, 112930. [Google Scholar] [CrossRef]
- Pokrajac, L.; Abbas, A.; Chrzanowski, W.; Dias, G.M.; Eggleton, B.J.; Maguire, S.; Maine, E.; Malloy, T.; Nathwani, J.; Nazar, L.; et al. Nanotechnology for a Sustainable Future: Addressing Global Challenges with the International Network4Sustainable Nanotechnology. ACS Nano 2021, 15, 18608–18623. [Google Scholar] [CrossRef]
- Das, H.S.; Basak, A.; Maity, S. Materials science and nanotechnology. In Innovations in Energy Efficient Construction Through Sustainable Materials; IGI Global: Hershey, PA, USA, 2025; pp. 175–206. [Google Scholar] [CrossRef]
- Muralt, P.; Polcawich, R.G.; Trolier-McKinstry, S. Piezoelectric Thin Films for Sensors, Actuators, and Energy Harvesting. MRS Bull. 2009, 34, 658–664. [Google Scholar] [CrossRef]
- Ascencio-Hurtado, C.R.; Ambrosio Lázaro, R.C.; Estra-da-López, J.J.; Torres Jacome, A. Review of Si-Based Thin Films and Materials for Ther-moelectric Energy Harvesting and Their Integration into Electronic Devices for Energy Management. Syst. Eng. 2023, 4, 1409–1431. [Google Scholar] [CrossRef]
- Fraga, M.A.; Pessoa, R.S. The Role of Semiconductor Thin Films in Advancing MEMS Sensor Technology. IEEE Sens. Rev. 2025, 2, 112–121. [Google Scholar] [CrossRef]
- Ukoba, K.; Jen, T.C. Thin Films in High-Performance Displays and Lighting. In Shaping Tomorrow: Thin Films and 3D Printing in the Fourth Industrial Revolution 2; Synthesis Lectures on Mechanical Engineering; Springer: Cham, Switzerland, 2025. [Google Scholar] [CrossRef]
- Rubin, S.; Mizrachi, D.; Friedman, N.; Edri, H.; Golan, T. The world of advanced thin films: Design, fabrication, and applications. Fusion Multidiscip. Res. Int. J. 2023, 4, 393–406. [Google Scholar] [CrossRef]
- Hadke, S.; Huang, M.; Chen, C.; Tay, Y.F.; Chen, S.; Tang, J.; Wong, L. Emerging chalcogenide thin films for solar energy harvesting devices. Chem. Rev. 2021, 122, 10170–10265. [Google Scholar] [CrossRef]
- Sakthinathan, S.; Meenakshi, G.A.; Vinothini, S.; Yu, C.-L.; Chen, C.-L.; Chiu, T.-W.; Vittayakorn, N. A Review of Thin-Film Growth, Properties, Applications, and Future Prospects. Processes 2025, 13, 587. [Google Scholar] [CrossRef]
- Rogers, D.J.; Hosseini Teherani, F. ZnO: From Transparent Conducting Oxide to Transparent Electronics. In Encyclopedia of Materials: Science and Technology; Buschow, K.H.J., Cahn, R.W., Flemings, M.C., Ilschner, B., Kramer, E.J., Mahajan, S., Veyssière, P., Eds.; Encyclopedia of Materials: Science and Technology Series; Elsevier: Amsterdam, The Netherlands, 2010; pp. 1–5. [Google Scholar] [CrossRef]
- Wöll, C. The chemistry and physics of zinc oxide surfaces. Prog. Surf. Sci. 2007, 82, 55–120. [Google Scholar] [CrossRef]
- Borysiewicz, M.A. ZnO as a Functional Material, a Review. Crystals 2019, 9, 505. [Google Scholar] [CrossRef]
- Ritter, M.; Maćkosz, K.; Garemark, J.; Kürsteiner, R.; Dreimol, C.H.; Utke, I.; Burgert, I.; Panzarasa, G. Piezoelectric and Photoconductive Zinc Oxide−Wood Hybrids Obtained by Atomic Layer Deposition. ACS Nano 2025, 19, 15161–15170. [Google Scholar] [CrossRef] [PubMed]
- Muchuweni, E.; Sathiaraj, T.S.; Nyakotyo, H. Synthesis and characterization of zinc oxide thin films for optoelectronic applications. Heliyon 2017, 3, e00285. [Google Scholar] [CrossRef] [PubMed]
- Rogers, D.J.; Teherani, F.H.; Sandana, E.V.; Bove, P. Zinc-Oxide-Based Electronics and Photonics. In Encyclopedia of Materials: Technical Ceramics and Glasses; Pomeroy, M., Ed.; Elsevier: Amsterdam, The Netherlands, 2021; pp. 241–253. [Google Scholar] [CrossRef]
- Toma, F.T.Z.; Rahman, M.S.; Maria, K.H. A review of recent advances in ZnO nanostructured thin films by various deposition techniques. Discov. Mater. 2025, 5, 60. [Google Scholar] [CrossRef]
- Sood, S.; Kumar, P.; Raina, I.; Misra, M.; Kaushal, S.; Gaur, J.; Kumar, S.; Singh, G. Enhancing Optoelectronic Performance Through Rare-Earth-Doped ZnO: Insights and Applications. Photonics 2025, 12, 454. [Google Scholar] [CrossRef]
- Nahhas, A.M. Review of Recent Advances of ZnO Nanowires Based Sensors. Am. J. Nanomater. 2020, 8, 18–31. [Google Scholar] [CrossRef]
- Buckley, D.; Lonergan, A.; O’Dwyer, C. Review—ZnO-based Thin Film Metal Oxide Semiconductors and Structures: Transistors, Optoelectronic Devices and Future Sustainable Electronics. ECS J. Solid State Sci. Technol. 2025, 14, 015001. [Google Scholar] [CrossRef]
- Li, G.; Suja, M.; Chen, M.; Bekyarova, E.; Haddon, R.C.; Liu, J.; Itkis, M.E. Visible-blind UV photodetector based on sin-gle-walled carbon nanotube thin film/ZnO vertical heterostructures. ACS Appl. Mater. Interfaces 2017, 9, 37094–37104. [Google Scholar] [CrossRef]
- Dimova-Malinovska, D. Nanostructured ZnO Thin Films: Properties and Applications. In Nanotechnological Basis for Advanced Sensors; Reithmaier, J., Paunovic, P., Kulisch, W., Popov, C., Petkov, P., Eds.; NATO Science for Peace and Security Series B: Physics and Biophysics Series; Springer: Dordrecht, The Netherlands, 2011. [Google Scholar] [CrossRef]
- Tvarožek, V.; Tien, H.T.; Novotný, I.; Hianik, T.; Dlugopolský, J.; Ziegler, W.; Leitmannová-Ottová, A.; Jakabovič, J.; Řeháček, V.; Uhlár, M. Thin-film microsystem applicable in (bio)chemical sensors. Sens. Actuators B Chem. 1994, 19, 597–602. [Google Scholar] [CrossRef]
- Laurenti, M.; Cauda, V. Porous Zinc Oxide Thin Films: Synthesis Approaches and Applications. Coatings 2018, 8, 67. [Google Scholar] [CrossRef]
