Enhancing Optoelectronic Performance Through Rare-Earth-Doped ZnO: Insights and Applications
Abstract
:1. Introduction
2. Common Methods of Fabrication
2.1. Synthesis Methods Used for ZnO and Doped ZnO Nanostructure
S. No. | Composition (ZnO) | Morphology | Change in Property | Applications | Ref. |
---|---|---|---|---|---|
1 | Mn-doped | Nanoparticles | Change in optical property by introducing the defects made by Mn doping | Spintronics Optoelectronics Photocatalysis | [24] |
2 | Co-doped | Nanoparticles resemble a seed-like structure | Observed the blue shift in the absorbance spectrum with increasing Co doping conc. | Photocatalysis Optoelectronics Antibacterial activity | [25] |
3 | Cu-doped | Nanorods | Enhance the gas sensing response of ZnO nanorods | Gas Sensing | [26] |
4 | Fe-doped | Nanoparticles with euhedral shape and nanowires | Violet emission band at 412 nm (3.0 eV) Blue emission bands at 468 nm (2.65 V) and 440 nm (2.82 eV) | Photocatalysis Sensors Magnetic and Spintronic | [27] |
5 | Zr-doped | Nanoparticles | Shift in the diffraction peaks to lower angles. Lattice parameter increases with Zr doping. | Photocatalysis Antibacterial | [28] |
6 | Eu-doped | Nanowire | PL studies reveal red emission from the ZnO: Eu. Sharp emission peak at 612 nm. | LED Optical Devices | [29] |
7 | Dy-doped | Nanoparticles | Complete photodegradation of DR-31 dye. Maximum sensitivity observed at 150 °C temp. | Photocatalysis Gas Sensing | [30] |
8 | Tb-doped | Thin films | Exhibit strong green luminescence in the spectral region (~1.9–2.6 eV). Photosensitivity decreases with increasing annealing temperature. | Photodetectors Thin-film Technologies | [31] |
9 | Ho-doped | Nanoflowers | Show higher photocatalytic properties. | Photocatalytic UV light sensors | [32] |
10 | Ni-doped | Nanoparticles | DRS analysis shows a blue shift in the absorption edge. | LED Spintronic Gas Sensing | [33] |
11 | Cr-doped | Nanowires | Additional broad absorption tail in the visible region. | Photocatalysis | [34] |
12 | Ru-doped | Nanorods | RTFM is observed in 2 percent of Ru-doped ZnO. | Spintronic Sensors Catalysis | [35,36] |
13 | Nb-doped | Nanorods | Optical transmittance measured in wavelength of 350–1000 nm. | Transparent Conducting Oxide Sensing Device | [36] |
14 | Hf-doped | Nanowires | Diffuse reflectance spectroscopy. | Photocatalysis Antimicrobial | [37] |
15 | Hg-doped | Nanorods | Band shift towards visible region. | Photocatalysis Optoelectronic | [38] |
2.2. Sol–Gel
2.3. Co-Precipitation
2.4. Chemical Vapor Deposition (CVD)
2.5. Hydrothermal Method
3. Discussion of Doped ZnO Properties and Applications
3.1. Transition-Metal-Doped ZnO
3.2. Rare-Earth-Doped ZnO
3.3. Sc-Doped ZnO
3.4. La-Doped ZnO
- Bandgap modulation and quantum confinement effects:
3.5. Dy-Doped ZnO
- Structural and morphological changes due to Dy doping:
Rare Earth | Synthesis Process | Properties | Applications | Ref. |
---|---|---|---|---|
Scandium (Sc) | Sol–Gel |
| Transparent electrode for displays and solar cells. Gas censors, photocatalysis, and field emission devices. | [51] |
Lanthanum (La) | Chemical Method |
| Antibacterial coatings and photocatalysis. | [19] |
Yttrium (Y) | Sol–Gel |
| Transparent conductive films, sensors, and photodetectors. | [55] |
Cerium (Ce) | Wet Chemical method |
| LEDs, display technology, optical sensors, diodes, and electronic switching devices. | [56] |
Dysprosium (Dy) | Co-precipitation method |
| Defect engineering in optoelectronics, photocatalysis, and UV sensors. | [53] |
Terbium (Tb) | Wet Chemical method | Redshift in UV emission due to defect states and shallow energy levels. | Optoelectronics devices, phosphors, and UV sensors. | [57] |
Samarium (Sm) | Solid-state method |
| White LEDs display technology, spintronic devices, and magnetic sensors. | [58] |
Neodymium (Nd) | Chemical synthesis method |
| Spintronics, magnetic storage, environmental remediation, and water purification. | [59] |
Praseodymium (Pr) | Electrospinning method |
| Gas sensors for acetic acid, industrial and environmental gas monitoring. | [60] |
Lutetium (Lu) | Sol–Gel method |
| Transparent conductive films and sensors. | [61] |
Gadolinium (Gd) | Solid-state reaction method |
| Optoelectronics devices, sensors, and as a catalyst material. | [62] |
Thulium (Tm) | Spin Coating and hydrothermal |
| Used in transparent conductive films and TCOs. | [63] |
Ytterbium (Yb) | Polymerization–solution method |
| Nanostructured coating and catalyst. | [64] |
Europium (Eu) | Spray pyrolysis method |
| Enhanced charge separation and environmental remediation. | [65] |
Erbium (Er) | Sol–gel method | Higher dielectric constant. | Capacitors and high-frequency electronics. | [66] |
Samarium (Sm) | Sol–gel method |
| Biomedical coatings and antibacterial materials. | [67] |
Holmium (Ho) | Combustion method |
| Nanostructured coatings, catalysis, and functional materials for electronics. | [68] |
3.6. Applications of ZnO
3.6.1. Application of ZnO in Optoelectronics
3.6.2. Doped ZnO in Solar Cells
- Role of doped ZnO in solar cells:
- Performance and stability:
Property | ZnO [69] | Titanium Dioxide (TiO2) [71] | Copper Indium Gallium Selenide (CIGS) [72] |
---|---|---|---|
Transparency | High transparency in visible light | High transparency in visible light | Transparent in thin films only |
Electrical Conductivity | High conductivity | Moderate conductivity | Moderate to high conductivity |
Cost | Low cost and abundance | Low cost and abundant | Expensive due to complex materials |
Mechanical Properties | Flexible and adaptable | Brittle, but suitable for thin films | Flexible and adaptable |