- Müller, J.; Weißenrieder, S. ZnO-thin film chemical sensors. Fresenius’ J. Anal. Chem. 1994, 1004, 380–384. [Google Scholar] [CrossRef]
- Gartner, M.; Stroescu, H.; Mitrea, D.; Nicolescu, M. Various Applications of ZnO Thin Films Obtained by Chemical Routes in the Last Decade. Molecules 2023, 28, 4674. [Google Scholar] [CrossRef]
- Zhao, X.; Ashley, G.M.; Garcia-Gancedo, L.; Jin, H.; Luo, J.; Flewitt, A.J.; Lu, J.R. Protein functionalized ZnO thin film bulk acoustic resonator as an odorant biosensor. Sens. Actuators B Chem. 2012, 163, 242–246. [Google Scholar] [CrossRef]
- Szczesny, R.; Scigala, A.; Derkow-ska-Zielinska, B.; Skowronski, L.; Cassagne, C.; Boudebs, G.; Viter, R.; Szłyk, E. Synthesis, Optical, and Morphological Studies of ZnO Powders and Thin Films Fabricated by Wet Chemical Methods. Materials 2020, 13, 2559. [Google Scholar] [CrossRef]
- Ogurcovs, A.; Kadiwala, K.; Sledevskis, E.; Krasovska, M.; Plaksenkova, I.; Butanovs, E. Effect of DNA Aptamer Concentration on the Conductivity of a Water-Gated Al:ZnO Thin-Film Transistor-Based Biosensor. Sensors 2022, 22, 3408. [Google Scholar] [CrossRef]
- Liu, Y.; Li, Y.; Zeng, H. ZnO-based transparent conductive thin films: Doping, performance, and processing. J. Nanomater. 2013, 1, 196521. [Google Scholar] [CrossRef]
- Ellmer, K.; Bikowski, A. Intrinsic and extrinsic doping of ZnO and ZnO alloys. J. Phys. D Appl. Phys. 2016, 49, 413002. [Google Scholar] [CrossRef]
- Li, W.; Wu, X.; Chen, J.; Gong, Y.; Han, N.; Chen, Y. Abnormal n-p-n type conductivity transition of hollow ZnO/ZnFe2O4 nanostructures during gas sensing process: The role of ZnO-ZnFe2O4 hetero-interface. Sens. Actuators B Chem. 2017, 253, 144–155. [Google Scholar] [CrossRef]
- Vinitha, V.; Preeyanghaa, M.; Vinesh, V.; Dhanalakshmi, R.; Neppolian, B.; Sivamurugan, V. Two is better than one: Catalytic, sensing and optical applications of doped zinc oxide nanostructures. Emergent. Mater. 2021, 4, 1093–1124. [Google Scholar] [CrossRef]
- Chandrasekar, L.B.; Nagarajan, S.; Karunakaran, M.; Thangadurai, T.D. Structural, Optical and Electrical Properties of Undoped and Doped ZnO Thin Films. In 2D Materials; IntechOpen: London, UK, 2019. [Google Scholar] [CrossRef]
- Perumal, R.; Saravanan, L.; Liu, J.-H. Substrate and Doping Effects on the Growth Aspects of Zinc Oxide Thin Films Developed on a GaN Substrate by the Sputtering Technique. Processes 2025, 13, 1257. [Google Scholar] [CrossRef]
- Virt, I.; Potera, P.; Barchuk, N.; Chekailo, M. The Effect of the Interaction of Intense Low-Energy Radiation with a Zinc-Oxide-Based Material. Crystals 2025, 15, 685. [Google Scholar] [CrossRef]
- Kumar, S.G.; Kavitha, R.; Sushma, C. Chapter 9—Doped zinc oxide nanomaterials: Structure–electronic properties and photocatalytic applications. Interface Sci. Technol. 2020, 31, 285–312. [Google Scholar] [CrossRef]
- Mokgolo, P.J.; Malevu, T.D. Improving perovskite solar cell efficiency with Yb-Doped ZnO nanostructures through structural, optical and electrical investigations. Sci. Afr. 2025, 29, e02915. [Google Scholar] [CrossRef]
- Thilakan, A.P.; Hung, P.L.; Yang, J.B.; Lin, D.L.; Tzeng, S.D.; Hsu, Y.K.; Tsai, C.-H.; Pai, Y.-H.; Yabushita, A.; Luo, C.-W.; et al. Investigating Dopant Effects in ZnO as an Electron Transport Layer for Enhanced Efficiency in Organic Photovoltaics. Adv. Mater. Interfaces 2025, 12, 2400923. [Google Scholar] [CrossRef]
- Rahal, A.; Bouchama, I.; Ghebouli, M.A.; Alanazi, F.K.; Ghebouli, B.; Fatmi, M.; Chihi, T.; Althagafi, T.M.; Khettab, K. Experimental investigation of structural and optical properties of Mn-doped ZnO thin films deposited by pneumatic spray technique. Sci. Rep. 2025, 15, 7086. [Google Scholar] [CrossRef]
- Ozel, K.; Yildiz, A. High-performance transparent AZO UV photodetectors. Opt. Quant. Electron. 2024, 56, 1258. [Google Scholar] [CrossRef]
- Rana, V.S.; Rajput, J.K.; Pathak, T.K.; Purohit, L.P. Multilayer MgZnO/ZnO thin films for UV photodetectors. J. Alloys Compd. 2018, 764, 724–729. [Google Scholar] [CrossRef]
- Stoleriu, S.; Lungu, C.; Ghitulica, C.D.; Surdu, A.; Voicu, G.; Cucuruz, A.; Turculet, C.S.; Ciocan, L.T. Influence of Dopant Nature on Biological Properties of ZnO Thin-Film Coatings on Ti Alloy Substrate. Nanomaterials 2020, 10, 129. [Google Scholar] [CrossRef] [PubMed]
- Stramarkou, M.; Bardakas, A.; Krokida, M.; Tsamis, C. Fabrication of ZnO Thin Films Doped with Na at Different Percentages for Sensing CO2 in Small Quantities at Room Temperature. Sensors 2025, 25, 2705. [Google Scholar] [CrossRef]
- Luo, Z.; Rong, P.; Yang, Z.; Zhang, J.; Zou, X.; Yu, Q. Preparation and Application of Co-Doped Zinc Oxide: A Review. Molecules 2024, 29, 3373. [Google Scholar] [CrossRef]
- Ahmad, A.A.; Migdadi, A.B.; Alsaad, A.M.; Al-Bataineh, Q.M.; Telfah, A. Optical, structural, and morphological characterizations of synthesized (Cd–Ni) co-doped ZnO thin films. Appl. Phys. A 2021, 127, 922. [Google Scholar] [CrossRef]
- Guermat, N.; Daranfed, W.; Bouchama, I.; Bouarissa, N. Investigation of structural, morphological, optical and electrical properties of Co/Ni co-doped ZnO thin films. J. Mol. Struct. 2021, 1225, 129134. [Google Scholar] [CrossRef]
- El Hat, A.; Chaki, I.; Essajai, R.; Mzerd, A.; Schmerber, G.; Regragui, M.; Belayachi, A.; Sekkat, Z.; Dinia, A.; Slaoui, A.; et al. Growth and Characterization of (Tb,Yb) Co-Doping Sprayed ZnO Thin Films. Crystals 2020, 10, 169. [Google Scholar] [CrossRef]
- Bazta, O.; Urbieta, A.; Piqueras, J.; Fernández, P.; Addou, M.; Calvino, J.J.; Hungría, A.B. Enhanced UV emission of Li–Y co-doped ZnO thin films via spray pyrolysis. J. Alloys Compd. 2019, 808, 151710. [Google Scholar] [CrossRef]
- Mallick, A.; Basak, D. Comparative investigation on cation-cation (Al-Sn) and cation-anion (Al-F) co-doping in RF sputtered ZnO thin films: Mechanistic insight. Appl. Surf. Sci. 2017, 410, 540–546. [Google Scholar] [CrossRef]
- Arda, L.; Ozugurlu, E. The effects of Co/Ce co-doped ZnO thin films: An optical and defect study. J. Mater. Sci. Mater. Electron. 2025, 36, 896. [Google Scholar] [CrossRef]
- Li, Q.; Zhang, Y.; Zhang, M.; Cheng, W.; Liao, B.; Ying, M. Structural, electrical and magnetic properties of Gd-doped and (Al, Gd) codoped ZnO films. J. Alloys Compd. 2023, 933, 167744. [Google Scholar] [CrossRef]
- Saxena, N.; Sharma, R.; Hussain, A.; Choudhary, R.J.; Debnath, A.K.; Sinha, O.P.; Krishna, R. Effect of the triple (Al, Ga, In) doping in ZnO nanostructures on its transmission, conductivity, and stability for TCO applications. Mater. Lett. 2022, 306, 130886. [Google Scholar] [CrossRef]
- Alsaad, A.M.; Ahmad, A.A.; Qattan, I.A.; Al-Bataineh, Q.M.; Albataineh, Z. Structural, Optoelectrical, Linear, and Nonlinear Optical Characterizations of Dip-Synthesized Undoped ZnO and Group III Elements (B, Al, Ga, and In)-Doped ZnO Thin Films. Crystals 2020, 10, 252. [Google Scholar] [CrossRef]
- Stojanoska, I.; Kmet, B.; Uršič, H.; Kuscer, D. Gallium-Modified Zinc Oxide Thin Films Prepared by Chemical Solution Deposition. Crystals 2023, 13, 1030. [Google Scholar] [CrossRef]
- Rauf Khan, M.A.; Asghar, G.; Althubeiti, K.; Al Otaibi, S.; Ali, G.; Shah, W.H.; Khan, R. The effect of Mn and Co dual-doping on the structural, optical, dielectric and magnetic properties of ZnO nanostructures. RSC Adv. 2022, 12, 11923–11932. [Google Scholar] [CrossRef]
- Belkhaoui, C.; Mzabi, N.; Smaoui, H.; Daniel, P. Enhancing the structural, optical and electrical properties of ZnO nanopowders through (Al + Mn) doping. Results Phys. 2019, 12, 1686–1696. [Google Scholar] [CrossRef]
- Lee, C.-T. Fabrication Methods and Luminescent Properties of ZnO Materials for Light-Emitting Diodes. Materials 2010, 3, 2218–2259. [Google Scholar] [CrossRef]
- Salimian, A.; Hasnath, A.; Anguilano, L.; Onwukwe, U.; Aminishahsavarani, A.; Sachez, C.; Upadhyaya, H. Highly Conductive Zinc Oxide Based Transparent Conductive Oxide Films Prepared Using RF Plasma Sputtering Under Reducing Atmosphere. Coatings 2020, 10, 472. [Google Scholar] [CrossRef]
- Askri, B.; Riahi, I.; Mimouni, R.; Amlouk, M. Photoluminescence and dielectric properties of (Al/Cu) and (In/Cu) co-doped ZnO sprayed thin films under the oxygen deficiency conditions. Superlattices Microstruct. 2021, 150, 106731. [Google Scholar] [CrossRef]
- Zhang, D.; Yu, W.; Zhang, L.; Hao, X. Progress in the Synthesis and Application of Transparent Conducting Film of AZO (ZnO:Al). Materials 2023, 16, 5537. [Google Scholar] [CrossRef]
- Singh, M.; Scotognella, F. Recent Progress in Solution Processed Aluminum and co-Doped ZnO for Transparent Conductive Oxide Applications. Micromachines 2023, 14, 536. [Google Scholar] [CrossRef]
- Dong, Z.; Jiang, B.; Zheng, L.; Hu, Z.; Ma, Z.; Xu, R.; Hong, F.; Zhao, L.; Li, S.; Wang, L.; et al. Experimental Realization of 1400–2100 nm Broadband Emission for Wide-Bandwidth Optical Communication in Er–Tm Codoped ZnO Films and Devices. J. Phys. Chem. C 2020, 124, 3747–3755. [Google Scholar] [CrossRef]
- Alshammari, A.S.; Khan, Z.R.; Gandouzi, M.; Mohamed, M.; Bouzidi, M.; Shkir, M.; Alshammari, H.M. Tailoring the optical properties and the UV detection performance of sol-gel deposited ZnO nanostructured thin films via Cd and Na co-doping. Opt. Mater. 2022, 126, 112146. [Google Scholar] [CrossRef]
- Lu, B.; Wang, Y.; Li, W.; Zhang, W.; Ye, Y.; Zhang, L.; Ye, Z. Co–Ga codoping effect on preferred growth orientations and properties of ferromagnetic ZnO thin films. J. Magn. Magn. Mater. 2015, 374, 278–282. [Google Scholar] [CrossRef]
- Liu, H.; Li, W.; Yang, J.; Gao, M.; Liu, X.; Wei, M. Comparative studies of the structural and magnetic properties in Cu, Co codoped ZnO multilayer films sputtered on different substrates. J. Mater. Sci. Mater. Electron. 2016, 28, 2949–2953. [Google Scholar] [CrossRef]
- Khan, M.I.; Naeem, M.; Mustafa, G.M.; Abubshait, S.A.; Mahmood, A.; Al-Masry, W.; Al-Garadi, N.Y.A.; Ramay, S.M. Synthesis and characterization of Co and Ga co-doped ZnO thin films as an electrode for dye sensitized solar cells. Ceram. Int. 2020, 46, 26590–26597. [Google Scholar] [CrossRef]
- Wu, C.-Y.; Chiu, L.-C.; Juang, J.-Y. High haze Ga and Zr co-doped zinc oxide transparent electrodes for photovoltaic applications. J. Alloys Compd. 2022, 901, 163678. [Google Scholar] [CrossRef]
- Das, A.; Guha Roy, P.; Dutta, A.; Sen, S.; Pramanik, P.; Das, D.; Banerjee, A.; Bhattacharyya, A. Mg and Al co-doping of ZnO thin films: Effect on ultraviolet photoconductivity. Mater. Sci. Semicond. Process. 2016, 54, 36–41. [Google Scholar] [CrossRef]
- Gao, W.; Li, D.; Gao, J.; Yang, P. Investigation on electronic and optical properties of Ga-Eu codoped ZnO. Chem. Phys. 2020, 536, 10826. [Google Scholar] [CrossRef]
- Alqadi, M.K.; Migdadi, A.B.; Alzoubi, F.Y.; Al-Khateeb, H.M.; Almasri, A.A. Influence of (Ag–Cu) co-doping on the optical, structural, electrical, and morphological properties of ZnO thin films. J. Sol–Gel Sci. Technol. 2022, 103, 319–334. [Google Scholar] [CrossRef]