Optical Properties | Good light scattering, anti-reflective | Can act as a light-scattering layer in some cells | Excellent light absorption in specific spectra |
Efficiency Enhancement | Enhances light absorption and reduces recombination | Used as an electron transport layer, but less effective than ZnO | High efficiency, especially in thin-film designs |
Band Gap | Wide band gap (3.37 eV) | Moderate band gap (3.2 eV) | Variable band gap depending on composition |
Durability and Stability | Highly stable and durable, resistant to degradation | Stable, but prone to surface defects over time | High stability but can degrade under prolonged exposure |
Property | Rare-Earth-Doped ZnO [73,74,75] | Rare-Earth-Doped Titanium Dioxide (TiO2) [76,77] | Rare-Earth-Doped Copper Indium Gallium Selenide (CIGS) [78,79] |
---|---|---|---|
Band Gap | ~3.1–3.4 (tunable with RE doping, e.g., Eu3+ reduces it) | ~3.0–3.2 (anatase); RE doping (e.g., Ce, Er) can narrow bandgap for visible light absorption) | ~1.0–1.7 (RE doping can optimize bandgap for solar spectrum matching) |
Optical Properties | Enhanced UV/visible emission (e.g., Eu3+: red emission; Tb3+: green) | Improved light absorption (e.g., Nd3+ enhances IR absorption) | Increased carrier lifetime: reduced recombination (e.g., Yb3+ improves IR response) |
Electrical Conductivity | Improved with RE doping (e.g., La3+ increases carrier concentration) | Limited intrinsic conductivity: RE doping can introduce defect states for charge transport | High conductivity: RE doping can passivate defects, improving efficiency |
Photocatalytic activity | Enhanced (e.g., Ce4+ promotes charge separation) | Highly effective (e.g., Gd3+ boosts redox reactions under UV/visible light) | Less common; primarily used for solar absorption, not catalysis |
Thermal Stability | Moderate; RE doping can improve stability up to ~600 °C | Excellent (stable up to ~800 °C; RE doping reinforces structure) | Moderate (CIGS degrades > 400 °C; RE may improve thermal tolerance) |
3.6.3. Rare-Earth-Doped ZnO for Light-Emitting Diodes Applications
Property | ZnO [84] | Gallium Nitride (GaN) [88] | Indium Gallium Nitride (InGaN) [86] | Aluminum Gallium Indium Phosphate (AlGaInP) [89] |
---|---|---|---|---|
Band Gap | 3.37 eV | 3.4 eV | Tunable bandgap (from 1.9 to 3.4 eV) | 1.9–2.3 eV |
Light Emission | UV and visible light | Blue and UV light | Blue, green, and white light | Red, yellow, and orange light |
Electron Mobility | High electron mobility | High electron mobility | Moderate electron mobility | Moderate electron mobility |
Efficiency | Good electron transport, but lower than GaN in the visible range | High efficiency for blue and UV LEDs | High efficiency, especially for blue and green LEDs | High efficiency for red and yellow LEDs |
Cost | Low cost and abundant | High-cost and more complex processing | Higher cost, especially for high-efficiency devices | Relatively cost-effective |
Durability | Stable, but challenges with p-type doping | High durability and long lifespan | Good durability with efficient emission | Good durability with efficient emission |
Application in LEDs | UV and blue LEDs, transparent electrodes | High-bright blue, green, and UV LEDs | High-efficiency LEDs, especially in lighting | Low-power red, yellow, and orange LEDs |
Property | Rare-Earth-Doped ZnO [90] | Rare-Earth-Doped Gallium Nitride [91] | Rare-Earth-Doped Indium Gallium Nitride [92] | Rare-Earth-Doped Aluminum Gallium Indium Phosphate [86] |
---|---|---|---|---|
Band gap | ~3.1–3.4 (tunable with RE doping) | ~3.4 (direct; RE doping shifts emission) | ~1.9–3.4 (adjustable via In content + RE doping) | ~1.9–2.3 (red/orange range; RE doping enhances efficiency) |
Optical Properties | Strong UV emission and RE3+ (Eu, Tb, and Er) adds visible luminescence | Sharp RE3+ emission (e.g., Eu: red, Er: IR) and shows high quantum efficiency | Tunable emission (blue green) RE improves color purity (e.g., Ce3+ for green) | Dominates red/orange LEDs RE (e.g., Eu3+) enhances electroluminescence |
Electrical Properties | n-type dominant and RE3+ (La, Ce) can increase conductivity | High breakdown voltage and RE introduces deep levels (affects carrier transport) | Better conductivity than GaN and RE passivates defects | High hole mobility and RE doping can reduce non-radiative recombination |
Thermal Stability | Moderate (stable up to ~600 °C) | Excellent (>1000 °C) | Good (degradation at high In%) | Moderate (sensitive to oxidation) |
3.6.4. Rare-Earth-Doped ZnO for Gas Sensors Applications
- Working principle of ZnO gas sensors:
- Rare-earth-doped ZnO sensor performance and gas selectivity:
Property | ZnO-Based Gas Sensors [104] | SnO2-Based Gas Sensors [105,106] | WO3-Based Gas Sensors [107] |
---|---|---|---|
Bandgap | ~3.37 eV | ~3.6 eV | ~2.6 eV |
Sensitivity | High sensitivity to reducing gases | High sensitivity to reducing gases | High sensitivity to oxidizing gases |
Response Time | Fast response time due to high electron mobility | Moderate response time, but fast in some forms | Slower response due to lower electron mobility |
Selectivity | High selectivity with surface modification and doping | It can be modified for selectivity, but generally less selective | High selectivity for oxidizing gasses |
Fabrication | Easy to fabricate, especially in nanostructured forms | Easy to fabricate, commonly used in thin films | Requires more advanced fabrication techniques for thin films |
Cost | Low-cost, easily available materials | Low to moderate cost, widely used in commercial sensors | Higher cost, due to the more complex fabrication process |