- Chelu, M.; Anastasescu, M.; Calderon Moreno, J.; Mitrea, D.; Stroescu, H.; Gheorghe, M.; Gartner, M. Morphological properties of ZnO nanostructures doped with Ag and Li for piezoelectric properties applications. Rev. Roum. Chim. 2023, 68, 347–355. [Google Scholar] [CrossRef]
- Ivanova, T.; Harizanova, A.; Koutzarova, T.; Vertruyen, B.; Closset, R. Sol–Gel Synthesis of ZnO:Li Thin Films: Impact of Annealing on Structural and Optical Properties. Crystals 2024, 14, 6. [Google Scholar] [CrossRef]
- Manikandan, E.; Murugan, V.; Kavitha, G.; Babu, P.; Maaza, M. Nanoflower rod wire-like structures of dual metal (Al and Cr) doped ZnO thin films: Structural, optical and electronic properties. Mater. Lett. 2014, 131, 225–228. [Google Scholar] [CrossRef]
- Mahdhi, H.; Ayadi, Z.B.; Djessas, K. Physical properties of metal-doped ZnO thin films prepared by RF magnetron sputtering at room temperature. J. Solid State Electrochem. 2019, 23, 3217–3224. [Google Scholar] [CrossRef]
- Nikolic, M.V.; Milovanovic, V.; Vasiljevic, Z.Z.; Stamenkovic, Z. Semiconductor Gas Sensors: Materials, Technology, Design, and Application. Sensors 2020, 20, 6694. [Google Scholar] [CrossRef]
- Bekermann, D.; Gasparotto, A.; Barreca, D.; Bovo, L.; Devi, A.; Fischer, R.A.; Lebedev, O.I.; Maccato, C.; Tondello, E.; Van Tendeloo, G. Highly Oriented ZnO Nanorod Arrays by a Novel Plasma Chemical Vapor Deposition Process. Cryst. Growth Des. 2010, 10, 2011–2018. [Google Scholar] [CrossRef]
- Ponja, S.D.; Sathasivam, S.; Parkin, I.P.; Carmalt, C.J. Transparent conductive aluminium and fluorine co-doped zinc oxide films via aerosol assisted chemical vapour deposition. RSC Adv. 2014, 4, 49723–49728. [Google Scholar] [CrossRef]
- Ding, J.; Chen, S.; Han, N.; Shi, Y.; Hu, P.; Li, H.; Wang, J. Aerosol assisted chemical vapour deposition of nanostructured ZnO thin films for NO2 and ethanol monitoring. Ceram. Int. 2020, 46, 15152–15158. [Google Scholar] [CrossRef]
- El Hat, A.; Chaki, I.; Essajai, R.; Fakhim Lamrani, A.; Fares, B.; Regragui, M.; Dinia, A.; Abd-Lefdil, M. Growth and Properties of (Yb-Er) Co-Doped ZnO Thin Films Deposited via Spray Pyrolysis Technique. Optics 2025, 6, 14. [Google Scholar] [CrossRef]
- Zong, B.; Wu, S.; Yang, Y.; Li, Q.; Tao, T.; Mao, S. Smart Gas Sensors: Recent Developments and Future Prospective. Nano-Micro Lett. 2025, 17, 54. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Wang, R. Development of Gas Sensors and Their Applications in Health Safety, Medical Detection, and Diagnosis. Chemosensors 2025, 13, 190. [Google Scholar] [CrossRef]
- Teli, A.M.; Mane, S.M.; Beknalkar, S.A.; Mishra, R.K.; Jeon, W.; Shin, J.C. Graphene-Based Gas Sensors: State-of-the-Art De-velopments for Gas Sensing Applications. Micromachines 2025, 16, 916. [Google Scholar] [CrossRef] [PubMed]
- Anwer, A.H.; Saadaoui, M.; Mohamed, A.T.; Ahmad, N.; Benamor, A. State-of-the-Art advances and chal-lenges in wearable gas sensors for emerging applications: Innovations and future prospects. Chem. Eng. J. 2024, 502, 157899. [Google Scholar] [CrossRef]
- Márquez-Sánchez, S.; Huerta-Muñoz, J.; Herrera-Santos, J.; González Arrieta, A.; De la Prieta, F. Gas sensing in industry. A case study: Train hangar. Ad Hoc Netw. 2023, 148, 103205. [Google Scholar] [CrossRef]
- Panžić, I.; Bafti, A.; Radovanović-Perić, F.; Gašparić, D.; Shi, Z.; Borenstein, A.; Mandić, V. Advancements in Nanostructured Functional Constituent Materials for Gas Sensing Applications: A Comprehensive Review. Appl. Sci. 2025, 15, 2522. [Google Scholar] [CrossRef]
- Leonardi, S.G. Two-Dimensional Zinc Oxide Nanostructures for Gas Sensor Applications. Chemosensors 2017, 5, 17. [Google Scholar] [CrossRef]
- Chelu, M.; Chesler, P.; Hornoiu, C.; Anastasescu, M.; Calderon-Moreno, J.M.; Mitrea, D.; Brasoveanu, C.; Moldovan, C.; Gartner, M. Chemiresistors with In2O3 Nanostructured Sensitive Films Used for Ozone Detection at Room Temperature. Gels 2023, 9, 355. [Google Scholar] [CrossRef]
- Al-Salman, H.S.; Abdullah, M.J.; Al-Hardan, N. ZnO thin film nanostructures for hydrogen gas sensing applications. Ceram. Int. 2013, 39, S447–S450. [Google Scholar] [CrossRef]
- Aleksanyan, M.; Sayunts, A.; Shahkhatuni, G.; Simonyan, Z.; Shahnazaryan, G.; Aroutiounian, V. Gas Sensor Based on ZnO Nanostructured Film for the Detection of Ethanol Vapor. Chemosensors 2022, 10, 245. [Google Scholar] [CrossRef]
- Jayaraman, V.K.; Biswal, R.R.; Hernandez, A.G.; Maldonado, A.; Gomez-Pozos, H. Synthesis and characterization of chemically sprayed ZnO:Fe:Ni thin films: Effect of codoping concentration and response as gas sensor. J. Mater. Sci. Mater. Electron. 2020, 31, 7423–7433. [Google Scholar] [CrossRef]
- Chelu, M.; Chesler, P.; Anastasescu, M.; Hornoiu, C.; Mitrea, D.; Atkinson, I.; Brasoveanu, C.; Moldovan, C.; Craciun, G.; Gheorghe, M.; et al. ZnO/NiO heterostructure-based microsensors used in formaldehyde detection at room temperature: Influence of the sensor operating voltage. J. Mater. Sci. Mater. Electron. 2022, 33, 19998–20011. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Zhang, W.; Li, Q.; Liu, H.; Wang, X. Preparations and applications of zinc oxide based photocatalytic materials. Adv. Sens. Energy Mater. 2023, 2, 100069. [Google Scholar] [CrossRef]