Environmental Stability | Good, with chemical stability | Good, but may degrade under harsh conditions | Good stability, especially for high-temperature operations |
Power consumption | Low power consumption | Low power consumption | Moderate to high power consumption, depending on the configuration |
Detection Range | Can detect a wide range of gases | Primarily used for detecting reducing gases | Primarily used for detecting oxidizing gases |
Temperature sensitivity | Performance varies with temperature; typically requires heating | Can operate at high temperatures, often requires heating | Can operate at lower temperatures, but still requires heating |
Applications | Environmental monitoring, industrial safety, healthcare, and smart homes | Environmental monitoring, industrial safety, and automotive sensors | Environmental monitoring, automotive, and air quality monitoring |
Limitations | Performance affected by humidity, needs surface modification for selectivity | Limited by surface sensitivity, may require complex circuitry | Slower response, less suitable for real-time monitoring. |
Property | Rare-Earth-Doped ZnO-Based Gas Sensor [108] | Rare-Earth-Doped SnO2-Based Gas Sensor [109] | Rare-Earth-Doped WO3-Based Gas Sensor [110] |
---|---|---|---|
Band gap | ~3.1–3.4 | ~3.6 | ~2.6–2.8 |
Key Target Gases | NO2, H2, CO, and ethanol | CO, CH4, H2S | NH3, NO2, and acetone |
Operating Temperature | 200–400 °C (lower with RE doping) | 150–350 °C (RE reduces optimal temp) | 250–450 °C (RE enhances low-temp response) |
Sensitivity | High (e.g., ZnO:La for NO2 ~10 ppm detection) | Very high (SnO2: Nd for H2 ~1 ppm) | Moderate (WO3: Eu for NH3 ~5 ppm) |
Mechanism | RE alters O2 adsorption and charge transfer (n-type) | RE creates oxygen vacancies (n-type) | RE promotes surface acidity (n/p-type) |
3.6.5. ZnO-Based UV Radiation Detector
Property | ZnO-Based [112] | GaN-Based [113] | SiC Based [114] |
---|---|---|---|
Bandgap | ~3.37 eV | ~3.4 eV | ~3.26 eV |
UV Detection Range | UV-A, UV-B, and some UV-C | Primarily UV-C and UV-B | UV-B and UV-C |
Response Time | Fast, high electron mobility for quick detection | Very fat response time | Moderate response time |
Sensitivity | High sensitivity, especially in UV-A and UV-B regions | Very high sensitivity, particularly in UV-C | High sensitivity, especially in UV-C |
Cost | Low cost | Higher cost | Moderate cost |
Fabrication Ease | Easy to fabricate | Requires advanced fabrication techniques | More complex fabrication |
Fabrication Cost | Low, cost-effective for mass production | Expensive due to manufacturing complexity | Moderate, more affordable than GaN but higher than ZnO |
Property | Rare-Earth-Doped ZnO [115] | Rare-Earth-Doped GaN [116] | Rare-Earth-Doped SiC [117] |
---|---|---|---|
Band gap | ~3.1–3.4 (RE tunes responsivity in UV-A/B) | ~3.4 (direct; RE extends to UV-C) | ~3.2 (4H-SiC); RE enhances deep-UV response |
Detection range (nm) | 300–400 nm (UV-A/B) | 200–365 nm (UV-B/C) | 200–400 nm (UV-C to A) |
Response time | ~10–100 ms | ~1–50 ns | ~10–500 ns |
3.6.6. ZnO-Based Temperature Sensor
3.6.7. ZnO Mechano-Luminescence
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Chandekar, K.V.; Shkir, M.; Khan, A.; Al-Shehri, B.M.; Hamdy, M.S.; AlFaify, S.; El-Toni, M.A.; Aldalbahi, A.; Ansari, A.A.; Ghaithan, H. A Facile One-Pot Flash Combustion Synthesis of La@ZnO Nanoparticles and Their Characterizations for Optoelectronic and Photocatalysis Applications. J. Photochem. Photobiol. A Chem. 2020, 395, 112465. [Google Scholar] [CrossRef]
- Raha, S.; Ahmaruzzaman, M. ZnO Nanostructured Materials and Their Potential Applications: Progress, Challenges and Perspectives. Nanoscale Adv. 2022, 4, 1868–1925. [Google Scholar] [CrossRef] [PubMed]
- Ong, C.B.; Ng, L.Y.; Mohammad, A.W. A Review of ZnO Nanoparticles as Solar Photocatalysts: Synthesis, Mechanisms and Applications. Renew. Sustain. Energy Rev. 2018, 81, 536–551. [Google Scholar] [CrossRef]
- Sahu, S.; Bhattacharjee, M. Nanostructured ZnO Thin Film-Based Flexible Printed Sensor for High-Performance UV Detection. Sens. Actuators A Phys. 2025, 383, 116196. [Google Scholar] [CrossRef]
- Huong, T.T.T.; Sa, N.T.; Thuy, N.T.M.; Hao, P.V.; Thao, N.H.; Hien, N.T.; Ca, N.X. Eu3+-Doped ZnO Quantum Dots: Structure, Vibration Characteristics, Optical Properties, and Energy Transfer Process. Nanoscale Adv. 2024, 7, 909–921. [Google Scholar] [CrossRef]
- Girish Kumar, S.; Kavitha, R. Lanthanide Ions Doped ZnO Based Photocatalysts. Sep. Purif. Technol. 2021, 274, 118853. [Google Scholar] [CrossRef]
- Sanakousar, F.M.; Vidyasagar, C.; Jiménez-Pérez, V.M.; Prakash, K. Recent Progress on Visible-Light-Driven Metal and Non-Metal Doped ZnO Nanostructures for Photocatalytic Degradation of Organic Pollutants. Mater. Sci. Semicond. Process 2022, 140, 106390. [Google Scholar] [CrossRef]
- Ren, J.; Wu, J.X.; Liu, P.P. Controlling the Electronic and Magnetic Properties of ZnO Monolayer by Rare-Earth Atoms Substitutional Doping. Phys. B Condens. Matter 2023, 652, 414661. [Google Scholar] [CrossRef]
- Silva, W.F.; Silva, A.C.A.; Jacinto, C. Applications of Luminescence in Quantum-Dot- and Rare-Earth-Doped Semiconductor Nanostructures. Mod. Lumin. Fundam. Concepts Mater. Appl. 2025, 2, 31–67. [Google Scholar] [CrossRef]
- Khuili, M.; Fazouan, N.; Abou El Makarim, H.; Atmani, E.H.; Rai, D.P.; Houmad, M. First-Principles Calculations of Rare Earth (RE=Tm, Yb, Ce) Doped ZnO: Structural, Optoelectronic, Magnetic, and Electrical Properties. Vacuum 2020, 181, 109603. [Google Scholar] [CrossRef]