- Norton, D.P.; Heo, Y.W.; Ivill, M.P.; Ip, K.; Pearton, S.J.; Chisholm, M.F.; Steiner, T. ZnO: Growth, doping & processing. Mater. Today 2004, 7, 34–40. [Google Scholar] [CrossRef]
- Ramírez, A.E.; Montero-Muñoz, M.; López, L.L.; Ramos-Ibarra, J.E.; Coaquira, J.A.H.; Heinrichs, B.; Páez, C.A. Significantly enhancement of sun-light photocatalytic performance of ZnO by doping with transition metal oxides. Sci. Rep. 2021, 11, 2804. [Google Scholar] [CrossRef]
- Bhattarai, R.; Ghimire, R.R.; Mulmi, D.D.; Thapa, R.B. Modeling of gas sensor based on zinc oxide thin films by feedback loop using operational amplifier. Heliyon 2024, 10, e29222. [Google Scholar] [CrossRef] [PubMed]
- Franco, M.A.; Conti, P.P.; Andre, R.S.; Correa, D.S. A review on chemiresistive ZnO gas sensors. Sens. Actuators Rep. 2022, 4, 100100. [Google Scholar] [CrossRef]
- Jaballah, S.; Dahman, I.; Ghiloufi, D.I.; Neri, G.; El Mir, L. Facile synthesis of Al–Mg co-doped ZnO nanoparticles and their high hydrogen sensing performances. Int. J. Hydrogen Energy 2020, 45, 34268–34280. [Google Scholar] [CrossRef]
- Kumar, R.; Al-Dossary, O.; Kumar, G.; Umar, A. Zinc Oxide Nanostructures for NO2 Gas–Sensor Applications: A Review. Nano-Micro Lett. 2015, 7, 97–120. [Google Scholar] [CrossRef]
- Belal, M.A.; Hajra, S.; Panda, S.; Kaja, K.R.; Park, K.J.; Kim, H.J. Spray-printed ZnO thin film for high-sensitivity NO2 gas sensing. Micro Nano Syst. Lett. 2025, 13, 10. [Google Scholar] [CrossRef]
- Ghanbari Shohany, B.; Motevalizadeh, L.; Ebrahimizadeh Abrishami, M. Investigation of ZnO thin-film sensing properties for CO2 detection: Effect of Mn doping. J. Theor. Appl. Phys. 2018, 12, 219–225. [Google Scholar] [CrossRef]
- Jaballah, S.; Alaskar, Y.; AlShunaifi, I.; Ghiloufi, I.; Neri, G.; Bouzidi, C.; Dahman, H.; El Mir, L. Effect of Al and Mg Doping on Reducing Gases Detection of ZnO Nanoparticles. Chemosensors 2021, 9, 300. [Google Scholar] [CrossRef]
- Taha, I.; Abdulhamid, Z.M.; Straubinger, R.; Emwas, A.-H.; Polychronopoulou, K.; Anjum, D.H. Ga-doped ZnO nanoparticles for enhanced CO2 gas sensing applications. Sci. Rep. 2024, 14, 29712. [Google Scholar] [CrossRef] [PubMed]
- Hou, Y.; Jayatissa, A.H. Low resistive gallium doped nanocrystalline zinc oxide for gas sensor application via sol–gel process. Sens. Actuators B Chem. 2014, 204, 310–318. [Google Scholar] [CrossRef]
- Thomas, A.; Sivaperuman, K. Carbon and cobalt co-doped ZnO thin films for highly sensitive and selective ammonia detection at room temperature. Mater. Adv. 2025, 6, 629–640. [Google Scholar] [CrossRef]
- Dhahri, R.; Leonardi, S.; Hjiri, M.; El Mir, L.; Bonavita, A.; Donato, N.; Iannazzo, D.; Neri, G. Enhanced performance of novel calcium/aluminum co-doped zinc oxide for CO2 sensors. Sens. Actuators B Chem. 2017, 239, 36–44. [Google Scholar] [CrossRef]
- Bharathi, P.; Mohan, M.K.; Shalini, V.; Harish, S.; Navaneethan, M.; Archana, J.; Kumar, M.G.; Dhivya, P.; Ponnusamy, S.; Shimomura, M.; et al. Growth and influence of Gd doping on ZnO nanostructures for enhanced optical, structural properties and gas sensing applications. Appl. Surf. Sci. 2020, 499, 143857. [Google Scholar] [CrossRef]
- Tsay, C.-Y.; Fan, K.-S.; Lei, C.-M. Synthesis and characterization of sol–gel derived gallium-doped zinc oxide thin films. J. Alloys Compd. 2012, 512, 216–222. [Google Scholar] [CrossRef]
- Ramola, R.C.; Negi, S.; Singh, R.C.; Singh, F. Gas sensing response of ion beam irradiated Ga-doped ZnO thin films. Sci. Rep. 2022, 12, 22351. [Google Scholar] [CrossRef]
- Liu, Y.; Wei, X.; Guo, Y.; Wang, L.; Guo, H.; Wang, Q.; Qiao, Y.; Zhu, X.; Yang, X.; Cheng, L.; et al. A Highly Sensitive Low-Temperature N-Butanol Gas Sensor Based on a Co-Doped MOF-ZnO Nanomaterial Under UV Excitation. Sensors 2025, 25, 4480. [Google Scholar] [CrossRef]
- Bulowski, W.; Socha, R.P.; Drabczyk, A.; Kasza, P.; Panek, P.; Wojnicki, M. Molecular Layer Doping ZnO Films as a Novel Approach to Resistive Oxygen Sensors. Electronics 2025, 14, 595. [Google Scholar] [CrossRef]
- Samuel, V.R.; Rao, J.K. A review on label free biosensors. Biosens. Bioelectron. X 2022, 11, 100216. [Google Scholar] [CrossRef]
- Zhang, Y.; Kang, Z.; Yan, X.; Liao, Q. ZnO nanostructures in enzyme biosensors. Sci. China Mater. 2015, 58, 60–76. [Google Scholar] [CrossRef]
- Bhakyalatha, M.; Sathish, S.; Sekhar, K.C.; Silva, J.P.B.; Kamakshi, K. ZnO nanostructures for biosensing applications: Recent advances, challenges, and future perspectives. Microchem. J. 2025, 213, 113893. [Google Scholar] [CrossRef]
- Beitollahi, H.; Tajik, S.; Nejad, F.G.; Safaei, M. Recent advances in ZnO nanostructure-based electrochemical sensors and biosensors. J. Mater. Chem. B 2020, 8, 5826–5844. [Google Scholar] [CrossRef]
- Maafa, I.M. Potential of Zinc Oxide Nanostructures in Biosensor Application. Biosensors 2025, 15, 61. [Google Scholar] [CrossRef]
- Samson, R.; Navale, G.R.; Dharne, M.S. Biosensors: Frontiers in rapid detection of COVID-19. 3 Biotech 2020, 10, 385. [Google Scholar] [CrossRef] [PubMed]
- Krishna, M.S.; Singh, S.; Batool, M.; Fahmy, H.M.; Seku, K.; Shalan, A.E.; Lanceros-Mendez, S.; Zafar, M.N. A review on 2D-ZnO nanostructure-based biosensors: From materials to devices. Mater. Adv. 2023, 4, 320–354. [Google Scholar] [CrossRef]
- Mohammed, R.Q.; Ahmed, B.M. Performance enhancement of ZnO/Zn nanostructure biosensor via cold atmosphere plasma. J. Nanopart. Res. 2025, 27, 6. [Google Scholar] [CrossRef]