- Achehboune, M.; Khenfouch, M.; Boukhoubza, I.; Leontie, L.; Doroftei, C.; Carlescu, A.; Bulai, G.; Mothudi, B.; Zorkani, I.; Jorio, A. Microstructural, FTIR and Raman Spectroscopic Study of Rare Earth Doped ZnO Nanostructures. Mater. Today Proc. 2022, 53, 319–323. [Google Scholar] [CrossRef]
- Thangeeswari, T.; Parthipan, G.; Shanmugan, S. Raju Synthesize of Gadolinium-Doped ZnO Nano Particles for Energy Applications by Enhance Its Optoelectronic Properties. Mater. Today Proc. 2021, 34, 448–452. [Google Scholar] [CrossRef]
- Ben Haj Othmen, W.; Ben Ali, M.; Bouslama, W.; Elhouichet, H. Solar Driven Photocatalytic Properties of Sm3+ Doped ZnO Nanocrystals. Ceram. Int. 2020, 46, 18878–18887. [Google Scholar] [CrossRef]
- Zamiri, R.; Lemos, A.F.; Reblo, A.; Ahangar, H.A.; Ferreira, J.M.F. Effects of Rare-Earth (Er, La and Yb) Doping on Morphology and Structure Properties of ZnO Nanostructures Prepared by Wet Chemical Method. Ceram. Int. 2014, 40, 523–529. [Google Scholar] [CrossRef]
- Ranjith Kumar, D.; Ranjith, K.S.; Rajendra Kumar, R.T. Structural, Optical, Photocurrent and Solar Driven Photocatalytic Properties of Vertically Aligned Samarium Doped ZnO Nanorod Arrays. Optik 2018, 154, 115–125. [Google Scholar] [CrossRef]
- Amira, G.; Chaker, B.; Habib, E. Spectroscopic Properties of Dy3+ Doped ZnO for White Luminescence Applications. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2017, 177, 164–169. [Google Scholar] [CrossRef]
- Selvaraj, S.; Vangari, G.A.; Mohan, M.K.; Ponnusamy, S.; Muthamizchelvan, C. Facile Synthesis of Sm Doped ZnO Nanoflowers by Co-Precipitation Method for Enhanced Photocatalytic Degradation of MB Dye under Sunlight Irradiation. Ceram. Int. 2022, 48, 29049–29058. [Google Scholar] [CrossRef]
- López-Mena, E.R.; Jiménez-Sandoval, S.J.; Jiménez-Sandoval, O. Samarium-Doped ZnO Thin Films Synthesized by Sol-Gel: Structural, Optical and Electrical Properties. Mater. Sci. Semicond. Process 2021, 126, 105648. [Google Scholar] [CrossRef]
- Manikandan, A.; Manikandan, E.; Meenatchi, B.; Vadivel, S.; Jaganathan, S.K.; Ladchumananandasivam, R.; Henini, M.; Maaza, M.; Aanand, J.S. Rare Earth Element (REE) Lanthanum Doped Zinc Oxide (La: ZnO) Nanomaterials: Synthesis Structural Optical and Antibacterial Studies. J. Alloys Compd. 2017, 723, 1155–1161. [Google Scholar] [CrossRef]
- Sikdar, M.K.; Ghorai, G.; Senapati, T.R.; Sahoo, P.K. Modulation of Bandgap and Electrical Conductivity in Europium Doped Single ZnO Nanorod Device. J. Alloys Compd. 2022, 913, 165179. [Google Scholar] [CrossRef]
- Korsunska, N.; Borkovska, L.; Polischuk, Y.; Kolomys, O.; Lytvyn, P.; Markevich, I.; Strelchuk, V.; Kladko, V.; Melnichuk, O.; Melnichuk, L.; et al. Photoluminescence, Conductivity and Structural Study of Terbium Doped ZnO Films Grown on Different Substrates. Mater. Sci. Semicond. Process 2019, 94, 51–56. [Google Scholar] [CrossRef]
- Karakaya, S.; Kaba, L. Photocatalytic Activity of Rare Earth Elements (Gd and Ce) Co-Doped ZnO Nanostructured Films. Ceram. Int. 2024, 50, 30743–30753. [Google Scholar] [CrossRef]
- Thobega, M.; Maabong-Tau, K.; Lefatshe, K.; Muiva, C. Study of Structural, Optical and Electrical Properties of Nickel Doped ZnO (Ni–ZnO) Nanorods Grown by Chemical Bath Deposition. Phys. B Condens. Matter 2024, 673, 415500. [Google Scholar] [CrossRef]
- Dole, B.N.; Mote, V.D.; Huse, V.R.; Purushotham, Y.; Lande, M.K.; Jadhav, K.M.; Shah, S.S. Structural Studies of Mn Doped ZnO Nanoparticles. Curr. Appl. Phys. 2011, 11, 762–766. [Google Scholar] [CrossRef]
- Nair, M.G.; Nirmala, M.; Rekha, K.; Anukaliani, A. Structural, Optical, Photo Catalytic and Antibacterial Activity of ZnO and Co Doped ZnO Nanoparticles. Mater. Lett. 2011, 65, 1797–1800. [Google Scholar] [CrossRef]
- Alev, O.; Ergün, İ.; Özdemir, O.; Arslan, L.Ç.; Büyükköse, S.; Öztürk, Z.Z. Enhanced Ethanol Sensing Performance of Cu-Doped ZnO Nanorods. Mater. Sci. Semicond. Process 2021, 136, 106149. [Google Scholar] [CrossRef]
- Srivastava, A.K.; Deepa, M.; Bahadur, N.; Goyat, M.S. Influence of Fe Doping on Nanostructures and Photoluminescence of Sol–Gel Derived ZnO. Mater. Chem. Phys. 2009, 114, 194–198. [Google Scholar] [CrossRef]
- Khan, I.; Khan, S.; Nongjai, R.; Ahmed, H.; Khan, W. Structural and Optical Properties of Gel-Combustion Synthesized Zr Doped ZnO Nanoparticles. Opt. Mater. 2013, 35, 1189–1193. [Google Scholar] [CrossRef]
- Lupan, O.; Pauporté, T.; Viana, B.; Aschehoug, P.; Ahmadi, M.; Cuenya, B.R.; Rudzevich, Y.; Lin, Y.; Chow, L. Eu-Doped ZnO Nanowire Arrays Grown by Electrodeposition. Appl. Surf. Sci. 2013, 282, 782–788. [Google Scholar] [CrossRef]
- Bhatia, S.; Verma, N.; Kumar, R. Morphologically-Dependent Photocatalytic and Gas Sensing Application of Dy-Doped ZnO Nanoparticles. J. Alloys Compd. 2017, 726, 1274–1285. [Google Scholar] [CrossRef]
- Malyutina-Bronskaya, V.; Zalesski, V.; Zhyhulin, D.; Mudryi, A. Structural, Optical and Photoelectric Properties of Tb Doped ZnO Thin Films for Device Applications. Opt. Mater. 2022, 127, 112305. [Google Scholar] [CrossRef]
- Phuruangrat, A.; Yayapao, O.; Thongtem, T.; Thongtem, S. Preparation, Characterization and Photocatalytic Properties of Ho Doped ZnO Nanostructures Synthesized by Sonochemical Method. Superlattices Microstruct. 2014, 67, 118–126. [Google Scholar] [CrossRef]
- Fabbiyola, S.; Sailaja, V.; Kennedy, L.J.; Bououdina, M.; Judith Vijaya, J. Optical and Magnetic Properties of Ni-Doped ZnO Nanoparticles. J. Alloys Compd. 2017, 694, 522–531. [Google Scholar] [CrossRef]
- Wu, C.; Shen, L.; Zhang, Y.C.; Huang, Q. Solvothermal Synthesis of Cr-Doped ZnO Nanowires with Visible Light-Driven Photocatalytic Activity. Mater. Lett. 2011, 65, 1794–1796. [Google Scholar] [CrossRef]
- Kumar, S.; Kaur, P.; Chen, C.L.; Thangavel, R.; Dong, C.L.; Ho, Y.K.; Lee, J.F.; Chan, T.S.; Chen, T.K.; Mok, B.H.; et al. Structural, Optical and Magnetic Characterization of Ru Doped ZnO Nanorods. J. Alloys Compd. 2014, 588, 705–709. [Google Scholar] [CrossRef]
- Çolak, H.; Karaköse, E.; Sungür, Ç. Niobium Doping Effect on Electrical and Optical Properties of ZnO Nanorods Produced by Ultrasonic Spray Pyrolysis. Phys. B Condens. Matter 2023, 671, 415455. [Google Scholar] [CrossRef]
- Naeem, H.M.; Ijaz, S.; Abbas, M.H.; Ahmed, Y.; Rehman, N.; Park, T.J.; Basit, M.A. HF-Based Surface Modification for Enhanced Photobiological and Photochemical Performance of ZnO and ZnO/CdS Hierarchical Structures. Mater. Chem. Phys. 2020, 252, 123190. [Google Scholar] [CrossRef]
- Saravanan, R.; Gupta, V.K.; Prakash, T.; Narayanan, V.; Stephen, A. Synthesis, Characterization and Photocatalytic Activity of Novel Hg Doped ZnO Nanorods Prepared by Thermal Decomposition Method. J. Mol. Liq. 2013, 178, 88–93. [Google Scholar] [CrossRef]
- Kotresh, M.G.; Patil, M.K.; Inamdar, S.R. Reaction Temperature Based Synthesis of ZnO Nanoparticles Using Co-Precipitation Method: Detailed Structural and Optical Characterization. Optik 2021, 243, 167506. [Google Scholar] [CrossRef]
- Liang, Q.; Qiao, F.; Cui, X.; Hou, X. Controlling the Morphology of ZnO Structures via Low Temperature Hydrothermal Method and Their Optoelectronic Application. Mater. Sci. Semicond. Process 2019, 89, 154–160. [Google Scholar] [CrossRef]
- Seleš, P.; Vengust, D.; Radošević, T.; Kocijan, M.; Einfalt, L.; Kurtjak, M.; Shvalya, V.; Knaflič, T.; Bernik, S.; Omerzu, A.; et al. Altering Defect Population during the Solvothermal Growth of ZnO Nanorods for Photocatalytic Applications. Ceram. Int. 2024, 50, 26819–26828. [Google Scholar] [CrossRef]
- Ul Haq, B.; Ahmed, R.; Shaari, A.; Ali, N.; Al-Douri, Y.; Reshak, A.H. Comparative Study of Fe Doped ZnO Based Diluted and Condensed Magnetic Semiconductors in Wurtzite and Zinc-Blende Structures by First-Principles Calculations. Mater. Sci. Semicond. Process 2016, 43, 123–128. [Google Scholar] [CrossRef]
- Xiao, Y.; Ge, S.; Xi, L.; Zuo, Y.; Zhou, X.; Zhang, B.; Zhang, L.; Li, C.; Han, X.; Wen, Z. Room Temperature Ferromagnetism of Mn-Doped SnO2 Thin Films Fabricated by Sol–Gel Method. Appl. Surf. Sci. 2008, 254, 7459–7463. [Google Scholar] [CrossRef]
- Krishna, M.S.; Singh, S.; Batool, M.; Fahmy, H.M.; Seku, K.; Shalan, A.E.; Lanceros-Mendez, S.; Zafar, M.N. A Review on 2D-ZnO Nanostructure Based Biosensors: From Materials to Devices. Mater. Adv. 2023, 4, 320–354. [Google Scholar] [CrossRef]
- Comini, E.; Baratto, C.; Faglia, G.; Ferroni, M.; Vomiero, A.; Sberveglieri, G. Quasi-One Dimensional Metal Oxide Semiconductors: Preparation, Characterization and Application as Chemical Sensors. Prog. Mater. Sci. 2009, 54, 1–67. [Google Scholar] [CrossRef]
- Nguyen, D.T.C.; Nguyen, N.T.T.; Nguyen, T.T.T.; Tran, T. Van Recent Advances in the Biosynthesis of ZnO Nanoparticles Using Floral Waste Extract for Water Treatment, Agriculture and Biomedical Engineering. Nanoscale Adv. 2024, 6, 4047–4061. [Google Scholar] [CrossRef]
- Shivaraj, B.; Hareeshanaik, S.; Vishnu, G.; Prabhakara, M.C.; BhojyaNaik, H.S. Fabrication of Ce-Doped ZnO Nanorods as Efficient Materials for Photocatalytic, Bio-Sensing and Antibacterial Applications. Mater. Sci. Eng. B 2025, 314, 118029. [Google Scholar] [CrossRef]
- Kasirajan, K.; Bruno Chandrasekar, L.; Maheswari, S.; Karunakaran, M.; Shunmuga Sundaram, P. A Comparative Study of Different Rare-Earth (Gd, Nd, and Sm) Metals Doped ZnO Thin Films and Its Room Temperature Ammonia Gas Sensor Activity: Synthesis, Characterization, and Investigation on the Impact of Dopant. Opt. Mater. 2021, 121, 111554. [Google Scholar] [CrossRef]
- Pratomo, U.; Fransisca, N.; Adzani, M.D.; Irkham, I.; Sulaeman, A.P.; Eddy, D.R.; Mulyana, J.Y.; Primadona, I. Doping of Rare Earth Element: The Effects in Elevated Physical and Optical Properties of ZnO. Talanta Open 2025, 11, 100411. [Google Scholar] [CrossRef]
- Petersen, J.; Brimont, C.; Gallart, M.; Schmerber, G.; Gilliot, P.; Ulhaq-Bouillet, C.; Rehspringer, J.L.; Colis, S.; Becker, C.; Slaoui, A.; et al. Correlation of Structural Properties with Energy Transfer of Eu-Doped ZnO Thin Films Prepared by Sol-Gel Process and Magnetron Reactive Sputtering. J. Appl. Phys. 2010, 107, 123522. [Google Scholar] [CrossRef]
- Sharma, R.; Sehrawat, K.; Mehra, R.M. Epitaxial Growth of Highly Transparent and Conducting Sc-Doped ZnO Films on c-Plane Sapphire by Sol–Gel Process without Buffer. Curr. Appl. Phys. 2010, 10, 164–170. [Google Scholar] [CrossRef]
- Krishnaswamy, S.; Yashpal; Panigrahi, P.; Panigrahi, A.; Nagarajan, G.S. Investigation of the Optical Properties of Dy Doped ZnO/PVA Thin Film: White Light Emission for LED Application. Results Opt. 2025, 18, 100786. [Google Scholar] [CrossRef]
- Jayachandraiah, C.; Siva Kumar, K.; Krishnaiah, G.; Madhusudhana Rao, N. Influence of Dy Dopant on Structural and Photoluminescence of Dy-Doped ZnO Nanoparticles. J. Alloys Compd. 2015, 623, 248–254. [Google Scholar] [CrossRef]
- El Fidha, G.; Bitri, N.; Chaabouni, F.; Acosta, S.; Güell, F.; Bittencourt, C.; Casanova-Chafer, J.; Llobet, E. Physical and Photocatalytic Properties of Sprayed Dy Doped ZnO Thin Films under Sunlight Irradiation for Degrading Methylene Blue. RSC Adv. 2021, 11, 24917–24925. [Google Scholar] [CrossRef]
- Alasmari, A.; Awad, A.A.; Aboud, A.A. Investigating the Influence of Yttrium Doping on Physical Properties of ZnO Thin Films Deposited via Spray Pyrolysis. Opt. Mater. 2024, 148, 114899. [Google Scholar] [CrossRef]