- Hatami, Z.; Ragheb, E.; Jalali, F.; Tabrizi, M.A.; Shamsipur, M. Zinc oxide-gold nanocomposite as a proper platform for label-free DNA biosensor. Bioelectrochemistry 2020, 133, 107458. [Google Scholar] [CrossRef]
- De Penning, R.; Monzon, N.; Padalkar, S. Flexible zinc oxide-based biosensors for detection of multiple analytes. J. Mater. Res. 2022, 37, 2942–2950. [Google Scholar] [CrossRef]
- Mehedi Hossain, G.M.; Garza, D.; Chavez, E.; Hasnain Jalal, A.; Alam, F. ZnO Nanowires for Biosensing Applications. In Nanotechnology and Nanomaterials; IntechOpen: London, UK, 2025. [Google Scholar] [CrossRef]
- Lebaka, V.R.; Ravi, P.; Reddy, M.C.; Thummala, C.; Mandal, T.K. Zinc Oxide Nanoparticles in Modern Science and Technology: Multifunctional Roles in Healthcare, Environmental Remediation, and Industry. Nanomaterials 2025, 15, 754. [Google Scholar] [CrossRef]
- Tripathy, N.; Kim, D.H. Metal oxide modified ZnO nanomaterials for biosensor applications. Nano Converg. 2018, 5, 27. [Google Scholar] [CrossRef] [PubMed]
- Andrade Neto, N.F.; Oliveira, Y.G.; Bomio, M.R.D.; Motta, F.V. Synthesis and Characterization of Co2+ and Mn2+ Codoped ZnO Nanoparticles Obtained by the Sonochemical Method: Photocatalytic and Antimicrobial Properties. J. Electron. Mater. 2019, 48, 5900–5905. [Google Scholar] [CrossRef]
- Tak, M.; Gupta, V.; Tomar, M. An electrochemical DNA biosensor based on Ni doped ZnO thin film for meningitis detection. J. Electroanal. Chem. 2017, 792, 8–14. [Google Scholar] [CrossRef]
- Agarwal, D.K.; Kandpal, M.; Surya, S.G. Characterization and detection of cardiac Troponin-T protein by using ‘aptamer’ mediated biofunctionalization of ZnO thin-film transistor. Appl. Surf. Sci. 2019, 466, 874–881. [Google Scholar] [CrossRef]
- Shabbir, A.; Hussain, Z.; Khan, D.A.; Khan, Z.S. Tailoring the physicochemical and electrical properties of ZnO thin films by doping with light and heavy rare-earth element via wet chemical approach. J. Mater. Sci. Mater. Electron. 2024, 35, 1628. [Google Scholar] [CrossRef]
- Tsay, C.-Y.; Tsai, H.-M.; Chen, Y.-C. Improved Optoelectronic Characteristics of Ga-In co-Doped ZnO UV Photodetectors by Asymmetric Metal Contact Structure. Crystals 2022, 12, 746. [Google Scholar] [CrossRef]
- Caldararu, M.; Postole, G.; Carata, M.; Chelu, M.; Hornoiu, C.; Ionescu, N.I.; Juchakova, T.; Redey, A. In situ electrical conductivity study of propylene interaction with alumina surface. Appl. Surf. Sci. 2003, 211, 156–165. [Google Scholar] [CrossRef]
- Nunes, P.; Fortunato, E.; Tonello, P.; Fernandes, F.B.; Vilarinho, P.; Martins, R. Effect of different dopant elements on the properties of ZnO thin films. Vacuum 2002, 64, 281–285. [Google Scholar] [CrossRef]
- Das, R.; Das, H.S.; Nandi, P.K.; Biring, S. Comparative studies on the properties of magnetron sputtered transparent conductive oxide thin films for the application in solar cell. Appl. Phys. A 2018, 124, 631. [Google Scholar] [CrossRef]
- Bancu, E.I.; Ion, V.; Antohe, S.; Scarisoreanu, N.D. Towards AZO Thin Films for Electronic and Optoelectronic Large-Scale Applications. Crystals 2025, 15, 670. [Google Scholar] [CrossRef]
- Hosen, R.; Sikder, S.; Uddin, S.; Haque, M.; Mamur, H.; Bhuiyan, M.R.A. Effect of various layers on improving the photovoltaic efficiency of Al/ZnO/CdS/CdTe/Cu2O/Ni solar cells. J. Alloys Metall. Syst. 2023, 4, 100041. [Google Scholar] [CrossRef]
- Papadimitriou, D.N.; Roupakas, G.; Roumeliotis, G.G.; Vogt, P.; Köhler, T. Optimization of Electrochemically Deposited Highly Doped ZnO Bilayers on Ga-Rich Chalcopyrite Selenide for Cost-Effective Photovoltaic Device Technology. Energies 2016, 9, 951. [Google Scholar] [CrossRef]
- Vallejo, W.; Diaz-Uribe, C.; Quiñones, C. Optical and Structural Characterization of Cd-Free Buffer Layers Fabricated by Chemical Bath Deposition. Coatings 2021, 11, 897. [Google Scholar] [CrossRef]
- Wu, Y.; Song, J.; Wang, W.; Li, Z. Efficient Planar Perovskite Solar Cells with ZnO Electron Transport Layer. Coatings 2022, 12, 1981. [Google Scholar] [CrossRef]
- Kim, T.; Lim, J.; Song, S. Recent Progress and Challenges of Electron Transport Layers in Organic–Inorganic Perovskite Solar Cells. Energies 2020, 13, 5572. [Google Scholar] [CrossRef]
- Chelu, M.; Stroescu, H.; Anastasescu, M.; Calderon-Moreno, J.M.; Preda, S.; Stoica, M.; Fogarassy, Z.; Petrik, P.; Gheorghe, M.; Parvulescu, C.; et al. High-quality PMMA/ZnO NWs piezoelectric coating on rigid and flexible metallic substrates. Appl. Surf. Sci. 2020, 529, 147135. [Google Scholar] [CrossRef]
- Lai, F.-I.; Yang, J.-F.; Chen, W.-C.; Hsu, Y.-C.; Kuo, S.-Y. Enhancing Dye-Sensitized Solar Cell Performance with Different Sizes of ZnO Nanorods Grown Using Multi-Step Growth. Catalysts 2023, 13, 1254. [Google Scholar] [CrossRef]
- Chelu, M.; Stroescu, H.; Calderon Moreno, J.; Anastasescu, M.; Preda, S.; Gartner, M.; Moldovan, C.; Gheorghe, M. Piezoelectric 1-D nanostructures for the energy harvesting applications. In Proceedings of the 2019 International Semiconductor Conference (CAS), Poiana Brasov, Romania, 9–11 October 2019; pp. 315–318. [Google Scholar] [CrossRef]
- Kuo, S.Y.; Yang, J.F.; Lai, F.I. Improved dye-sensitized solar cell with a ZnO nanotree photoanode by hydrothermal method. Nanoscale Res. Lett. 2014, 9, 206. [Google Scholar] [CrossRef] [PubMed]
- Akhmetzhanov, N.; Zhang, M.; Lee, D.; Hwang, Y.-H. PCDA/ZnO Organic–Inorganic Hybrid Photoanode for Efficient Photoelectrochemical Solar Water Splitting. Materials 2024, 17, 4259. [Google Scholar] [CrossRef]
- Allami, S.; Ali, Z.D.A.; Li, Y.; Hamody, H.; Jawad, B.H.; Liu, L.; Li, T. Photoelectrochemical performance of N-doped ZnO branched nanowire photoanodes. Heliyon 2017, 3, e00423. [Google Scholar] [CrossRef]
- Rabell, G.O.; Cruz, M.A.; Juárez-Ramírez, I. Photoelectrochemical (PEC) analysis of ZnO/Al photoelectrodes and its photocatalytic activity for hydrogen production. Int. J. Hydrogen Energy 2022, 47, 7770–7782. [Google Scholar] [CrossRef]
- Luo, Y.-T.; Zhou, Z.; Wu, C.-Y.; Chiu, L.-C.; Juang, J.-Y. Analysis of Hazy Ga- and Zr-Co-Doped Zinc Oxide Films Prepared with Atmospheric Pressure Plasma Jet Systems. Nanomaterials 2023, 13, 2691. [Google Scholar] [CrossRef] [PubMed]
- Amjad, M.; Khan, M.I.; Alwadai, N.; Irfan, M.; Haq, I.U.; Albalawi, H.; Almuqrin, A.H.; Almoneef, M.M.; Iqbal, M. Photovoltaic Properties of ZnO Films Co-Doped with Mn and La to Enhance Solar Cell Efficiency. Nanomaterials 2022, 12, 1057. [Google Scholar] [CrossRef]
- Alsaad, A.M.; Ahmad, A.A.; Al-Bataineh, Q.M.; Bani-Salameh, A.A.; Abdullah, H.S.; Qat-tan, I.A.; Albataineh, Z.M.; Telfah, A.D. Optical, Structural, and Crystal Defects Characterizations of Dip Synthesized (Fe-Ni) Co-Doped ZnO Thin Films. Materials 2020, 13, 1737. [Google Scholar] [CrossRef]
- Koralli, P.; Fiat Varol, S.; Mousdis, G.; Mouzakis, D.E.; Merdan, Z.; Kompitsas, M. Comparative Studies of Undoped/Al-Doped/In-Doped ZnO Transparent Conducting Oxide Thin Films in Optoelectronic Applications. Chemosensors 2022, 10, 162. [Google Scholar] [CrossRef]
- Yahmadi, B.; Kamoun, O.; Alhalaili, B.; Alleg, S.; Vidu, R.; Kamoun Turki, N. Physical Investigations of (Co, Mn) Co-Doped ZnO Nanocrystalline Films. Nanomaterials 2020, 10, 1507. [Google Scholar] [CrossRef]
- Shyam, A.; Nair, D.S.; Drishya, T.K.; Swaminathan, R.; Rajalingam, T. A study on the influence of alkali co-doping in Co-ZnO thin films. Optik 2023, 283, 170866. [Google Scholar] [CrossRef]
- Raship, N.A.; Tawil, S.N.M.; Nayan, N.; Ismail, K.; Bakri, A.S.; Azman, Z.; Mohkhter, F. Magnetic Domain Characterization and Physical Properties of Gd-Doped and (Gd, Al) Co-Doped ZnO Thin Films. Materials 2022, 15, 8025. [Google Scholar] [CrossRef] [PubMed]
- Tsay, C.-Y.; Chiu, W.-Y. Enhanced Electrical Properties and Stability of P-Type Conduction in ZnO Transparent Semiconductor Thin Films by Co-Doping Ga and N. Coatings 2020, 10, 1069. [Google Scholar] [CrossRef]
- Ivanova, T.; Harizanova, A.; Koutzarova, T.; Vertruyen, B.; Closset, R. Influence of Fluorine and Nitrogen Co-Doping on the Structural and Morphological Properties of Sol-Gel ZnO Films. Coatings 2022, 12, 1874. [Google Scholar] [CrossRef]
- Marinov, G.; Georgieva, B.; Vasileva, M.; Babeva, T. Study of Structure, Morphology and Optical Properties of Cobalt-Doped and Co/Al-co-Doped ZnO Thin Films Deposited by Electrospray Method. Appl. Sci. 2023, 13, 9611. [Google Scholar] [CrossRef]
- Torchynska, T.V.; El Filali, B.; Polupan, G. Impact of Co-Doping by Ga (or Al) and In Elements on Optical, Structural, and Electrical Characteristics of ZnO Nanocrystal Films for TCO Applications. In Zinc Oxide Nanostructures—Fabrication and Applications; IntechOpen: London, UK, 2025. [Google Scholar] [CrossRef]
- Yun, J.; Bae, M.-S.; Baek, J.S.; Kim, T.W.; Kim, S.-J.; Koh, J.-H. Modeling of Optimized Lattice Mismatch by Carbon-Dioxide Laser Annealing on (In, Ga) Co-Doped ZnO Multi-Deposition Thin Films Introducing Designed Bottom Layers. Nanomaterials 2023, 13, 45. [Google Scholar] [CrossRef]
- Duta, M.; Mihaiu, S.; Munteanu, C.; Anastasescu, M.; Osiceanu, P.; Marin, A.; Preda, S.; Nicolescu, M.; Modreanu, M.; Zaharescu, M.; et al. Properties of In-N codoped p-type ZnO nanorods grown through a two-step chemical route. Appl. Surf. Sci. 2015, 344, 196–204. [Google Scholar] [CrossRef]
- Mallick, A.; Basak, D. Revisiting the electrical and optical transmission proper-ties of co-doped ZnO thin films as n-type TCOs. Prog. Mater. Sci. 2018, 96, 86–110. [Google Scholar] [CrossRef]
- Ivanova, T.; Harizanova, A.; Koutzarova, T.; Vetruyen, B. Optical and structural study of Ga and In co-doped ZnO films. Colloids Surf. A Physicochem. Eng. Asp. 2017, 532, 357–362. [Google Scholar] [CrossRef]
- Mimouni, R.; Souissi, A.; Madouri, A.; Boubaker, K.; Amlouk, M. High photocatalytic efficiency and stability of chromium-indium codoped ZnO thin films under sunlight irradiation for water purification development purposes. Curr. Appl. Phys. 2017, 17, 1058–1065. [Google Scholar] [CrossRef]
- Ye, Z.; He, H.; Jiang, L. Co-doping: An effective strategy for achieving stable p-type ZnO thin films. Nano Energy 2018, 52, 527–540. [Google Scholar] [CrossRef]
- Anand, V.; Sakthivelu, A.; Deva Arun Kumar, K.; Valanarasu, S.; Ganesh, V.; Shkir, M.; Kathalingam, A.; AlFaify, S. Novel rare earth Gd and Al co-doped ZnO thin films prepared by nebulizer spray method for optoelectronic applications. Superlattices Microstruct. 2018, 123, 311–322. [Google Scholar] [CrossRef]
- Ahmed, M.A.M.; Meyer, W.E.; Nel, J.M. Effect of (Ce, Al) co-doped ZnO thin films on the Schottky diode properties fabricated using the sol-gel spin coating. Mater. Sci. Semicond. Process. 2019, 103, 104612. [Google Scholar] [CrossRef]
- Zheng, G.; Song, J.; Zhang, J.; Li, J.; Han, B.; Meng, X.; Yang, F.; Zhao, Y.; Wang, Y. Investigation of physical properties of F-and-Ga co-doped ZnO thin films grown by RF magnetron sputtering for perovskite solar cells applications. Mater. Sci. Semicond. Process. 2020, 112, 105016. [Google Scholar] [CrossRef]