- Sinha, N.; Ray, G.; Bhandari, S.; Godara, S.; Kumar, B. Synthesis and Enhanced Properties of Cerium Doped ZnO Nanorods. Ceram. Int. 2014, 40, 12337–12342. [Google Scholar] [CrossRef]
- Jia, T.; Wang, W.; Long, F.; Fu, Z.; Wang, H.; Zhang, Q. Synthesis, Characterization and Luminescence Properties of Y-Doped and Tb-Doped ZnO Nanocrystals. Mater. Sci. Eng. B 2009, 162, 179–184. [Google Scholar] [CrossRef]
- Singh, J.; Singh, G.P.; Kumar, S.; Jain, R.K.; Gasso, S.; Singh, B.; Singh, K.J.; Singh, A.; Singh, R.C. Probing Structural, Optical and Magnetic Properties of Sm-Doped ZnO Nanomaterials via Experimental and DFT Approach: Enhanced Photocatalytic Degradation and Antibacterial Performance. Colloids Surf. A Physicochem. Eng. Asp. 2023, 668, 131470. [Google Scholar] [CrossRef]
- Kumar, S.; Sahare, P.D. Nd-Doped ZnO as a Multifunctional Nanomaterial. J. Rare Earths 2012, 30, 761–768. [Google Scholar] [CrossRef]
- Wang, C.; Ma, S.; Sun, A.; Qin, R.; Yang, F.; Li, X.; Li, F.; Yang, X. Characterization of Electrospun Pr-Doped ZnO Nanostructure for Acetic Acid Sensor. Sens. Actuators B Chem. 2014, 193, 326–333. [Google Scholar] [CrossRef]
- Çolak, H.; Karaköse, E. Synthesis and Structural, Electrical, Optical Properties of Lu3+-Doped ZnO Nanorods. Mater. Sci. Semicond. Process 2019, 101, 230–237. [Google Scholar] [CrossRef]
- Khan, M.; Ali, R.; Nowsherwan, G.A.; Anwar, N.; Ahmed, M.; Ali, Q.; Ahmed, M.; Naseem, S.; Lee, S.-L.; Choi, J.R. Gd-Doped ZnO Nanoparticles: Structural, Morphological, and Optoelectronic Enhancements. Ceram. Int. 2025, 51, 14417–14429. [Google Scholar] [CrossRef]
- Çolak, H.; Karaköse, E. Tm-Doped ZnO Nanorods as a TCO for PV Applications. J. Rare Earths 2018, 36, 1067–1073. [Google Scholar] [CrossRef]
- Navarro-López, D.E.; Garcia-Varela, R.; Ceballos-Sanchez, O.; Sanchez-Martinez, A.; Sanchez-Ante, G.; Corona-Romero, K.; Buentello-Montoya, D.A.; Elías-Zuñiga, A.; López-Mena, E.R. Effective Antimicrobial Activity of ZnO and Yb-Doped ZnO Nanoparticles against Staphylococcus aureus and Escherichia coli. Mater. Sci. Eng. C 2021, 123, 112004. [Google Scholar] [CrossRef]
- Radić, N.; Stojadinović, S.; Ilić, M.; Kasalica, K.; Tsanev, A. Eu-Doped ZnO Coatings Prepared by Spray Pyrolysis for Photocatalytic Applications. Inorg. Chem. Commun. 2024, 167, 112822. [Google Scholar] [CrossRef]
- Mohamed, M.; Al–Naim, A.F.; Almohammedi, A.; Sedky, A. Comparative Investigation of Dielectric, Magnetic, and Adsorption Aspects of ZnO Nanoparticles Doped by Er or Nd. Results Phys. 2025, 69, 108113. [Google Scholar] [CrossRef]
- Anwar, M.; Kayani, Z.N.; Hassan, A.; Zeeshan, T.; Riaz, S.; Naseem, S. Enhancement in Photocatalytic Activity and Biological Properties of Sm Doped ZnO Nanostructures by the Increase in Sm Contents. Inorg. Chem. Commun. 2023, 158, 111431. [Google Scholar] [CrossRef]
- Phuruangrat, A.; Thamsukho, S.; Thongtem, T.; Thongtem, S. Combustion Synthesis and Analysis of Visible-Light-Driven Ho-Doped ZnO Photocatalytic Nanoparticles. Desalination Water Treat. 2022, 273, 212–220. [Google Scholar] [CrossRef]
- Luo, J.; Wang, Y.; Zhang, Q. Progress in Perovskite Solar Cells Based on ZnO Nanostructures. Sol. Energy 2018, 163, 289–306. [Google Scholar] [CrossRef]
- Zafar, M.; Kim, B.S.; Kim, D.H. Improvement in Performance of Inverted Organic Solar Cell by Rare Earth Element Lanthanum Doped ZnO Electron Buffer Layer. Mater. Chem. Phys. 2020, 240, 122076. [Google Scholar] [CrossRef]
- Oku, T.; Kakuta, N.; Kobayashi, K.; Suzuki, A.; Kikuchi, K. Fabrication and Characterization of TiO2-Based Dye-Sensitized Solar Cells. Prog. Nat. Sci. Mater. Int. 2011, 21, 122–126. [Google Scholar] [CrossRef]
- Mufti, N.; Amrillah, T.; Taufiq, A.; Sunaryono; Aripriharta; Diantoro, M.; Zulhadjri; Nur, H. Review of CIGS-Based Solar Cells Manufacturing by Structural Engineering. Sol. Energy 2020, 207, 1146–1157. [Google Scholar] [CrossRef]
- Simran; Kumar, P.; Tamanna; Kumar, S.; Kaur, H.; Kumar, A.; Kumar, A. Optimizing Photocatalysis: Tuning Europium Concentration in Zinc Oxide Nanoparticles for Superior Performance. Phys. B Condens. Matter 2025, 697, 416699. [Google Scholar] [CrossRef]
- Abdel-Latif, M.K.; Mobarak, M.; Revaprasadu, N.; Ashraf, A.H.; Othman, W.; Khalefa, M.M.; Aboud, A.A.; Ismail, M. Effect of Doping on the Structural, Optical and Electrical Properties of La-Doped ZnO Thin Films. J. Mater. Sci. Mater. Electron. 2023, 34, 254. [Google Scholar] [CrossRef]
- Faisal, M.; Ismail, A.A.; Ibrahim, A.A.; Bouzid, H.; Al-Sayari, S.A. Highly Efficient Photocatalyst Based on Ce Doped ZnO Nanorods: Controllable Synthesis and Enhanced Photocatalytic Activity. Chem. Eng. J. 2013, 229, 225–233. [Google Scholar] [CrossRef]
- D’Souza, L.P.; Shwetharani, R.; Amoli, V.; Fernando, C.A.N.; Sinha, A.K.; Balakrishna, R.G. Photoexcitation of Neodymium Doped TiO2 for Improved Performance in Dye-Sensitized Solar Cells. Mater. Des. 2016, 104, 346–354. [Google Scholar] [CrossRef]
- Barba-Nieto, I.; Caudillo-Flores, U.; Fernández-García, M.; Kubacka, A. Sunlight-Operated TiO2-Based Photocatalysts. Molecules 2020, 25, 4008. [Google Scholar] [CrossRef]
- Jayachithra, J.V.; Elampari, K.; Meena, M. Enhancing CIGS Solar Cell Performance with Erbium-Doped TiO2 Nanomaterial: Simulation Study. Artic. Indian J. Sci. Technol. 2023, 16, 3453. [Google Scholar] [CrossRef]
- Xiong, Z. Enhancing CIGS Solar Cell Performance by Down Conversion; The Chinese University of Hong Kong: Hong Kong, China, 2019. [Google Scholar]
- Kumar, V.; Ntwaeaborwa, O.M.; Soga, T.; Dutta, V.; Swart, H.C. Rare Earth Doped Zinc Oxide Nanophosphor Powder: A Future Material for Solid State Lighting and Solar Cells. ACS Photonics 2017, 4, 2613–2637. [Google Scholar] [CrossRef]
- Pandey, P.; Kurchania, R.; Haque, F.Z. Rare Earth Ion (La, Ce, and Eu) Doped ZnO Nanoparticles Synthesized via Sol-Gel Method: Application in Dye Sensitized Solar Cells. Opt. Spectrosc. 2015, 119, 666–671. [Google Scholar] [CrossRef]
- Mokgolo, P.J.; Gumede, T.P.; Ocaya, R.O.; Malevu, T.D. Enhancing Perovskite Solar Cells with Rare-Earth Metal Doped Zinc Oxide: A Review of Electron Mobility, Stability, and Photocarrier Recombination. Int. J. Energy Res. 2025, 2025, 4240199. [Google Scholar] [CrossRef]
- Sehgal, P.; Narula, A.K. Improved Optical, Electrochemical and Photovoltaic Properties of Dye-Sensitized Solar Cell Composed of Rare Earth-Doped Zinc Oxide. J. Mater. Sci. Mater. Electron. 2021, 32, 16612–16622. [Google Scholar] [CrossRef]
- Pearton, S.J.; Ren, F. Advances in ZnO-Based Materials for Light Emitting Diodes. Curr. Opin. Chem. Eng. 2014, 3, 51–55. [Google Scholar] [CrossRef]
- Mo, X.; Fang, G.; Long, H.; Li, S.; Huang, H.; Wang, H.; Liu, Y.; Meng, X.; Zhang, Y.; Pan, C. Near-Ultraviolet Light-Emitting Diodes Realized from n-ZnO Nanorod/p-GaN Direct-Bonding Heterostructures. J. Lumin. 2013, 137, 116–120. [Google Scholar] [CrossRef]
- Lu, Z.; Zhang, K.; Zhuang, J.; Lin, J.; Lu, Z.; Jiang, Z.; Lu, Y.; Chen, Z.; Guo, W. Recent Progress of InGaN-Based Red Light Emitting Diodes. Micro Nanostruct. 2023, 183, 207669. [Google Scholar] [CrossRef]
- Awasthi, V.; Pandey, S.K.; Verma, S.; Mukherjee, S. Room Temperature Blue LED Based on P-ZnO/(CdZnO/ZnO) MQWs/ n-ZnO. J. Lumin. 2016, 180, 204–208. [Google Scholar] [CrossRef]
- Edmond, J.; Abare, A.; Bergman, M.; Bharathan, J.; Bunker, K.L.; Emerson, D.; Haberern, K.; Ibbetson, J.; Leung, M.; Russel, P.; et al. High Efficiency GaN-Based LEDs and Lasers on SiC. J. Cryst. Growth 2004, 272, 242–250. [Google Scholar] [CrossRef]
- Han, S.; Xu, C.; Li, H.; Liu, S.; Xu, H.; Zhu, Y.; Fang, A.; Wang, X. AlGaInP-Based Micro-LED Array with Enhanced Optoelectrical Properties. Opt. Mater. 2021, 114, 110860. [Google Scholar] [CrossRef]
- Wang, D.; Xing, G.; Gao, M.; Yang, L.; Yang, J.; Wu, T. Defects-Mediated Energy Transfer in Red-Light-Emitting Eu-Doped ZnO Nanowire Arrays. J. Phys. Chem. C 2011, 115, 22729–22735. [Google Scholar] [CrossRef]
- Dahal, R.; Ugolini, C.; Lin, J.Y.; Jiang, H.X.; Zavada, J.M. Erbium-Doped GaN Optical Amplifiers Operating at 1.54 Μm. Appl. Phys. Lett. 2009, 95, 111109. [Google Scholar] [CrossRef]
- Budnyk, O.P.; Chumak, M.E.; Stratilat, D.P.; Tartachnyk, V.P. Spectral Features of Pristine and Irradiated White Emitting InGaN LEDs with Quantum Wells. Semicond. Phys. Quantum Electron. Optoelectron. 2024, 27, 235–241. [Google Scholar] [CrossRef]
- Frieiro, J.L.; Guillaume, C.; López-Vidrier, J.; Blázquez, O.; González-Torres, S.; Labbé, C.; Hernández, S.; Portier, X.; Garrido, B. Towards RGB LEDs Based on Rare Earth-Doped ZnO. Nanotechnology 2020, 31, 465207. [Google Scholar] [CrossRef] [PubMed]
- Xin, M. Effect of Eu Doping on the Structure, Morphology and Luminescence Properties of ZnO Submicron Rod for White LED Applications. J. Theor. Appl. Phys. 2018, 12, 177–182. [Google Scholar] [CrossRef]
- Leroux, C.; Guillaume, C.; Labbé, C.; Portier, X.; Zhuchenko, Z.; Zolotovsky, A.; Boullay, P.; Pelloquin, D. Supporting Information (S.I.) Structural Evolution in Annealed (Eu, Tb) Doped ZnO/Si Nanoscale Junction: Implication for Red LED Development. ACS Appl. Nano Mater. 2022, 5, 18545–18552. [Google Scholar] [CrossRef]
- Pangul, C.N.; Anwane, S.W.; Kondawar, S.B. Enhanced Photoluminescence Properties of Electrospun Dy3+-Doped ZnO Nanofibres for White Lighting Devices. Luminescence 2018, 33, 1087–1093. [Google Scholar] [CrossRef]
- Ahmad, R.; Majhi, S.M.; Zhang, X.; Swager, T.M.; Salama, K.N. Recent Progress and Perspectives of Gas Sensors Based on Vertically Oriented ZnO Nanomaterials. Adv. Colloid. Interface Sci. 2019, 270, 1–27. [Google Scholar] [CrossRef]
- Chang, C.J.; Lin, C.Y.; Chen, J.K.; Hsu, M.H. Ce-Doped ZnO Nanorods Based Low Operation Temperature NO2 Gas Sensors. Ceram. Int. 2014, 40, 10867–10875. [Google Scholar] [CrossRef]
- Umar, A.; Akbar, S.; Kumar, R.; Amu-Darko, J.N.O.; Hussain, S.; Ibrahim, A.A.; Alhamami, M.A.; Almehbad, N.; Almas, T.; Seliem, A.F. Ce-Doped ZnO Nanostructures: A Promising Platform for NO2 Gas Sensing. Chemosphere 2024, 349, 140838. [Google Scholar] [CrossRef]
- Hastir, A.; Kohli, N.; Singh, R.C. Comparative Study on Gas Sensing Properties of Rare Earth (Tb, Dy and Er) Doped ZnO Sensor. J. Phys. Chem. Solids 2017, 105, 23–34. [Google Scholar] [CrossRef]
- Zhao, S.; Shen, Y.; Li, A.; Chen, Y.; Gao, S.; Liu, W.; Wei, D. Effects of Rare Earth Elements Doping on Gas Sensing Properties of ZnO Nanowires. Ceram. Int. 2021, 47, 24218–24226. [Google Scholar] [CrossRef]
- Sebastian, S.; Raj, C.S.A.; Diana, P.; Ganesh, V.; Awwad, N.S.; Yahia, I.S.; AlAbdulaal, T.H. Rare Earth Elements Terbium (Tb), Erbium (Er), Ytterbium (Yb) Doped Zinc Oxide Nanoparticles: Synthesis Structural Optical and Gas Sensing Studies. Phys. B Condens. Matter 2024, 694, 416384. [Google Scholar] [CrossRef]
- Hjiri, M.; Dhahri, R.; Omri, K.; El Mir, L.; Leonardi, S.G.; Donato, N.; Neri, G. Effect of Indium Doping on ZnO Based-Gas Sensor for CO. Mater. Sci. Semicond. Process 2014, 27, 319–325. [Google Scholar] [CrossRef]
- Kang, Y.; Yu, F.; Zhang, L.; Wang, W.; Chen, L.; Li, Y. Review of ZnO-Based Nanomaterials in Gas Sensors. Solid. State Ion. 2021, 360, 115544. [Google Scholar] [CrossRef]
- Zhang, G.; Liu, M. Effect of Particle Size and Dopant on Properties of SnO2-Based Gas Sensors. Sens. Actuators B Chem. 2000, 69, 144–152. [Google Scholar] [CrossRef]