- Nadeem, M.S.; Munawar, T.; Mukhtar, F.; Rahman, M.N.U.; Riaz, M.; Hussain, A.; Iqbal, F. Hydrothermally derived co, Ni co-doped ZnO nanorods; structural, optical, and morphological study. Opt. Mater. 2021, 111, 110606. [Google Scholar] [CrossRef]
- Tiwari, A.; Sahay, P.P. Modification in the physical properties of nanocrystalline ZnO thin films by Sn/Ni co-doping for transparent conductive oxide applications. Phys. B Condens. Matter 2022, 629, 413638. [Google Scholar] [CrossRef]
- Starowicz, Z.; Zięba, A.; Ostapko, J.; Wlazło, M.; Kołodziej, G.; Szczerba, M.J.; Putynkowski, G.; Robert Piotr Socha, R.P. Synthesis and characterization of Al-doped ZnO and Al/F co-doped ZnO thin films prepared by atomic layer deposition. Mater. Sci. Eng. B 2023, 292, 116405. [Google Scholar] [CrossRef]
- Alagarasan, D.; Hegde, S.S.; Naik, R.; Murahari, P.; Shetty, H.D.; Prasad Hb, S.; Maiz, F.; Shkir, M. Fabrication of high-performance RT-NH3 gas sensor based on Cu and La co-doped ZnO films through a facile drop-casting method. Opt. Mater. 2024, 147, 114705. [Google Scholar] [CrossRef]
- Efkere, H.I.; Sarica, E.; Gonullu, M.P. Multi element (Al+Cu) doping on ZnO films by ultrasonically spray pyrolysis. Phys. B Condens. Matter 2025, 700, 416957. [Google Scholar] [CrossRef]























| Year | Dopants | Concentration (at.%) | Deposition Method | Eg (eV) | Special Observation | Application | Ref |
|---|---|---|---|---|---|---|---|
| 2017 | Ga, In (Ga 3%) | In 0.5% In 1% | Two-step chemical route: sol–gel + hydrothermal | 3.28 | Influence of annealing 100 °C, 300 °C, and 500 °C on optical and electrical properties: Hall Effect measurements have established that all samples, regardless of annealing temperature, showed p-type conductivity with a carrier concentration of 3.25 × 1014 cm−3 and a mobility of 2.04 cm2V−1s−1. | Optoelectronic devices: panel displays, sensors for ozone and UV light detection, and flexible electronics applications | [165] |
| 2017 | Cr, In | Cr 1%: In 1% Cr 2%: In 1% Cr 1%; In 2% | Spray pyrolysis | 3.13 3.17 3.10 | High photocatalytic efficiency. | Photocatalytic applications | [166] |
| 2018 | Al, Sn (Al 2%) | Sn 1% Sn 2% Sn 3% Sn 5% | Spin coating | 3.95 3.68 3.66 3.94 | The lowest resistivity value of about 1.65 × 10−3 Ω.cm was obtained for Al 2 at.% and Sn 2 at.%. | Fabrication of thin-film transistors (TFTs) and ultraviolet light-emitting diodes (UV-LEDs). | [167] |
| 2018 | Gd, Al (Al 3%) | Gd 0.5% Gd 1% Gd 1.5% | Nebulizer spray method | 3.31 3.30 3.28 | Resistivity 3.42 × 10−4 Ω·cm for 1.5% Gd. | Optoelectronic applications | [168] |
| 2019 | Ce, Al (Al 1%) | Ce 0% Ce 3% Ce 5% Ce 7% | Sol–gel | 3.22 3.13 3.20 3.10 | The I–V characteristics of the Schottky diodes manifest good rectification behavior at highest doping of Ce (7 at.%) with an ideality factor of 2.40, barrier height of 0.77 eV, and series resistance of 262 Ω. | Schottky diode devices | [169] |
| 2020 | F, Ga | 1% F + 1% Ga | RF magnetron sputtering | 3.49 | Resistivity of 6.81 × 10 −4 Ω.cm. Carrier concentration of 2.61 × 1020 cm−3. Mobility of 35.1 cm2/ V−1s−1. | Perovskite solar cell applications | [170] |
| 2021 | Co, Ni (Co 0.04%) | Ni 0.03% Ni 0.06% Ni 0.09% | Hydrothermal | Eg decreased (3.37–3.16) eV for all co-doped samples. | Optical parameters, including the optical absorption coefficient (α), transmittance (T), skin depth, optical density (OD), extinction coefficient (k), refractive index (n), optical conductivity (σopt), and dielectric constants (εr, εi) of the grown thin films were discussed. | Optical applications | [171] |
| 2022 | Sn, Ni | 1% Sn + 1% Ni | Spin coating | 3.26 | High electrical conductivity. | TCO | [172] |
| 2023 | Al, F | Al 2.5–10% F 0.1–10% | Atomic layer deposition | 3.32–3.75 | Lowest resistivity up to 1–10 × 10−3 Ω·cm. Carrier concentration of 2–3.37 × 1020 cm−3. Mobility of 10−14 cm2/V−1s−1. | Fabrication of high-quality AZO films | [173] |
| 2024 | Cu, La | 2% Cu + 2% La | Drop casting | 3.25–3.28 | The gas response for 250 ppm NH3 was remarkably enhanced to 341%, and a quicker response/recovery time of 80/10 s was obtained. | ZnO gas sensors Ammonia sensing studies | [174] |
| 2025 | Al, Cu | 2.4% Al + 6.2% Cu | Ultrasonic spray pyrolysis | 3.26 | Co-doped films showed enhanced photocatalytic activity, which was related to an enhanced crystalline structure and the type of dopants. | Improved photocatalytic performance | [175] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gartner, M.; Chelu, M.; Szekeres, A.; Petrik, P. Towards Advanced Materials: Functional Perspectives of Co-Doped ZnO Thin Films. Micromachines 2025, 16, 1179. https://doi.org/10.3390/mi16101179
Gartner M, Chelu M, Szekeres A, Petrik P. Towards Advanced Materials: Functional Perspectives of Co-Doped ZnO Thin Films. Micromachines. 2025; 16(10):1179. https://doi.org/10.3390/mi16101179
Chicago/Turabian StyleGartner, Mariuca, Mariana Chelu, Anna Szekeres, and Peter Petrik. 2025. "Towards Advanced Materials: Functional Perspectives of Co-Doped ZnO Thin Films" Micromachines 16, no. 10: 1179. https://doi.org/10.3390/mi16101179
APA StyleGartner, M., Chelu, M., Szekeres, A., & Petrik, P. (2025). Towards Advanced Materials: Functional Perspectives of Co-Doped ZnO Thin Films. Micromachines, 16(10), 1179. https://doi.org/10.3390/mi16101179