- Maekawa, T.; Tamaki, J.; Miura, N.; Yamazoe, N.; Matsushima, S. Development of SnO2-Based Ethanol Gas Sensor. Sens. Actuators B Chem. 1992, 9, 63–69. [Google Scholar] [CrossRef]
- Dong, C.; Zhao, R.; Yao, L.; Ran, Y.; Zhang, X.; Wang, Y. A Review on WO3 Based Gas Sensors: Morphology Control and Enhanced Sensing Properties. J. Alloys Compd. 2020, 820, 153194. [Google Scholar] [CrossRef]
- Xu, X.L.; Chen, Y.; Ma, S.Y.; Li, W.Q.; Mao, Y.Z. Excellent Acetone Sensor of La-Doped ZnO Nanofibers with Unique Bead-like Structures. Sens. Actuators B Chem. 2015, 213, 222–233. [Google Scholar] [CrossRef]
- Deepa, S.; Thomas, B.; PrasannaKumari, K. Influence of Surface Oxygen Vacancies on the LPG Sensing Response and the Gas Selectivity of Nd-Doped SnO2 Nanoparticulate Thin Films. J. Mater. Sci. Mater. Electron. 2019, 30, 16579–16595. [Google Scholar] [CrossRef]
- Chen, Y.; Qi, D.; Shen, L.; Kuang, Y.; Song, J.; Zhu, X.; Ji, Q.; Zhu, T.; Li, Z.; Han, M.; et al. Rare Earth Eu Doped WO3 Film Prepared by Magnetron Sputtering for High Response UV–Vis–NIR Fast Photodetector. Opt. Mater. 2025, 161, 116769. [Google Scholar] [CrossRef]
- Deka Boruah, B. Zinc Oxide Ultraviolet Photodetectors: Rapid Progress from Conventional to Self-Powered Photodetectors. Nanoscale Adv. 2019, 1, 2059–2085. [Google Scholar] [CrossRef]
- Inamdar, S.I.; Ganbavle, V.V.; Rajpure, K.Y. ZnO Based Visible–Blind UV Photodetector by Spray Pyrolysis. Superlattices Microstruct. 2014, 76, 253–263. [Google Scholar] [CrossRef]
- Morkoç, H.; Carlo, A.D.; Cingolani, R. GaN-Based Modulation Doped FETs and UV Detectors. Solid. State Electron. 2002, 46, 157–202. [Google Scholar] [CrossRef]
- Naderi, N.; Moghaddam, M. Ultra-Sensitive UV Sensors Based on Porous Silicon Carbide Thin Films on Silicon Substrate. Ceram. Int. 2020, 46, 13821–13826. [Google Scholar] [CrossRef]
- Shukla, S.; Sharma, D.K. A Review on Rare Earth (Ce and Er)-Doped Zinc Oxide Nanostructures. Mater. Today Proc. 2021, 34, 793–801. [Google Scholar] [CrossRef]
- Steckl, A.J.; Heikenfeld, J.C.; Lee, D.S.; Garter, M.J.; Baker, C.C.; Wang, Y.; Jones, R. Rare-Earth-Doped GaN: Growth, Properties, and Fabrication of Electroluminescent Devices. IEEE J. Sel. Top. Quantum Electron. 2002, 8, 749–766. [Google Scholar] [CrossRef]
- Chen, L.; He, F.; Shi, C.; He, C.; Liu, E.; Ma, L.; Zhao, N. Fabrication of Er/Tm/Yb/Y2O3 Upconversion Luminescence Enhanced 3C-SiC Composites as Highly UV–Vis–NIR Light Responsive Photocatalysts. J. Alloys Compd. 2018, 740, 719–726. [Google Scholar] [CrossRef]
- Alharbi, A.M.; Ahmed, N.M.; Abdul Rahman, A.; Zahirah Noor Azman, N.; Algburi, S.; Wadi, I.A.; Binzowaimil, A.M.; Aldaghri, O.; Ibnaouf, K.H. Development of ZnO and Si Semiconductor-Based Ultraviolet Photodetectors Enhanced by Laser-Ablated Silver Nanoparticles. Photonics Nanostruct. 2024, 58, 101228. [Google Scholar] [CrossRef]
- Kumar, P.; Chauhan, V.; Singh, R.; Pandey, P.C. Lithium Activated Enhancement in UV-Photo Response of Europium Doped ZnO Thin Film. Mater. Chem. Phys. 2022, 291, 126661. [Google Scholar] [CrossRef]
- Kumar, P.; Singh, R.; Pandey, P.C. Enhanced Ultraviolet Photo-Response in Dy Doped ZnO Thin Film. J. Appl. Phys. 2018, 123, 054502. [Google Scholar] [CrossRef]
- Xue, F.; Zhang, L.; Tang, W.; Zhang, C.; Du, W.; Wang, Z.L. Piezotronic Effect on ZnO Nanowire Film Based Temperature Sensor. ACS Appl. Mater. Interfaces 2014, 6, 5955–5961. [Google Scholar] [CrossRef]
- Hasan, S.A.; Gibson, D.; Song, S.; Wu, Q.; Ng, W.P.; McHale, G.; Dean, J.; Fu, Y.Q. ZnO Thin Film Based Flexible Temperature Sensor. In Proceedings of the 2017 IEEE SENSORS, Glasgow, UK, 29 October–1 November 2017; IEEE: New York, NY, USA, 2017. ISBN 9781509010127. [Google Scholar]
- Menzel, A.; Subannajui, K.; Güder, F.; Moser, D.; Paul, O.; Zacharias, M. Multifunctional ZnO-Nanowire-Based Sensor. Adv. Funct. Mater. 2011, 21, 4342–4348. [Google Scholar] [CrossRef]
- Yang, T.; Liu, C.; Liu, X.; Feng, Y.; Shen, T.; Han, W. Fiber Optic High Temperature Sensor Based on ZnO Composite Graphene Temperature Sensitive Material. Opt. Commun. 2022, 515, 128222. [Google Scholar] [CrossRef]
- Liao, X.; Liao, Q.; Zhang, Z.; Yan, X.; Liang, Q.; Wang, Q.; Li, M.; Zhang, Y. A Highly Stretchable ZnO@Fiber-Based Multifunctional Nanosensor for Strain/Temperature/UV Detection. Adv. Funct. Mater. 2016, 26, 3074–3081. [Google Scholar] [CrossRef]
- Li, L.; Cai, C.; Lv, X.; Shi, X.; Peng, D.; Qiu, J.; Yang, Y. Stress-Triggered Mechanoluminescence in ZnO-Based Heterojunction for Flexible and Stretchable Mechano-Optics. Adv. Funct. Mater. 2023, 33, 2301372. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sood, S.; Kumar, P.; Raina, I.; Misra, M.; Kaushal, S.; Gaur, J.; Kumar, S.; Singh, G. Enhancing Optoelectronic Performance Through Rare-Earth-Doped ZnO: Insights and Applications. Photonics 2025, 12, 454. https://doi.org/10.3390/photonics12050454
Sood S, Kumar P, Raina I, Misra M, Kaushal S, Gaur J, Kumar S, Singh G. Enhancing Optoelectronic Performance Through Rare-Earth-Doped ZnO: Insights and Applications. Photonics. 2025; 12(5):454. https://doi.org/10.3390/photonics12050454
Chicago/Turabian StyleSood, Shagun, Pawan Kumar, Isha Raina, Mrinmoy Misra, Sandeep Kaushal, Jyoti Gaur, Sanjeev Kumar, and Gurjinder Singh. 2025. "Enhancing Optoelectronic Performance Through Rare-Earth-Doped ZnO: Insights and Applications" Photonics 12, no. 5: 454. https://doi.org/10.3390/photonics12050454
APA StyleSood, S., Kumar, P., Raina, I., Misra, M., Kaushal, S., Gaur, J., Kumar, S., & Singh, G. (2025). Enhancing Optoelectronic Performance Through Rare-Earth-Doped ZnO: Insights and Applications. Photonics, 12(5), 454. https://doi.org/10.3390/photonics12050454